Model-driven
development of
large-scale Web
applications

H. Tai

K. Mitsui
T. Nerome
M. Abe

K. Ono

M. Hori

This paper describes our approach to support the development
of large-scale Web applications. Large development efforts
have to be divided into a number of smaller tasks of different
kinds that can be performed by multiple developers. Once
this process has taken place, it is important to manage the
consistency among the artifacts in an efficient and systematic
manner. Our model-driven approach makes this possible. In
this paper, we discuss how a metamodel is used to describe
part of the specification as a central contract among the
developers. We also describe a tool that we implemented on
the basis of the metamodel. The tool provides a variety of
code generators and a mechanism for checking whether view

™

artifacts, such as JavaServer Pages

, are compliant with the

model. This feature helps developers manage the consistency
between a view artifact and the related business
logic—HyperText Transfer Protocol request handlers.

1. Introduction
As Web applications grow in size, the size of development
projects grows as well, and it becomes more and more
critical to support modular application design and parallel
development. The challenge lies in meeting a few unique
requirements. This paper describes our model-driven
approach to support the development of large-scale Web
applications.

The first requirement to be met is that the solution
support the appropriate division of the development
effort into smaller and different kinds of tasks that
can be performed by various kinds of developers,
such as architects, screen designers, and business
logic programmers. It must then support the efficient
integration of the many outputs from these different tasks.
There must also be a cost-effective method of unit and
integration testing if we are to maximize the parallel
progress of the tasks that are inherently dependent upon
one other.

The second requirement is to support the integration
of different kinds of programming technologies, such as
Hypertext Markup Language (HTML), JavaServer Pages™*
(JSP*#), Struts, JavaBeans™*, and possibly other in-house
technologies designed to best suit developers’ specific but

differing needs. The methodology for Web application
development is still in its early stages, and new
technologies continue to emerge. Sometimes these
technologies are alternatives, and sometimes they are used
in combinations. In the latter case, the binding between
artifacts based on different technologies is loose. For
example, representing names as character strings is still

a popular way to represent interfaces or references that
cross technology boundaries. However, since there is

no standard way to guarantee the consistency of such
references, they are one of the parts of Web applications
that typically cause interface mismatch errors and are very
error-prone. Such errors are costly to detect and correct
if this must be done manually. As the size of Web
applications grows, automatic consistency checking
becomes critical.

To meet such requirements, we designed a metamodel"
that describes the specification of a Web application, and
we built a tool that utilizes the model (an instance of
the metamodel). We use the specification description
formalized by this metamodel as a central contract

' A model usually specifies a Web application in an abstract fashion. The
metamodel for a class of models specifies how the models are specified.

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

H. TAI ET AL.

797

798

among all developers on a project. To check that all of the
artifacts produced by the developers are in compliance
with the given specification, we use an automatic stub’
code generation technique that performs the check in

test runs. By checking this compliance, we can ensure
consistency among different kinds of artifacts.

In an earlier paper [1], we discussed basic specification
elements and associated support tools. This paper focuses
on our model-driven solution, and we discuss in detail the
effectiveness of the supported modeling elements and
tools that were implemented to make use of the model
description and facilitate Web application development
efforts.

The paper is organized as follows. Section 2 discusses
the preceding work related to our metamodel and tool.
Section 3 reviews modern Web application development
technologies and practices, which follow a specific
methodology and are based on one of the most widely
adopted Web application architectures—the model-view-
controller (MVC) pattern [2]. Section 4 describes
problems associated with current Web application
development practices. In Section 5, we propose a model-
driven development method as a solution to the problems
identified in Section 4. Section 6 describes the metamodel
for Web applications, which is the basis of the model-
driven development described in this paper. The prototype
tool we built on the basis of the metamodel is introduced
in Section 7, and Section 8 concludes the paper.

2. Related work
The Unified Modeling Language (UML) [3] notation is
used to model the business logic and server objects in
Web applications. A UML extension [4] is proposed for
describing Web applications in which the relationship
between a form and a Web page is represented by a
submit association stereotype between the Form and
Server Page stereotyped classes. In terms of the
relationship between a form and a Web page, our
metamodel is similar to this UML extension. However, the
model elements in this UML extension are not related to
the components in the MVC pattern. For example, both
views and business logic in the MVC pattern are
represented by Server Page elements. Thus, it is not
straightforward to use this UML extension for modeling
Web applications that are based on the MVC pattern.
Another UML extension for describing Web
applications [5] is also proposed. In its notation, page
navigation is defined in a more structural way than in our
notation. Users can design and maintain hyperlinks and
data structure in a high-level model. In contrast, our

2 The term stub refers to a substitute for an artifact that is not yet completed but
is needed for execution by other artifacts.

H. TAI ET AL.

notation is low-level, so that users should be aware of the
MVC pattern.

