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Context-aware computing is an emerging computing paradigm
that can provide new or improved services by exploiting user
context information. In this paper, we present a wireless-local-
area-network-based (WLAN-based) indoor positioning
technology. The wireless device deploys a position-
determination model to gather location information from
collected WLAN signals. A model-based signal distribution
training scheme is proposed to trade off the accuracy of signal
distribution and training workload. A tracking-assistant
positioning algorithm is presented to employ knowledge of the
area topology to assist the procedure of position determination.
We have set up a positioning system at the IBM China
Research Laboratory. Our experimental results indicate an
accuracy of 2 m with a 90% probability for static devices and,
for moving (walking) devices, an accuracy of 5 m with a 90%
probability. Moreover, the complexity of the training procedure
is greatly reduced compared with other positioning algorithms.

Introduction
Context-aware computing is an emerging computing
paradigm that exploits information about the user
context to provide improved services. There are many
applications that provide context-aware services based
on the location of the user, such as telephone follow
me, which forwards phone calls to the user�s current
location, everywhere printing, which chooses the
nearest printer for mobile users, and intelligent tourist,
which offers help information based on a tourist�s
location.

Many positioning systems designed to determine or
track a user�s location have been proposed over the years.
Those systems fall into three categories: global location
systems, wide-area location systems based on cellular
networks, and indoor location systems.

A typical global location system is the Global
Positioning System (GPS) [1], which receives signals from
multiple satellites and employs a triangulation process
to determine physical locations with an accuracy of
approximately 10 m. However, GPS is inefficient for
indoor use or in urban areas where high buildings shield
the satellite signals.

Several cellular-network-based wide-area location
systems have been proposed in recent years [2]. The
technological methods of location determination involve
measuring the signal strength, the angle of signal arrival,
and/or the time difference of signal arrival. However, the
accuracy of wide-area location systems is highly limited
by the cell size. Moreover, the effectiveness of systems
for an indoor environment is also limited by the multiple
reflections suffered by the radio frequency (RF) signal.

For an indoor environment, several systems based on
various technologies such as infrared (IR) [3], ultrasound
[4], video surveillance [5], and radio signal [6, 7] are
emerging. Among these systems, radio-signal-based
approaches—more specifically, the wireless local-area
network (WLAN) (IEEE 802.11b, also named Wi-Fi)
radio-signal-based positioning system— have drawn
great attention in recent years [8, 9]. A WLAN-based
positioning system has distinct advantages over all other
systems. First, it is an economical solution because the
WLAN network usually exists already as part of the
communications infrastructure. For a notebook computer,
personal digital assistant (PDA), or other mobile devices
equipped with WLAN capability, the positioning system
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can be implemented simply in software— generally in
middleware or at the application level. This software-
based location system significantly reduces cost with
respect to dedicated architectures. Second, the WLAN-
based positioning system covers a large area compared
with other types of indoor positioning systems. The
WLAN-based positioning system may work in a large
building or even across many buildings. Third, it is a
stable system owing to its robust RF signal propagation.
Video- or IR-based location systems are subject to
restrictions, such as line-of-sight limitations or poor
performance with fluorescent lighting or in direct sunlight.

In this innovative WLAN-based indoor positioning
technology, the signal distribution of access points is
collected to train a position-determination model. The
training phase is followed by the working phase, during
which the mobile device observes the WLAN signals and
applies the position-determination model to calculate a
position. To reduce the complexity of the training phase,
a model-based signal propagation training scheme is
proposed in which the signal distribution is trained from
a few collected samples. To improve the accuracy of the
location system, a tracking-assistant positioning algorithm

is introduced in which the position determination relies
on both collected signal strength and knowledge of space
topology.

We have set up the WLAN-based positioning system
in the IBM China Research Laboratory and have used
experiments to evaluate the performance of our system.
The results of these experiments indicate that our system
achieves a 2-m accuracy with a 90% probability for static
position determination. For a walking mobile device, a
5-m accuracy with a 90% probability is achieved.

