On-demand design
service innovations

S. Shimizu
H. Ishikawa
A. Satoh
T. Aihara

Offering design services for manufacturers of embedded devices
has become a very important business, one in which the three
leading customer requirements are time to market, integration
of leading-edge technologies, and cost reduction; in short, on-
demand design services. In this paper, we discuss on-demand
design service innovations of several types. First, we discuss
our unique field-programmable gate array (FPGA)-based
system emulation tool. Although embedded systems comprise a
wide range of technologies and components, some important
technologies and components are common to most embedded
systems. Security and communications are two of these,

and we have developed offerings in these areas as well. For
security, we developed scalable intellectual property macros to
meet the requirements for many kinds of cryptographic circuits.
These macros can satisfy specific requirements—performance,
size of the silicon area, and power dissipation—for many kinds
of embedded systems. For communications, we developed an
autonomic network configuration tool which allows an end
user to avoid the potential frustration of setting up a network
connection and which also automatically performs network

security tasks.

Introduction
In this era of pervasive computing, embedded systems
are becoming more sophisticated, and their functionality
is approaching that of computers. For example, in
1979, cellular phones simply provided wireless voice
transmission; now they can be used to make movies
via built-in charged-coupled-device cameras, and then
transmit them via e-mail. Such phones can also run
Java** applications. Because such embedded systems
have complicated structures, they require holistic system
architectures in which functions are properly layered from
the hardware to the application software level, similar to
the design of a computer. To achieve required system
functions and performance, it is necessary to deal with
the interaction of many different parts of the system, and
optimization at the system level is critical. Experience has
shown that it is quite difficult to develop all of the parts
of an entire embedded system within a single company.
Thus, many system designers find it advantageous to
procure technology and design services from outside
providers.

Another reason for the emergence of technology and
design services is that the information technology (IT)

industry and marketplace, and especially the embedded
systems industry and marketplace, are changing very
rapidly. End-user preferences and requirements change
quickly, while also becoming increasingly sophisticated
and interconnected with available IT environments and
infrastructures. Time-to-market delays for an embedded
system product can have a significant impact on revenue;
a three-month delay releasing a product is usually critical.
In a survey of our customers, more than 60% of them
indicated that time to market was their most important
requirement. Cost reduction and the integration of leading-
edge technologies were the second and third highest
priorities, respectively. Because this means that customers
want to draw upon design service offerings on demand,
the service offerings should have a responsive, on-demand
nature of their own. To realize an on-demand advantage
for our design service offerings, we have prepared a series
of platforms consisting of software stacks on various
central processing units (CPUs) of varying performance.
These platforms are reused to develop required systems.
To reduce time and cost, we make use of software
engineering tools and methodologies that are more
typically used to develop large enterprise software.

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor. 751

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

S. SHIMIZU ET AL.

752

Application-specific integrated circuit (ASIC)
development, much like a complete embedded system,
requires a comprehensive design approach. ASICs
have become large enough to have various components—
intellectual property (IP) macros—inside them. Like a
printed circuit board design, such components are
provided as libraries and reused. System-on-chip (SoC)
designs—ASICs that have a CPU surrounded by various
components—provide the major functions of embedded
systems within the ASIC. Sets of tools that span the
entire development process for ASICs are emerging.
They provide capabilities for functional modeling, system
architecture design using a high-level language, and logic
and physical design in parallel with the development
of the software to run on the ASIC. The design
methodologies and tools we use to realize on-demand
design services are discussed in the next section.

Assets at other levels, such as IP macros, device drivers,
and middleware, are key factors in making technology and
design services more beneficial. We also devote a section
to discussing the technical aspects of two key assets.

On-demand design methodologies and tools

System concept
System prototyping on field-programmable gate arrays
(FPGAS) has been adopted to validate systems. This
prototyping can drastically reduce the time required for
software-based logic simulation of an ASIC, and it can
expand test coverage by working as a hardware accelerator
[1]. Various methods such as multi-FPGA partitioning [2]
have been proposed to enhance this capability. When
prototyping a system on FPGAs, interfaces and partial
behaviors of external devices can be modeled precisely,
and sets of stimuli generated from the models are fed to
logic simulations running on the FPGAs. The same logic
design that will be used on a target SoC is used in the
FPGAs to achieve complete logic validation. Even though
the verification speed is still much faster than software-
based logic simulation, real-time features are usually
sacrificed, since the execution speed of FPGAs is typically
five times slower than that of the target SoC when both
integrated circuits are developed in the same technology.
Let us discuss the characteristics of SoC development
for leading-edge digital consumer products and how this
powerful method of FPGA-based prototyping could be
improved.