HDM-lite is a hypermedia design model tailored to the
development of Web applications; it is used to specify the
structural, navigation, and presentation semantics for Web
applications [6]. The HDM-lite model integrates database
and hypermedia modeling concepts with presentation
abstractions for the Web context. The navigation
semantics in HDM-lite are prescribed on the basis of the
movement of the focus from one page to another and are
defined with presentation-related concepts, such as
accessing, filtering, and indexing. In contrast, the
navigation semantics in our metamodel are prescribed on
the basis of the semantics of the uniform resource locator
(URL) [7]. This difference in modeling perspectives stems
from assumptions made about the intended scope of the
Web applications. That is, HDM-lite assumes that Web
applications are hypermedia-like and data-intensive, and
that the central issue in the presentation is navigation.
On the other hand, our metamodel assumes that Web
applications with business transactions are dynamic, and
that the navigation semantics must capture the invocation
of server-side actions and the page flow.

A development environment called Autoweb [6], based
on HDM-lite, has been created for data-intensive Web
applications. Although Autoweb allows code generation
and mapping from relational database schema to
presentation pages on the Web, it assumes the common
gateway interface (CGI) process as part of the runtime
environment; therefore, it cannot be exploited, as it
currently exists, for runtime frameworks based on the
MVC architecture.

WebML [8] is a modeling language that exploits the
entity relationship of data that is to be published by a
Web application. It provides a sophisticated method of
notation and a tool for designing Web applications for
data retrieval and manipulation.

3. Structure of Web applications

In the early days of Web application development,
applications did not have to be highly structured because
they were simple and small. They were built using CGI
technology, which means that a CGI program does
everything needed to handle requests from HyperText
Transfer Protocol (HTTP) clients. As applications became
more complex and larger, the MVC pattern was widely
adopted. In the MVC pattern, each request from a Web
client is processed through the following steps: 1)
interpret the request; 2) dispatch it to business logic;

3) select a view; and 4) generate the view content. In
particular, on the Java®* 2 Enterprise Edition (J2EE**)
platform, it is recommended that the Model 2 architecture
[2, 9] be used unless the application is small and simple.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Figure 1 illustrates the Model 2 architecture, which is a
realization of the MVC pattern on the J2EE platform. In
this architecture, a component called the front controller
servlet fills an important role. All requests from Web
clients are first handled by the front controller servlet,
which interprets the request and determines the operation
to execute. Each operation is implemented as an Action
component. An Action component may create model
components or modify them through the execution of
the operation. After that, the front controller servlet
selects a View component, which is determined on
the basis of the results returned from the execution
of the Action. Finally, the selected View component
generates the content to display and returns it to
the Web client.

The primary benefit provided by the Model 2
architecture is that it makes Web applications easy to
maintain through the decomposition of an application into
a number of components whose roles are specialized. It is
easier to develop individual components than to develop
monolithic CGI programs, because developers need to
know only technologies related to the components for
which they are responsible, whereas CGI programmers are
required to know every related technology (e.g., HTML,
HTTP, scripting languages, and databases). For example,
developers of View components must have knowledge of
JSP and HTML. However, they do not have to deal with
the interpretation of requests, the ways requests can be
handled, page flows, or issues of database access.

4. Problems in modern Web application
development

Web application development reveals some peculiarities
and problems that stem primarily from two sources: the
wide range of technologies involved and a lack of support
for the division of work.

As Web applications become large and complex, they
are built using various kinds of technologies. For example,
in the case of J2EE platforms, they include HTML,
JavaScript**, JSP files, Extensible Markup Language
(XML), Enterprise JavaBeans** (EJB**), Remote Method
Invocation (RMI), Java Database Connectivity (JDBC**),
and so on. The sheer number of these technologies creates
problems, and it can be quite difficult to find developers
who know all of them. Consequently, modern Web
applications are developed by various developers who have
different skills.

As Web applications grow in size, solutions for scalable
development become more important and necessary. One
possible solution is to provide support for the division of
design and implementation work and to assign the divided
work tasks to a number of developers. To work efficiently,
this solution has to manage the artifacts produced by

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Front controller servlet
1. Interpret the request
2. Dispatch to an action
3. Select a view

Action
Performs an operation
(3) Forward/

redirect (2) Create/
modify

(1) HTTP request

(5 HTTP

response | View (4) Fetch

v Templating service
e.g., JSP pages,
servlets

Model

v Session state

v Business object
v Application data

Model 2 architecture — a realization of the MVC pattern on the
J2EE platform.

HTML generated by SearchPage. jsp

<form action="Search">
Keyword: <input name="kwd" type="text">
<input type="submit" value="Search">

</form>
Kwd = "sports"

public String handleRequest(
HttpServietRequest request,
HttpServietResponse response)

HTTP request

keyword = request.getParameter("keyword");

Action (SearchAction.java)

Sample of an inconsistency between a JSP and an Action.

those developers and make sure they are consistent with
the specifications. However, there is no current scheme—
such as a static-type system, to which the output from the
divided work must conform—that can force all artifacts
to be combined in a consistent manner.