WLAN signal propagation analysis
Generally, the WLAN-based positioning system relies
on the collecting of WLAN signals to train the signal-
distribution map, thus applying a position-determination
model that can be used to determine the location of
mobile devices. The WLAN signals appear in an irregular
pattern, since the propagation of signals is heavily affected
by multipath effects, dead spots, noise, and interference in
an indoor environment. Therefore, creating an efficient
and accurate positioning system for indoor environments
is a challenging task. In this section, we discuss the setting
up of a test bed to measure and analyze the characteristics

Figure 1

(a) Layout of the test bed for WLAN signal analysis, located on the second floor of the IBM China Research Laboratory, Beijing. (b) 
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of WLAN wave signal propagation in indoor environments,
providing the basis for the location algorithm we propose
in the next section.

Methodology
The layout of the test bed for WLAN signal analysis is
shown in Figure 1(a). The test bed has a dimension of
35 � 40 meters, an area covering 1400 m2. It includes a
hall, a reception area, a classroom, and several smaller
rooms. Five WLAN access points (APs), AP1,2,���,5, are
mounted on the roof of the area, as shown in Figure 1(a).
The access points are of the Cisco Aironet** 340/350 type,
and each one is equipped with two antennas with 2.2-dBi
gain. They operate in the 2.4-GHz band. For a typical
indoor environment, the cover range of an access point
is about 90 m at 1 Mb/s and 30 m at 11 Mb/s.

To study the WLAN signal propagation, we use an IBM
ThinkPad* T20 notebook equipped with a Cisco Aironet
340 series WLAN adapter to capture the signal. We
wrote an application to scan access points and collect
the received signal strength indication (RSSI) from
each access point. The collected signal strength is
reported in units of negative decibel-meters (�dBm).

In the testing area, nearly 100 positions are chosen
to perform scanning operations. For each position,
300 scanning operations are performed for each
orientation. Moreover, we also vary the scan interval
and scanning number for some special positions to
obtain long-term characteristics of signal propagation.
The analysis of the collected samples is reported in
Figure 1(b).

WLAN signal propagation analysis

Signal distribution of one access point
Figure 1(b) plots the contour of signal strength from access
point AP1 in the testing area. As shown in Figure 1(a), AP1

is mounted on the roof above the reception area, where the
signal is very strong. It is seen that signal strength at the
position below AP1 may approach 30 to 35 �dBm. As
the distance between the measuring position and AP1

increases, the signal is attenuated. However, the signal
is attenuated at different rates in different directions.
For example, the signal is gradually attenuated on the
line-of-sight from AP1 to the demo room, at the lower
right of Figure 1(b). On the other hand, the meeting
room, at the upper left of Figure 1(b), is only 6 m away
from AP1, but the signal strength is greatly attenuated
because there are two walls absorbing the signal wave.
Generally, the signal propagation in an indoor
environment is subject to the reflections, diffraction, and
scattering of the radio waves caused by the structures
within the building. The transmitted signal reaches the

receiver via multiple paths, causing fluctuations in the
received signal envelope and phase. Hence, the received
signal exhibits a distorted version. Moreover, the complex
environment causes severe multipath effects, dead spots,
noise, and interference. It is thus not feasible to build a
simple or a formed signal propagation model for an
indoor environment.

Signal distribution at a static position
We choose a certain position, Point 1, as indicated
in Figure 1(a), to study the signal distribution from
multiple access points. For each access point, we collect
300 samples with a 2-second interval. Figure 2 shows the
signal strength distribution of AP1 and AP2. As shown,
the gathered signal from different access points exhibits
different characteristics. Since Point 1 is very near AP1,
the signal strength from AP1 is rather high, and the
average signal strength approaches 54.6 �dBm. Of all
300 samples from AP1, 32% fall within the range of 55 to
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60 �dBm, and 90% of the samples fall within the range
of 45 to 65 �dBm. However, there are still some weaker
samples, and the weakest is only 72 �dBm. Since many
factors affect signal propagation (number of people in
environment, doors opening and closing, and so on),
there are some cases in which the signal can be greatly
attenuated even when the measuring position is quite
near the access point. The weaker samples reflect this
phenomenon. However, most of the samples exhibit
similar strength, and the analysis indicates that the
standard deviation of signal strength at one position
is about 3 to 10 �dBm.

Effect of orientation
We also studied the effects of measuring device
orientation on the signal strength. At Point 2, as marked
in Figure 1(a), we collected samples in four orientations.
The results, reported in Figure 3, indicate that there is
a correlation between orientation and measured signal
strength. The notebook and measuring person have a
remarkable effect on the signal propagation. Typically,
there was a variation of about 5 to 10 �dBm among the
different orientations. This motivated us to treat different
orientations of one location as different logical positions
in a positioning system.