Real-time system prototyping

One prototyping issue for digital consumer products is the
lack of external device models. To meet customers’ first
priority, time to market, it is critical to reduce SoC
development time as much as possible. However, it is very
difficult to develop all of the external device models in a

S. SHIMIZU ET AL.

short time, and the specifications of the external devices
are sometimes unclear or incorrect. A simple way to
address this problem is to attach real external devices to
the FPGAs and use the same logic code for them [3]. In
particular, real applications could be executed to expand
the test coverage. Since it is almost always troublesome
to reduce the execution speed of external devices, it is
desirable that the application run in real time. There have
been rapid increases in speed and density for FPGAs [4],
but it is still difficult to run all of the functions in FPGAs
in real time for a target SoC, which can have up to five
million gates.

Consequently, it is necessary to carefully reduce the
execution speed of the internal logic components in the
FPGAs, while the external interface continues to run at
real-time speed. In addition, FPGAs with embedded
CPUs, which have recently become available, enable us to
easily emulate CPUs and surrounding logic components
that are directly connected to the fast and wide SoC
internal buses. Although it is beneficial to use these
FPGAs, they may be structurally different from the target
SoC; for example, the bus widths may be different, and a
secondary processor bus may be lacking on the FPGAs.
This means that it may no longer be possible to map the
identical logic code for the target SoC onto the FPGAs
in order to ensure logical equivalence between them
at a cycle-time-accurate level. Instead, it is necessary to
carefully investigate the characteristics of the target logic
circuits (for example, determining how to synchronize
logic components and determining the structural
differences between the target SoC and the FPGAs) and
then define strategies to validate the target logic, including
logic mapping and test coverage.

Optimized development flow and environment

The FPGA-based emulation boards on which system
prototypes are built are delivered to as many hardware
and software developers as possible in order to reduce
development time. These boards are usually expensive,
since, by their nature, they include redundant functionality
that could be used for various applications. An intelligent
development flow with the most effective and timely
verification tools for each step of the flow should be
provided. Figure 1 shows our development flow using
system prototyping on FPGAs. Logic design and
verification are roughly divided into three phases:

1. Hardware acceleration for the logic simulation of
components: As soon as the system architecture is
designed, logic design for each component is initiated.
These logic components are verified by software-based
logic simulation or by emulation on FPGAs. At this
time, an FPGA board, which may have been developed
during the previous development work or which may be

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

commercially available, is used, since it can work as a
conventional hardware accelerator. The devices and
components attached to a target logic component are
partially modeled, and a limited number of stimuli are
applied. The behavior of the CPU is provided by an
instruction set simulator running on the host personal
computer (PC) attached to the FPGA board. In parallel
with the logic component development, an FPGA
emulation board with real external devices can be
designed and developed before the system integration
test is started. This means that the FPGA emulation
board should be developed within a couple of months
from the beginning of the logic design. Embedded
system software must also be developed for the test.

2. Real-time system prototyping on FPGAs: The logic
components are connected to one another for the
system integration test and mapped onto the FPGA
emulation board, which works as an in-circuit emulator.
Comprehensive system behavior, including the functions
of all logic components in the target SoC and the
related embedded software, can be verified by running
real-time applications and validated before the physical
design is started. Additional effort is required to
complete the embedded software during the physical
design and fabrication of the SoC chip.

3. Real device verification: When an engineering sample
of the target SoC becomes available, a target card—
on which the target SoC and external devices will
be mounted—is developed. The final verification
is executed with the real devices. However, if the
system has been validated in the in-circuit emulation
phase, no problems should be found at this stage.
Therefore, this development flow can ensure first-time-
right SoC development.

Software-based logic simulation, hardware acceleration
of the simulation, and real-time FPGA system prototyping
have complementary characteristics in terms of verification
speed, signal monitoring capabilities, design equivalence,
and compile time, as shown in Table 1. Because of the
priority of execution speed, real-time system prototyping
is used for the system integration test. If a problem is
found, however, most developers prefer switching their
verification strategy to use software simulation to
investigate the behavior of the logic components, since
this allows precise, flexible, and detailed signal monitoring.
When a problem is identified, the developer then uses the
hardware accelerator for rapid validation with much wider
coverage. Therefore, it is important to allow the developer
to choose appropriate methods and to switch seamlessly
from one to another, especially in the system integration
test.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Hardware Real-time system Real device
acceleration prototyping verification
. 1BE |5 NI E
S 2 g .5 S M5 E<||~.E
|z g g
o) o
FPGA FPGA FPGA Card
g Target card
s _ B
Logical 7 & 2
; >'n 8
SoC design =8 £
hardware i i 'P)
Engineering
Emulation sample
board System
design and integration
development test
——————
SW C——a— PB——————= —
Start 3 8 9 11 Months

The three phases of our development flow using system prototyping
on FPGAs. (The development period shows the case described in the
implementation section of the text.)