Figure 2 illustrates a sample case in which the required
consistency between a JSP and an Action is not satisfied.
Referring to the figure, Sear chPage. j sp contains an
HTML form for sending a request to Sear chAct i on.
Although Sear chAct i on expects that the HTTP request

H. TAI ET AL.

799

800

Model maintainers
Screen designers

* Web page design
* Modeling « Page template (JSP) authoring
* Solid knowledge of the Model 2 —_—
architecture [

Server object programmers

* Programming

Realized
server object

Application assemblers

* Deployment of Web
applications

« Solid knowledge of the
Model 2 architecture

Model-driven development for Web applications.

contains the parameter named keywor d, the HTML form
in Sear chPage. j sp sends out a request with a different
parameter name, kwd. In this case, Sear chActi on
behaves as if no search keyword was specified, even

if a keyword was specified in the HTML form. The
troublesome problem is that neither a warning nor an
error is reported regarding this inconsistency, so it is quite
challenging for developers to identify the source of the
problem. The problem might be something in the search
logic, an incorrect parameter name in the Action, or an
incorrect field name in the JSP page. It would require
unwelcome time and expense to fix the bug.

5. Model-driven development for Web
applications

In this section, we describe a model-driven approach to
solve these problems. Figure 3 illustrates the development
style that categorizes the developer roles and lists the
developer roles and the skills required for each.

Screen designers

Screen designers are responsible for implementing View
components, such as JSP pages and HTML files. The
model developed by the model maintainer can be

H. TAI ET AL.

exploited to automatically generate skeleton code pages
that are populated with the minimum page elements. The
greater the number of View components that a screen
designer has to develop, the greater the benefit of
skeleton code generation. When a screen designer finishes
implementing a View component, he has to verify that the
implementation conforms to the model. For example, the
model may have prescribed that the page must contain
specific input and output fields.

Model maintainers

Model maintainers are responsible for creating and
maintaining the model (or part of the model) that
describes the outline of the portion of the Web
application for which they are responsible. Because such
a model usually becomes large, the model should be
maintainable by multiple workers to deal with the scaling.
Every time the model changes, its validity as a whole must
be ensured, so software tools are required to perform this
verification. The original specification might be created in
the form of an unstructured document. In such cases,
model maintainers are responsible for transforming the
original specifications to a set of models.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Business logic programmers

Business logic programmers are responsible for
implementing Action components. A skeleton code
generator is provided for them as well. It can be much
more beneficial in this role because programmers are able
to understand the specification of each Action component
in the form of program code. Like screen designers,
programmers must verify that the implementation they
develop conforms to the model.

Server object programmers

Server object programmers are responsible for
implementing Model components, which are typically
implemented as objects stored in an Ht t pSessi on object
that is associated with each HTTP session. They may also
be implemented as objects stored in a stateful session
bean running on a J2EE server.

Application assemblers

Application assemblers are responsible for constructing

a complete Web application by combining all of the
artifacts developed by screen designers, business logic
programmers, and server object programmers. They are
also responsible for verifying whether the artifacts all
conform to the model. This can be done by checking the
verification results submitted by the developers. The
verification results must be well maintained in order to
ensure that they are really about the submitted version of
artifacts. However, this is sometimes difficult, especially
when the development teams are distributed among
different locations or organizations. The surest verification
is for the application assemblers to perform the checks
themselves. However, because application assemblers
must check so many artifacts each time at this stage,

the checking should be automated.

To construct a complete Web application, application
assemblers must prepare several configuration files. It is
possible to generate most of the configuration files from
the model.

6. Modeling Web applications

The central part of our solution is the metamodel for
modeling Web applications. The Web application

model described by the metamodel plays a role as an
architectural blueprint, which describes the division of a
large Web application into subapplications and provides
the specification to which all artifacts in the development
project must conform.

Our modeling scheme has historically been called
WAD [1], which stands for Web Application Descriptor.
WAD originally started as metadata that described the
relationships among the artifacts of a Web application; it
was used to automatically check consistency among the

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

artifacts. It turned out, however, that such metadata
constitutes more than just the relationships. Rather, it is
the architecture of a Web application and should also
include modules, useful abstractions, concerns about
reuse, and so forth. Hereafter, in this paper, we call the
metamodel the WAD model, or simply WAD when there is
no possibility of confusion.

We comment here about Model-Driven Architecture
(MDA) [10], which is an emerging industry standard for
promoting active use of models in software development.
There are applications of such model-driven approaches to
Web applications [6, 11]. In MDA, focusing on platform
independence is part of its value proposition, because
making models platform-independent provides us with
opportunities to systematically transform the models into
various platform-dependent implementations. While our
long-term intention is for MDA, WAD is dependent on
the Model 2 architecture of J2EE [2, 6]. Determining the
degree to which WAD is applicable to relatively different
kinds of architecture is future work. This section describes
the detailed modeling constructs used in WAD.

Pages and page transitions

Web applications provide the application front end,
specifically, the actual presentation of a user interface and
the control of user interaction flows. The application front
end interacts with the application back end, such as
databases and other kinds of system services, through
standard Internet technologies, including Web browsers
and HTTP. Thus, the application front end is about user
interfaces.