Long-term characteristics of signal propagation
To study the long-term characteristics of signal
propagation, we performed multiple sample collections
during a two-week period under different conditions.
The conditions included different times of day, such as
morning/noon/night and office hours/nonoffice hours.
Then we used all of the samples to study the statistical

characteristics of long-term signal propagation. Figure 4
shows the probability distribution of signal strength
from AP1 at Point 1, which includes 3000 samples. As
shown in Figure 4, the long-term characteristics of
signal propagation are very similar to the short-term
characteristics shown in Figure 2, except that there is a
heavy “tail” in the long-term figure. Since more samples
are collected in the long-term analysis, a greater number
of weaker samples are detected in the collection
procedure, which results in the heavy tail.

WLAN-based positioning system

Position-determination model
In WLAN-based positioning systems, the mobile device
generally makes use of the signal emitted from access
points as the input for a positioning algorithm to
determine a location. In this section, we present a
position-determination model to reflect the correlation
between the observed signal and position knowledge.

Let the set L � {l1, l2, . . . , ln} denote the preselected
positions (also called marking positions) in a certain area,
and set A � {a1, a2, . . . , am} denote the access points in
the area. For each marking position, li, the signal strength
s (0 � s � 100) as detected from aj follows a probability
distribution pi

j(s), where

�
s�0

100

pi
j�s� � 1.

For an unknown location x, suppose that the observed
signal is O � {o1, o2, . . . , om}, where oj represents the
signal strength detected from access point aj . We then
assign a probability P(li O) for each position li under
observation O. Therefore, the position-determination
problem is to find a position, li , at which the probability
P(li O) is maximized.

Mathematically, the probability P(li O) can be
represented as

P�li O� �
P�O li� P�li�

P�O�
, (1)

where P(O li) is the conditional probability of obtaining
observation O at position li ; P(O) is a normalizing
constant; and P(li) is the prior probability of position li

being the correct position, which can be set as a constant
or obtained from some prior knowledge.

Generally, the conditional probability P(O li), which
represents the O being observed at position li , can be
represented as

P�O li� � �
j�1

m

P�oj li� � �
j�1

m

pi
j�oj�. (2)

Effect of orientation on signal strength.
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From Equations (1) and (2), it is clear that the probability
distribution pi

j(s) and the prior probability P(li) dominate
the position calculation and are critical to the accuracy of
the location system. Our WLAN-based location system is
built on the basis of this position-determination model.
Since the model relies on preobtained knowledge, such
as pi

j(s) and P(li), the system works in two phases: the
training phase and the working phase.

In the training phase, a suite of samples is collected to
create the marking position set L. Generally, the marking
positions should be carefully selected so that they are
evenly distributed over the whole area. Moreover, as
mentioned above in the section on signal propagation
analysis, the orientation also has an effect on signal
strength. Thus, the four orientations of each physical
position are considered as four marking positions in
the set L. For each marking position, signal scanning
operations are performed to collect a number of signal
observations. The collected signals are used to build the
signal probability distribution pi

j(s). As mentioned above,
pi

j(s) exhibits a remarkable impact on the accuracy of the
positioning system, so training the probability distribution
from collected signals should be done very carefully. In
general, to train a well-shaped probability distribution
requires a large number of signals, resulting in a heavy
burden for signal collection. To achieve a tradeoff between
training output and training burden, we propose a model-
based training scheme, discussed in the next subsection.

In the working phase, the mobile device detects a
signal from each access point and uses the position-
determination model to calculate a position in real time.
However, because of the variable nature of signal
propagation in indoor environments, it is hard to
eliminate the position-determination error if only the
signal-distribution probability is used in the determination
procedure. To improve the accuracy of the positioning
system, we introduce the knowledge of area topology in
our model and propose a tracking-assistant positioning
algorithm, discussed in a later section.

Model-based signal-distribution training scheme
Our WLAN-based positioning system relies on the
knowledge obtained in the training phase. A good training
procedure should possess two features: an accurate signal
probability distribution obtained through the training and
a training procedure that is not too complex. These two
objectives, however, are often in conflict. To obtain an
accurate signal probability distribution requires a large
number of samples, resulting in a heavy burden on the
training procedure. To trade off these two objectives, we
propose a model-based signal-distribution training scheme.