Implementation

We developed an FPGA-based real-time system
prototyping tool and used it for SoC development for a
leading-edge digital consumer product. Table 2 shows

an overview of the target SoC. It consists of an IBM
PowerPC* processor, image processing units, and various
input/output (I/O) peripherals. In addition to the
embedded CPU, the SoC is designed to interface with
other intelligent components; thus, the behavior of the
entire system is very complicated. To emulate the SoC,
we developed an FPGA emulation board that consisted
of three FPGAs, a Xilinx Virtex-II Pro** P20 with an
embedded PowerPC 405 and 1.5M gates, a Vertex-1I 6000
with 6M gates, and a Vertex-1I 3000 with 3M gates, as
well as external devices and interfaces with the other
intelligent components. We ensured that the logic
components in the target SoC were synchronized to one
another using “handshakes,” and that the external device
interface could be handled, even when the internal clock
speed was to some extent reduced. The speed of the
processor local bus was reduced to one quarter of the
real bus speed, and that of the output peripheral bus was
reduced to one half (36.8 MHz). Of course, when clock
speed is reduced by a different amount for a different set
of logic components, some logic paths and states may not
be verified. For example, an input buffer may become
empty when the logic components of the previous stage

S. SHIMIZU ET AL.

753

754

Table 1

Verification strategies.

Type of verification Characteristics
Verification Signal Design Compile
speed monitoring equivalency time
Software-based logic simulation Slow Good Good Short
Hardware acceleration of the simulation Fast Good Good Fair
Real-time FPGA system prototyping Very fast Fair Good Long
(some
limitations)

Table 2 Target SoC overview.

CPU components IBM PowerPC 440 coprocessor, image
processing units, memory interface, custom

1/O buses, standard serial I/Os.
Gate count 5M gates

442 MHz (CPU)
147 MHz (internal bus)

0.13 um

Clock speed

Technology

run more slowly. We compensated for this phenomenon
by adjusting the bus arbitration priority. In a conventional
method, the target logic is designed to be suitable for the
performance of the target SoC and it is then converted to
the FPGAs. In contrast, we took its ability to run on the
FPGAs into account at the outset.

We developed the FPGA emulation board in three
months, finishing it just before the system integration test
was scheduled to begin. During the test, we were verifying
the target logic on the real-time system prototype by
running real application software. While doing so, we
found a few critical problems in the external interface.
These problems were caused by unclear and incorrect
specifications of the external devices and would not
have been detected by conventional system prototyping
methods. Finally, eight months after the SoC development
began, the complete logic circuitry of the target SoC was
validated.

Examples of common IP assets for embedded
systems

As discussed in the section above, one of the important
aspects required to satisfy customer requirements and

to strengthen the competitiveness of the design service
business in the embedded devices area is to have strong
IP macros that are commonly used for most applications.
In general, embedded systems consist of a wide range

of technologies and components, depending on their
functions; hence, it is quite difficult to develop some IP

S. SHIMIZU ET AL.

assets before the requirements are fixed. However, certain
important technologies and components, such as security
and communication technologies, are shared in common
for most systems. We are working in these technical areas
to develop strong design service offerings. Tailor-made

IP macros can be quickly plugged into SoCs or ASICs
and can provide quick, flexible, precise, and advanced
characteristics for design service offerings.

Security architectures and the resulting cryptographic
hardware and software are essential requirements for
most embedded systems. However, since cryptographic
algorithms are typically based on deep mathematics, their
implementation in circuits results in large numbers of
transistors. This can greatly degrade performance, thus
creating a challenge to provide security in embedded
systems. In some embedded applications, the performance
of cryptographic circuits is critical, and should not be
slower than the external interface speed, such as a 10-Gb/s
optical communication link. However, most embedded
applications must accommodate small or battery-operated
devices, which generally makes the requirements for low
power and small area more important than performance.
Thus, an IP macro that delivers security features should
be flexible in terms of performance, power dissipation,
and area size, and should have a scalable design to meet
diverse application requirements. Our circuit optimization
techniques for cryptographic circuits are discussed in the
section on optimized cryptographic circuits.

Communications technology is another example of an
application typical of embedded systems. Advances in
wireless technologies, such as IEEE 802.11a/b/g** and
Bluetooth**, allow people to be connected at any time
and in any place. However, before devices are connected,
a user must set up network parameters (such as a service
set identifier, the use of a Dynamic Host Configuration
Protocol, and an Internet gateway) each time the location
changes. Inappropriate settings can result in both a
frustrating experience and a security exposure. Setting the
network parameters is not easy for typical end users. For
these embedded system users, it may be difficult or

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

effectively impossible. Our unique autonomic network
configuration mechanism for setting up network
parameters frees users from such nuisances, as described
in the section on autonomic network configuration
technology which follows.