The very first element to be modeled in a Web
application—when the result of use case analysis is
mapped onto the implementation model—is a collection of
pages and the transitions between pages. A (Web) page is
a unit of presentation composition. In a typical operating
environment that serves Web applications, a page is
prepared in a Web server and transmitted to a Web
browser, which visually renders the page. The displayed
pages usually include sections in the screen that trigger
commands or data transmissions that cause actions to be
taken at the server (HTML forms or hyperlinks). A trigger
fires when a user clicks a hyperlink or a button in an
HTML form, and the corresponding action results in the
appearance of the next page. Thus, there are transition
flows between pages. It is important to distinguish
between the page as a unit of presentation at design time
and the page that is actually prepared at runtime and
transmitted to a Web browser, particularly when a design-
time page is instantiated as a similar but slightly different
page at runtime. In that sense, we call the former the page
template, and the latter a page instance. We refer to a page
template as simply a page, because this paper is concerned
primarily with the time of design. When there is a

H. TAI ET AL.

801

802

NavigationPart ‘

+region

0..n
PortConnection ’—

..n +connection

Region

+child

+ +target
WadNode Opogt Port e

N [T

Actionlnvocation‘ ’ Logical Page‘ ’EntryPor‘tHExitPort‘

+actionMapping

ActionMapping

+action

WAD metamodel elements related to page transition presented in
the form of a class diagram in UML.

B

Sample graphical notation of a page transition model.

possibility of confusion, we use the term page template. A
page template is a program in the sense that, at runtime,
it instantiates page instances, which are marked-up
documents transmitted to Web browsers.

Transitions between pages are modeled and represented
as a directed graph. Figure 4 shows the WAD metamodel
elements related to page transition presented in the
form of a class diagram in UML. A transition can be
conditional; when an outgoing transition from a page is
triggered, it is associated with data transmitted from the
browser, which is typically user input. The transition flow
may be determined by checking conditions based on the
transmitted data. In WAD, this point of the conditional
transition is called an action invocation. An action
invocation refers to an action in which input parameters
are specified. An action also specifies the possible result
codes, and each result code is mapped to the next

H. TAI ET AL.

transition on the basis of the information specified

by the action invocation. We present more details
about the action element in the section below on data
modeling.

Pages and transitions between pages are modeled as a
directed graph of pages and action invocations. As the
number of pages and action invocations increases, the
corresponding directed graph becomes too complex to
maintain. To keep directed graphs simpler, the notion of
a region is introduced. A region contains a directed graph,
while it is also regarded as a node. Page transitions can be
modeled as a hierarchical directed graph that may include
regions.

Another important part of the transition model is
the notion of a port. Ports are attached to pages, action
invocations, and regions. A port is either of an entry or
exit type. An exit port can be the source of a link between
two ports, and an entry port can be the target of a link.
Ports attached to a region can be either the source or
target of a link, and they are relay points of a transitional
port connection between a port outside and another port
inside the region. Generally, a chain of ports joins two
artifact nodes, such as pages and action invocations. An
entry port for a page or an action invocation respectively
denotes an entry point to the page or the corresponding
action.

In a specific implementation technology, such as J2EE,
ports may be resolved as URLs representing pages and
actions. The resolved URLs are embedded in Web
application artifacts, such as pages and action programs,
and used by the artifacts to refer to one another. It is very
useful to model ports at this abstract level and to resolve
ports automatically into URLs. The reason for this is that
determining URLSs requires careful consideration about
the way in which pages and actions are physically
deployed, and they are likely to change depending on
nonfunctional considerations, such as security and access
controls, that happen to be tied to the file directory
structure. Ports hide the unnecessary details of
such referential information that is dependent on
implementation technology, but provide sufficiently
detailed relationships between pages and action
invocations.

Figure 5 illustrates our notation for pages, action
invocations, and ports. This sample is composed of three
nodes: a page, LogonPage, an action invocation, Logon,
and a region, Mai nMenu. Exit ports are illustrated as thick
red arrows in LogonPage and Logon. An entry port is
shown as a thick blue arrow in Mai nMenu.

In most cases, a page is assigned a URL for requests of
page content, and an action invocation is assigned a URL
for invocations of the action, including its business logic.
Regions are not mapped to any implementation resources.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Structured page content

The content of a page is often partitioned and grouped
into multiple sections. For example, in some cases, pages
are composed of a set of HTML frames; in other cases,
pages are generated using a page template that includes
other subtemplates, which generate HTML fragments.
Because we need the ability to model a structure that
expresses HTML frames or page templates that consist of
subtemplates, we introduce the notion of a frameset and
frame.

Figure 6 illustrates a sample graphical notation of a page
flow with a frameset and frame. A frameset defines a page
template that is composed of one or more subtemplates.
A frame defines a subtemplate, which occupies a partition
within a frameset. In terms of hierarchical page flows, a
frameset is considered a unit of presentation, e.g., a URL
that contains a page flow within each child frame. The
model illustrated in Figure 6 declares that

1. The frameset FS consists of frames LEFT and RIGHT.
2. Pages NaviA and NaviB appear in the frame LEFT.
3. Pages B1, B2, and B3 appear in the frame RIGHT.