Recall the two signal distributions obtained from the
short-term and long-term analyses, Figure 2(a) and Figure 4,
respectively. We find that the two distributions have some

similar characteristics, such as average value. This
indicates that some important distribution characteristics
can be obtained in the short-term signal-collection
procedure. However, it can also be seen that the shape
of the long-term distribution is smoother than that of
the short-term distribution. Moreover, the long-term
distribution has a heavy tail because more weak samples
are detected during the long-term data collection.
Motivated by these analyses, we propose a model-based
signal-distribution training scheme. The scheme is
composed of three steps:

● Step 1: At each position K, scanning operations are
performed to collect the signal from each detectable
access point. Suppose that at position li , the K
scanned observations are Ok(k � 1, 2, . . . , K), where
Ok � {o1

k, o2
k, . . . , oj

k, . . . , oM
k }, and oj

k represents the
signal strength of the access point aj in the kth scanning
operation. Generally, this is a short-term signal-
collection procedure.

● Step 2: To smooth the shape of the probability
distribution, which is generated from the limited
scanning operations in Step 1, we design a shaping
filter to obtain the shaped probability distribution

� p��i
j�s� � �

k�1

K

e ��� s�oj
k ��E,

where

E � �
s�0

100 �
k�1

K

e ��� s�oj
k �
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is a normalized factor and � is a control parameter.
Normally, � is chosen as 2.0.

● Step 3: The heavy-tailed characteristic of the signal
probability distribution cannot be revealed by a short-
term signal-collection procedure. Therefore, a tailing
filter is applied to the probability distribution trained
from Step 2:

pi
j�s� �

� p��i
j�s�

�
s�0

100

� p��i
j�s�

,

where

� p��i
j�s� � � � p��i

j�s�

� p��i
j�s0� � e ��s�s0�

s � s0 ,

s � s0 .

The signal strength threshold s0 satisfies

�
s�0

s0

� p��i
j�s� � 	 and �

s�0

s0�1

� p��i
j�s� 
 	.

Here, � is a control parameter which is set to 1.0, and 	 is
another parameter which, in our system, is set to 0.9. Note
that the values of the control parameters �, �, and 	 are
obtained experimentally and performed well in our final
system. In Step 2, the curve of the probability distribution
obtained from the signal collection procedure is smoothed
via a shaping filter, and in Step 3, the heavy tail is added
to the probability distribution to reflect the occasional
weaker signals.

Tracking-assistant positioning algorithm
In the working phase, the location system deploys a
position-determination model to calculate position. As
indicated in Equation (1), the probability P(li O) is also
affected by the probability P(li), the prior probability of
x being li according to certain prior knowledge. In this
section, we propose a tracking-assistant positioning
algorithm that relies upon topological knowledge to
obtain the P(li).

The indoor positioning system serves context-aware
applications such as guide systems and tracking systems, in
which the movement of a mobile device is subject to the
topology in a certain area. For example, the mobile device
cannot skip from one position to another that is far away
from its prior position. Furthermore, a mobile device
cannot travel between two positions in a short time if
two positions are divided by a wall. The discipline of
movement motivates us to introduce topological
knowledge into a positioning system to enhance
positioning accuracy.

Supposing that the k determined positions prior to
a new location x are Lk

P, Lk�1
P , . . . , L1

P, there is a high
probability that x is near the prior positions. Thus, we
define a tracking probability P(li Lk

P, Lk�1
P , . . ., L1

P) for
each marking position li in set L,

P�li Lk
P, Lk�1

P , . . . , L 1
P� �

1

k � D �
j�1

k

	e �� j�1�

� dist �1�li, Lj
P�],

where dist(li , Lj
P) represents the distance between

position li and position Lj
P . Here D is a constant

representing the maximum distance between positions.
Note that D is used only to normalize the tracking
probability. The method used to choose the value
of D does not affect the final position-determination
procedure. Since the movement of a mobile device
follows the given topology, the tracking probability of
position li represents the feasibility of the mobile device
being moved to position li after a prior moving trace
(Lk

P, Lk�1
P , . . . , L1

P). In an extreme case, such as k � 1,
we have P(li�Lk

P , Lk�1
P . . . , L1

P) � P(li L1
P) � dist�1(li , L1

P).
Therefore, the tracking probability is reversely
proportional to the distance between the latest
determined position L1

P and position li. Obviously,
the longer the distance, the lower is the probability
of the mobile device being moved to position li from
position L1

P; the shorter the distance, the higher
the probability. Since the mobile device cannot
move a long distance in a very short time, the
tracking probability P(li Lk

P, Lk�1
P , . . . , L1

P) can be
used as the P(li) defined in Equation (1).

State machine of the tracking-assistant positioning algorithm and 
the algorithm.

Figure 5
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Note that the distance between two positions can
be obtained from some prior knowledge, such as the
physical distance between two positions. Considering the
complexity of indoor environments, we use a weighted
graph (vertex, edge), G(V, E), to represent the position
topology. We put all marking positions from set L into set
V and assign edge e to each position pair as e(lm ln) if the
physical distance between positions lm and ln is shorter
than a threshold distance and there is a direct way to
connect two positions in physical space. We also set the
weight for edge e as the physical distance between two
positions. Therefore, for any position pair li and lj , we
define the distance dist(li , lj) as the length of the
shortest path between two positions in graph G(V, E).

To be specific, deploying the simple tracking probability
as P(li) in Equation (1) may introduce a risk of
imprecision for the system because of error propagation.
Recall that the definition of tracking probability is subject
to a series of prior determined positions. If there is
some error during the determination process, it will
be propagated and will affect the precision of later
calculations, which further affects the accuracy of
the positioning system. To avoid error propagation,
we must introduce an error-detection mechanism. In
our system, the state machine is introduced for this
reason.

We define the state-of-location algorithm and categorize
the state into tracking states T � {T1, T2, . . . , Tn} and
nontracking states N � {N1, N2, . . . , Nm}. The states in T
represent that the positioning system should deploy the
tracking probability in the determination process, while
the states in N mean that there is a risk associated with
using tracking probability. Transference between states
is triggered by two events: p when an error position
calculation has occurred, and q when there is no error.
For each position-determination process, an event is
generated to trigger the transference of the state
according to the rule defined in Figure 5. Since the
algorithm determines whether or not to use tracking
probability according to the state, the risk of error
propagation is avoided while the accuracy of the
positioning system is maintained by the use of tracking
probability.

Experiments and evaluation

Experimental setup
To study the performance of the WLAN-based indoor
positioning system, we conducted a number of experiments.
The performance of the positioning system was measured
using the metric error distance, defined as the spatial
distance between the original position and the position
calculated by the positioning system.

We conducted two sets of experiments. In the first, we
randomly chose a number of positions in the area and
placed mobile devices at the positions to evaluate the
positioning system. For many applications, such as
telephone follow me and everywhere printing, there is not
much movement. The mobile device remains in one
position for a rather long period of time before moving
to another position. The most important consideration for
such applications is the accuracy of the positioning system,
so we call these experimental scenarios position testing.
The second set of experiments is called trace testing. For
these, the mobile devices are walked through the testing
area at a certain speed. These experiments test for
applications such as guiding systems.

Accuracy of positioning system
Figure 6(a) shows the cumulative error distance
distribution of the position testing. In the experiment, we

Cumulative error distance of (a) position testing; (b) trace testing. 

(TAA: tracking-assistant algorithm.)
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vary the number of tracking states, n, and the number of
nontracking states, m. Note that, if we set n � 0, our
positioning system withdraws to the traditional system in
which topological knowledge is not considered. As shown
in the figure, the accuracy of the WLAN-based positioning
system with the tracking-assistant algorithm is higher than
without the tracking-assistant algorithm. More specifically,
when we set n � 7 and m � 2, we achieve the best
performance. With a 90% probability, the error distance
is within 2 m. With a 95% probability, the error distance
is within 4 m. Since the tracking-assistant positioning
algorithm adopts the topological knowledge of the
testing area, the determined position seldom jumps

far away from the original position, and thus accuracy
is maintained.