When a user activates (clicks) the exit port in the page
Welcome, which is connected to frameset FS, the frameset
FS is displayed in the browser window. The frameset FS
displays a page that consists of two frames: LEFT and
RIGHT. The entry point of a frameset, which is illustrated
as a yellow dot in the figure, specifies the initial pages
to be displayed in each frame. The frames might be
implemented as HTML frames or HTML fragments
embedded in the page. If a user activates an exit port in
page B1, the contents in the frame RIGHT are replaced
with the one generated by page B3 because the exit port
is connected to page B3. If a user activates an exit port in
page B3, the frameset is reset, and a plain Web page, Bye,
is displayed, because the exit port is linked to page Bye
located outside of frameset FS. A diamond represents an
interframe page transition, called a jumper-out. A jumper-
out is connected to a jumper-in, which is illustrated as a
circle. If a user activates a jumper-out from page NaviA,
page Bl is displayed within the frame RIGHT, while
page NaviA is still displayed in the frame LEFT.

The notion of a frameset and frame in WAD can also
be used to describe the inclusion of page templates. A
frameset represents a page template (JSP) that includes
other page templates, and a frame represents a placeholder
within the container page template (frameset). Each page
within a frame appears at the place specified by the frame.

Data model

In addition to triggers (e.g., HTML links and buttons) for
page transitions, a page often includes user interface
controls that receive user input. A set of input data that

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Welcome ;
}

(C/FS [By

/FS/LEFT /FS/RIGHT

Qg0

Sample graphical notation of a page flow with a frameset and frame.

+param T 0..n

ActionParam

name : String
description : String
minOccurs : int =1
maxOccurs : int =1
required : boolean

L S N IR IR Y

WAD metamodel (ActionParam) in the form of a class diagram in UML.

is transferred to an action may be further transferred
to back-end applications or database systems, it may be
temporally stored for later use in the application session,
or it may just be used to determine the next transition. As
we noted in Section 4, bugs that are hard to detect can
result from misunderstandings by developers and protocol
mismatches between input data sent from a page and the
expectations of the actions that receive the data. Therefore,
it is worthwhile to specify precisely the properties of data in
the model and force all related artifacts to comply with it.
Figure 7 shows the action parameter (Act i onPar am)
element of the WAD metamodel in the form of a class

H. TAI ET AL.

803

804

+member
LogicalPage 0. n AbstractPageData
¢ T
+pageData 4
0..n PageDataGroup PageDataltem
PageData

Figure 8
WAD metamodel (PageData).

diagram in UML. The action parameter specifies the input
data expected by the action. It also specifies the input field
that must be embedded in the page that invokes the
action. Each action parameter is identified by its name
attribute. The r equi r ed attribute specifies whether or
not the parameter (input data) is required for the action.
The mi nCccur s and maxCccur s attributes specify the
multiplicity of the data, i.e., array or scalar.

In addition to the data transferred to actions, we may
want to prescribe in the model what dynamic data should
be displayed in a page. The notion of PageData is
introduced in the WAD metamodel to describe such
information. As illustrated in Figure 8, a Logi cal Page,
or simply a page, can have zero or more PageDat a
elements, each of which specifies the schema of an
object that is available in the page for data access. The
PageDat a elements form a tree structure whose leaves
are of the type PageDat al t em A PageDat al t em
represents a scalar value used in the page data, whereas
the PageDat aG oup represents the recursion of the
structure.

Scalability of modeling

As the number of pages and action invocations increases,
it becomes difficult for a single person to capture and
maintain the model. Therefore, it should be possible for a
model to be developed and maintained by many people
working in parallel. To divide a WAD model into several
submodels, we introduced the region reference. A region
reference looks like a region, except that it is just a
reference to a region. By having region references in a
model, a designer can change the elements to which those
references refer without affecting other parts of the model
that use the references. This is particularly useful when
some regions are not yet modeled in detail, but other
parts that refer to those regions are adequately modeled
and the region interfaces are verified. It may also be
useful when stubs that mimic the missing regions are

H. TAI ET AL.

available. The completed regions are integrated later.
Note that with modular modeling, programmers can work
in teams during the implementation phase of projects,
making parallel development possible.

Security

Pages or action invocations sometimes have to be
requested through HyperText Transport Protocol (Secure)
(HTTPS). This is specified as the HTTPS attribute of
pages or action invocations in WAD models. A page or an
action invocation whose HTTPS attribute is set to true
signifies that it must be requested through HTTPS. If the
HTTPS attribute of a region is set to true, all nodes (i.e.,
pages and action invocations) within the region are treated
as if their HTTPS attributes are set to true. This part of
the model can be exploited when our program generation
tool determines the URL of each node. No other current
security-related modeling elements, such as authentication,
are yet provided, because they may depend on specific
runtime environments.

Annotating the model

While the WAD metamodel is designed independently of
specific runtime frameworks, a model whose runtime-
independent part is specified in WAD also requires
runtime-dependent information, since it eventually has

to be a Web application built within a specific runtime
framework. For example, when an action is invoked

in Struts, a model must specify the class name of the
object in which the action parameters are stored. This
information is required to generate the configuration files
for Struts applications, but this does not make sense for
other runtime frameworks. In a WAD model, this kind of
platform-dependent information is described as annotation
objects. Annotation objects can be attached to most WAD
model elements and treated as an additional attribute of
the element to which they are attached.