Figure 6(b) shows the cumulative error distance
distribution of the trace testing. In the experiment, we
also vary the number of tracking states, n, and the number
of nontracking states, m. As shown in the figure, the
accuracy of the WLAN-based positioning system with the
tracking-assistant algorithm is greater than without the
tracking-assistant algorithm. When we set n � 7 and
m � 2, the best performance is achieved. With a 90%
probability, the error distance is within 5 m. With a 95%
probability, the error distance is within 7 m. Note that
because the movement of mobile devices also results
in changing the original reference positions in the
determination procedure, the accuracy of trace
testing is not as good as that of position testing.

Complexity of training phase
Recall that in the training phase, the workload is
determined by both the number of marking positions
and the number of scanning operations for each position.
However, reducing the training workload and improving
system accuracy is a tradeoff problem. We have conducted
experiments in which we varied the scanning number for
each position and applied different training schemes to
obtain the signal distribution. Those trained signal
distributions are used in the same determination model
to study the effect of different training workloads and
different training schemes on the performance of the
positioning system. The histogram scheme, which is a well-
known scheme proposed by Myllymaki et al. [9], is used in
the experiment for comparison with our model-based
signal-distribution training scheme.

As shown in Figure 7, it is clear that for both training
schemes, the more scanning operations performed, the
better the performance. However, compared with the
histogram scheme [9], our training scheme requires fewer
scanning operations. We also find that when the scanning
number in our scheme approaches 100, the accuracy of the
location system is not remarkably improved by further
increasing the number of scanning operations. This
indicates that there is a threshold workload for the
training scheme. Setting the number of scans to the
threshold is a good tradeoff between the complexity of
the training process and the accuracy of the positioning
system.

Effect of number of access points
We also varied the number of access points in the test
area to study how access points affect system performance.
As shown in Figure 8, it is obvious that system accuracy is
greatly affected by the number of access points. In the
scenario in which there are only one or two access points,
the accuracy of the positioning system is rather low. In

Complexity of the training procedure.

Figure 7
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general, to achieve an acceptable accuracy, it is better to
add more access points in the area. Practically speaking,
our results indicate that for each position in the area
covered by the WLAN signal, there should be at least
three or four access points.

Related work
Several WLAN-based indoor positioning systems have
been built in recent years. The RADAR system [8]
proposed a nearest-neighbor method to determine
position, and a signal propagation model was proposed to
describe the rule of signal propagation. Myllymaki et al.
[9] introduced a probability approach to estimate user
location. Battiti et al. [10] presented a neural network
model for a positioning system. Smailagic et al. [11]
studied the table-based method of determination. In [12],
Myllymaki and Tirri also introduced a tracking-assistant
positioning system, and tracking techniques are also used
by the Ekahau** [13] system.

Our work differs from these efforts. First, we propose
a model-based signal propagation distribution training
scheme which is a tradeoff between system accuracy and
the training workload. This scheme effectively reduces the
complexity of the training procedure. Second, we propose
a tracking-assistant positioning algorithm in which a state
machine is used to adaptively transfer between tracking
and nontracking status to achieve more accurate
performance. The knowledge of area topology introduced
into our position-determination model results in a
remarkable improvement in the accuracy of our indoor
positioning system.

Conclusions and future work
In this paper, a WLAN-based indoor positioning
technology is presented. A position-determination model
was built to represent the correlation between WLAN
signal distribution and physical positions. Therefore, the
system is divided into two phases: the training phase, in
which sample signals are collected to train the model,
and the working phase, in which the model is applied to
determine the location of mobile devices. To reduce the
complexity of the training procedure, a model-based signal
propagation training scheme is proposed to reduce the
workload while maintaining the accuracy of signal
distribution. To improve the accuracy of the location
system, a tracking-assistant positioning algorithm is
proposed that uses topological knowledge to assist the
position determination. We have set up a positioning
system in the IBM China Research Laboratory, and our
experiments indicate that the positioning system achieves
a 2-m accuracy with 90% probability for static position
determination scenarios. For a moving mobile device,
a 5-m accuracy with 90% probability is achieved.

We are now further evaluating our system under various
circumstances, such as whether and how multiple mobile
devices affect one another. Moreover, we have begun
building several location-aware applications, such as
telephone follow me and everywhere printing, based on the
WLAN positioning system. In the near future, we also plan
to apply our determination technology to other positioning
systems, such as those based on radio frequency identification.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cisco Systems,
Incorporated or Ekahau, Incorporated.
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