7. Tools and an integrated development
environment

In this section, we describe a tool prototype called the
Web application development support tool (hereafter, WAST
workbench). It was built to facilitate and exploit the WAD
metamodel. The WAST workbench is implemented as a
set of plugins for the WebSphere* Studio platform [12],
which is based on Eclipse technology [13]. Figure 9 shows
a screenshot of this tool. The WAST workbench consists
of several views and an editor. WAD files are displayed in
the navigator view, (a) in the figure, which is a built-in
view provided by the platform. When a WAD file is
opened by the editor and is selected, a specific menu item
for this editor is added to the main menu. An example is
shown in (b), and the model information is displayed in
the editor and in two other views. The page flow editor (c)

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

_ (b) Editor action menu

[o .
Eile Edit Navieate Search Project Profile Bun WAST for Struts Window Help
|- B e |&||®-||2]8- || BE8 26 ||B 7uaasfF= = = F H K
|leE=gm-—80 |26 |8l ¢ %-
|| 5 J2EE Navieator v x ||m*wadstruts X
’3 ¢ 2 E Q Selection s Vit
By #-3 Java Source AT Select
= = (2@ Web Content
o & (5 META-INF | e
i & WEB-INF S| [e R o :
7 S v@ﬂgam“'f | LogicalPage =] © o ! :
/ i frame1.wacs & Ac""mhvoca: i "_".‘ ",_'_'r' m E
. I wad:struts | 3 Reeion 2] LogonPage *_ Logon ° ! MainMenu ! (c) Page
(3}) Navigator M Libraries =~ Frame s 2 s 7 flow editor
view &l ! | R] FrameSet =
J2EE Navigator | Server Gonfigurati.. 7 Frame ~
2= Outline x ||+ Ports
= #3 RootRegion “N| =] EntryPart 2
= & <Body> |42 ExitPort
=[] LogonPage S Overview v
| default
[port || Properties | BEE x
=18 <locale=, type = || Property | Value [
0 logonijs description)
L =5 Logon displayName (e) Properties
| default localName LogonPage view
Jéa NG || sst false
. __daank)
(d) Outline 3 sl [+]
-~ Gallery | Library |0mline IWeb S1° * || Tasks | Links | Thumbnail , Styles | Colors | Servers [Properlies |Error Log WAST Log View Console
Figure 9

Screen shot of WAST workbench.

enables users to edit the page transitions as a graph. The

outline view (d) shows all of the model elements as a tree, WAST workbench
and users can add or remove model elements in this view. Model)
The properties view (e) displays the properties of the model validator WAD model

element selected in the outline view or the page flow editor.
The WAST workbench consists of base plugins and
an extension plugin. The base plugins provide the core
functions, such as model manipulation, customizable
implementations of the editor, and the views. The Action ISP
extension plugin provides concrete implementations of the Skel,eton Skel?ton
views and the editor, along with the editor actions that
support the development roles described in Section 5.
Figure 10 depicts the functions we have implemented for
the Struts runtime environment: the model validator, the
skeleton code generator, the configuration file generator,
and the stub code generator.

Skeleton code
generator

Stub code
generator

Configuration file
generator

’ Implementation by developers

i| Action isp Configuration file || Action|| JSP
'| (completed) || (completed) || (struts-config.xml) |'| stub || stub

Completed Web application

oo L= R 1 o - (o o
This function investigates models and detects errors, such

a5 missng model clements, missing or nappropriste CFigue10

attribute values, and disconnected ports. It helps model WAST workbench generator functions implemented for the Struts
maintainers ensure the correctness of models, which is runtime environment.

also important for various code generators as well. 805

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. TAI ET AL.

806

Action
(from Struts)

ActionForm
(from Struts)

& execute(map: ActionMapping, form

ActionForm) & validate()

T

f

LogonAction

LogonForm

¢ RC_OK
@ RC_NG

& name
¢ password
¢ mail

| & execute(map: ActionMapping, form :

ActionForm) @ division

& perform(map: ActionMapping, form : LogonForm) ® tel
T f
LogonActionImpl LogonFormImpl
& perform(map: ActionMapping, form : LogonForm) validate()

{

}

public final ActionForward execute(ActionMapping map, ActionForm form)

return perform(map, (LogonForm) form);

Class hierarchy of the generated classes. Abstract methods are denoted in italics.

Skeleton code generator

It is beneficial if we can have a good starting point for
the implementation work, especially when the number of
artifacts is large. Our tool prototype generates three kinds
of skeleton code for Struts applications from WAD models:

1. A JSP file from a page in the model.
2. An action class from an action invocation in the model.
3. A bean class from the page data in the model.

For example, a skeletal JSP file contains a title, a
description, static hyperlinks, HTML forms to invoke
actions, and page data (output items).

One typical problem related to the code generator is
how to update the generated code as the model changes.
Regarding action class generators and bean class
generators, we solved this problem by generating abstract
classes that are to be extended by developers. Each time
the model is changed, the tool generates the abstract
classes. Developers are notified—in the form of compile
errors—of the need to modify the implementation classes
when they recompile the implementation classes.

Figure 11 shows a class hierarchy of the classes related
to a generated class of a Struts application. The Acti on
class and the Acti onFor mclass are provided by Struts.
LogonAct i on and LogonFor mare the abstract classes
generated by the code generator. LogonAct i onl npl and
LogonFor m npl are the classes that are implemented by

H. TAI ET AL.

developers. The generated LogonAct i on class contains
the constant fields of the result codes, and the definition
of the execute method and the declaration of an abstract
method named perform, which is introduced by the
generator. If we change the name of the result code from
OK to SUCCESS, the constant field, RC_OK; is replaced
by RC_SUCCESS; the references to RC_OK then cause
compile errors (references to an unknown field). It is not
difficult for developers to modify such source code.

Configuration file generator

For Struts, developers must prepare a configuration

file, named struts-config.xmi, in which the page flows are
described and other information is given. Although this
method is better than embedding page flow information in
various blocks of program code, it is still difficult to keep
the configuration file correct. Our tool prototype can
generate a complete set of page flow descriptions from

a valid model.

Stub code generator

Our tool prototype generates stub code for pages and
actions. Each developer can construct an executable Web
application (partially implemented Web application) that
is a mixture of completed artifacts and generated stub
code. Action stub code checks incoming requests and
reports any inconsistency in the requesting page (JSP)
built with the WAD model. Figure 12 shows a dialog

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

window where an automatically generated stub action pops
up and reports an error in the requesting page. Screen
designers can test whether or not a JSP can be executed,
then whether or not the response is correct, and finally
whether or not the JSP sends out the correct request for
the subsequent action. In Figure 3, to the left of the
model, these checks correspond to the arrow labeled
“Verify” that is drawn between the model and the realized
page.

As described in Section 4, Web application development
involves two problems: the wide range of technologies and
a lack of support for the division of work. To tackle the
variety of technologies, we defined a set of roles and their
activities as described in Section 5. In this case, it is
important to localize the varieties of required technologies
for each role. The MVC pattern or the Model 2
architecture makes it easy to divide the total work into
tasks for each development role (screen designer, business
logic programmer, or server object programmer).
However, the MVC pattern or Model 2 architecture
cannot help us maintain consistency among the artifacts
created by each type of developer. To maintain
consistency, developers require the specification of the
application they are going to develop. Our metamodel
provides a way to explicitly describe the basic portion of
the specification. In addition, the tool prototype assists
developers with their tasks by providing various generators
and the means to check the conformity to the model.

8. Conclusion

We started with the observation that a single Web
application development project typically uses a mixture
of various technologies, and this makes debugging and
maintenance difficult because of the absence of tool
support to manage consistency among the various artifacts.
The model-driven development discussed in this paper
provides a way to design and arrange different kinds of
artifacts in a consistent and cohesive way. Our metamodel
for Web applications and our tools facilitate the work of
developers by providing a model validator for model
maintainers, skeleton code generators, stub code
generators, and a configuration file generator. In
particular, a generated action stub can check whether the
requester page conforms to the model information. This
kind of conformance check is important to the model-
driven development for Web applications described in this
paper because it reduces interface mismatch errors among
the artifacts.

Acknowledgments

The authors acknowledge the following individuals for
their support for this work and for their technical
discussions: T. Watanabe, K. Hosokawa, N. Makoto,

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

@'Dunnykun(i-e Manager @

F\cﬁon invocation |

the page form invokes ‘Auth:Logon®

[validated action parameter's
[userName) {{fempty}}- O.K-

error f warning
[password] {null} Missing parameter

’-choose a result code for action: "Auth:Logon"

oK | NG |

Java Applet Window

Action stub dialog window reporting missing parameter.

and T. Kamimura. The authors also received valuable
comments and support for this work from the following
individuals: H. Ida, T. Kanazawa, Y. Yashiro, D.
Takamizawa, S. Ishii, N. Matsukage, and A. Sakakibara.
The authors also wish thank to K. Kuse and Y. Takao for
their continuous management support of our research.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Incorporated.

References

1. H. Tai, T. Nerome, M. Abe, and M. Hori, “Model-Driven
Development of Dynamic Web Applications,” Proceedings
of the Conference on Extreme Markup Language, 2002; see
http://www.idealliance.org/papers/extreme03/html/2002/
Hori01/EML2002Hori0I-toc.html.

2. I. Singh, B. Stearns, M. Johnson, and the Enterprise
Team, Designing Enterprise Applications with the J2EE
Platform, Addison-Wesley Publishing Co., Reading, MA,
2002; ISBN: 0201787903.

3. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, First Edition,
Addison-Wesley Publishing Co., Reading, MA, 1998;
ISBN: 020130998X.

4. J. Conallen, “Modeling Web Application Architectures
with UML,” Commun. ACM 42, No. 10, 63-70 (October
1999).

5. N. Koch, A. Kraus, and R. Hennicker, “The Authoring
Process of the UML-based Web Engineering Approach,”
Proceedings of the 1st International Workshop on Web-
Oriented Software Technology, 2001; see http://
www.dsic.upv.es/~west2001/iwwost01/IWWOSTContent.htm.

6. P. Fraternali and P. Paolini, “Model-Driven Development
of Web Applications: The Autoweb System,” ACM Trans.

H. TAI ET AL.

807

808

Office Info. Syst. 18, No. 4, 323-382 (2000).

7. Uniform Resource Locators (URL): RFC 1738; Internet
Engineering Task Force (IETF); see http://www.ietf.org/rfc/
rfc1738.txt.

8. S. Ceri, P. Fraternali, and M. Matera, “Conceptual
Modeling of Data-Intensive Web Applications,” IEEE
Internet Computing 6, No. 4, 20-30 (July/August 2002).

9. G. Seshadri, “Understanding JavaServer Pages Model 2
Architecture: Exploring the MVC Design Pattern,” Java
World, December 1999; see http://www.javaworld.com/
Javaworld[jw-12-1999/jw-12-ssj-jspmvc.html.

10. Model Driven Architecture (MDA), OMG Document
ormsc/2001-07-01 edition, July 2001; Object Management
Group, Inc., 250 First Ave., Suite 100, Needham, MA
02494; see http://www.omg.org]/.

11. S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling
Language (WebML): A Modeling Language for Designing
Web Sites,” Computer Networks 33, No. 1-6, 137-157
(2000).

12. IBM Corporation, IBM Redbooks, WebSphere Studio
V5 Overview and Architecture (2003); see http://
www.redbooks.ibm.com/redpapers/pdfs/redp3742.pdf.

13. Eclipse.org Consortium, Eclipse Platform, 2002; see http://
www.eclipse.org/.

Received October 17, 2003, accepted for publication
February 4, 2004, Internet publication September 17, 2004

H. TAI ET AL.

Hideki Tai IBM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-
ken 242-8502, Japan (hidekit@jp.ibm.com). Mr. Tai received
a B.S. degree in information sciences and an M.S. degree in
information sciences and electronics from the University of
Tsukuba, Japan, in 1995 and 1997, respectively. He joined the
IBM Research Division in 1997, and his research projects
have included mobile agents, a high-performance agent
platform, and a Web application development tool. Mr. Tai’s
current research interests include software development tools
and process, application framework, and middleware.

Kinichi Mitsui IBM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-ken
242-8502, Japan (mitsui@jp.ibm.com). Mr. Mitsui joined the
IBM Research Division in 1985 after receiving B.S. and M.S.
degrees in information science from the Tokyo Institute

of Technology. He began work on medical information
systems and, until the present, worked primarily on software
development tools and object-orientation technologies. He is
currently the Senior Manager of the Software Technology
Department at the Tokyo Research Laboratory. Mr. Mitsui’s
current interests include rapid software development tools,
application frameworks for interactive software, and model-
driven software development. He is a member of the
Association for Computing Machinery (ACM).

Takashi Nerome [BM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken, 242-8502 Japan (nerome@jp.ibm.com). Mr.
Nerome received B.S.E and M.S.E. degrees in information
engineering from Ryukyu University, Japan, in 1994 and 1996,
respectively. He joined IBM Japan Ltd. in 1996 and worked
as a systems engineer, mainly producing Web application
systems. He subsequently qualified as an I/T specialist. Mr.
Nerome has been working on methods and tools for Web
applications in the IBM Research Division since 2000. He is
a member of the Information Processing Society of Japan.

Mari Abe IBM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-
ken 242-8502, Japan (maria@jp.ibm.com). Ms. Abe received a
B.E. degree in electrical engineering and an M.E. degree in
computer science from Keio University in 1998 and 2000,
respectively. Her research interests include Web content
authoring and Web application development tools. Ms. Abe
currently works at the Tokyo Research Laboratory; she is a
Ph.D. candidate in the School of Science for Open and
Environmental Systems, Graduate School of Science and
Technology, Keio University.

Kohichi Ono [BM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-
ken 242-8502, Japan (onono@jp.ibm.com). Mr. Ono joined
the IBM Research Division in 1994 after receiving B.S.E.
and M.S.E. degrees in electrical engineering from Waseda
University, Japan, in 1987 and 1989, respectively. He was

a research associate at Waseda University from 1990 to
1992. He has worked on an impact analysis tool of COBOL
programs, an online form application framework for medical
information systems, mobile agent framework Aglets, XSLT
stylesheet generation by demonstration, and Web application

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

development technologies. Mr. Ono’s research interests
include formal development methods, object-oriented
application frameworks, software development tools, and
mobile agent programming. He is a member of the IEEE
Computer Society.

Masahiro Hori Faculty of Informatics, Kansai University,
2-1-1 Ryozenji-cho, Takatsuki-shi, Osaka 569-1095, Japan
(hormi@res.kutc.kansai-u.ac.jp). Dr. Hori received a B.S.
degree in biophysical engineering and M.E. and Ph.D. degrees
in computer science from Osaka University, in 1984, 1986,
and 1989, respectively. His focus was on natural language
processing for speech understanding systems. In 1989 he
joined the IBM Tokyo Research Laboratory, where he

spent the next 14 years working on knowledge engineering
methodologies, object-oriented software reuse, and Web
content authoring and adaptation. Dr. Hori became a
professor of informatics at Kansai University in 2003.

His current interests lie in the universal design of Web
information and the model-driven software development
method. He received Research Awards in 1992 and 1997 from
the Japanese Society for Artificial Intelligence. Dr. Hori is a
member of the Web Ontology Working Group at the World
Wide Web Consortium (W3C).

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

H. TAI ET AL.

809