Optimized cryptographic circuits

Why cryptographic hardware?

Cryptographic algorithms require heavy mathematical
computation; thus, until recently, software implementations
were very slow and could sometimes greatly decrease
system performance. Today, however, 32-bit microprocessors
are fast enough to perform cryptographic operations for
uses such as Internet shopping, online trading, and secure
e-mail. On the other hand, 8-bit and 16-bit microcontrollers
for embedded use are still not fast enough for these
functions; it may take them several tens of seconds to
several minutes to perform public-key cryptographic
operations. Also, in high-end server systems, it is hard

to obtain adequate performance using cryptographic
software, because thousands of secure transactions

may be entered at one time. With the rapid expansion

of broadband communication services, much higher
performance will be required for these servers. Considering
cost, if the main use of those servers is cryptography, well-
designed hardware is hundreds of times better than
general-purpose CPUs. In addition, cryptographic hardware
provides a higher security level. For these reasons, the
demand for high-performance cryptographic hardware

is growing.

Since IBM developed its first cryptographic chip in 1997
[5], we have introduced many prototypes and products: a
fingerprint identification unit [6], a secure socket layer
(SSL) accelerator board, a cryptographic hardware IP
evaluation board, a security accelerator for the PowerPC
processor, and a secure hard disk drive.

Cryptographic algorithms are categorized into symmetric
key cryptography, used for data encryption, public key
cryptography, used for digital signatures, and secret key
agreements. RSA' [7] is the de facto standard for public-
key cryptography. Our first cryptographic chip with 0.5-um
complementary metal oxide semiconductor (CMOS)
technology achieved the best performance in terms of
speed, size, and power consumption in 1997 [5].

Because of the high-speed and low-power features of
our RSA chip, it was used for the fingerprint identification
unit. Many such products use an image sensor unit to
scan the fingerprint, which is then sent to a PC or server
system for pattern-matching operations. However, such
systems store the highly personal fingerprint data on a
hard disk drive or let a third person administer the data.

I The letters stand for the names of the inventors: Rivest, Shamir, and Adleman.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Therefore, privacy issues arise; hence, the fingerprint
identification unit should be tamper-resistant. Because the
fingerprint identification unit itself stores the data and
does everything—pattern matching, data encryption,
digital signature generation, and key generation—it is
extremely tamper-resistant. The unit also supports a
public-key infrastructure interface by using our RSA chip,
enabling it to achieve a very high level of security, while
user privacy is protected.

In addition to the RSA chip, we developed IP macros
for almost all of the major cryptographic algorithms. They
are coded in a pure Very high-speed integrated circuit
Hardware Description Language (VHDL) and thus are
easy to map on both IBM and vender CMOS technologies.
Their functions were verified on FPGA boards. Elliptic
curve cryptography (ECC) is expected to become the
public-key cryptographic standard for the next generation,
because its operands are very short and its operations are
very fast compared with RSA. However, ECC requires
deep mathematical knowledge to develop the hardware
and to generate secure system parameters, SO We are now
doing research in this area of mathematics. As a result, we
have developed very compact, flexible, and fast elliptic
curve cryptographic hardware and we have merged the
RSA macro with it.

We have also developed many symmetric-key
cryptographic circuits. Our Data Encryption Standard
(DES) [8] macro was integrated into the PowerPC 405LP
[9]. The Advanced Encryption Standard (AES) [10] was
standardized as a Federal Information Processing
Standard in the year 2001 to replace DES. We then
developed a high-performance AES circuit and achieved
the smallest size and highest throughput in the world by
applying both circuit design and mathematical techniques
[11].

Table 3 shows our various cryptographic hardware IP
macros. The macros were implemented on FPGA boards
to demonstrate their functionality and performance. The
design parameters, such as clock cycles and gate counts,
can be chosen flexibly to achieve target performance and
optimal circuits. In the following sections, we explain how
to achieve high-performance scalable circuits with a block
cipher AES and public-key ciphers with ECC [12, 13].

Advanced Encryption Standard

Composite field S-Box

Figure 2 shows an Advanced Encryption Standard (AES)
encryption process under a 128-bit secret key. Eleven sets
of round keys are generated from the secret key and fed
to each round of the ciphering block. The round operation
is a combination of four primitive functions: SubByt es
(sixteen 8-bit S-Boxes), Shi f t Rows (byte boundary
rotations), M xCol umrms (4-byte X 4-byte matrix

S. SHIMIZU ET AL.

755

756

Table 3 1BM cryptographic hardware IP macros.

Category Algorithm Speed Gate counts Notes
(Kgates)
311 Mb/s-3.5 Gb/s 6-37 S-Box architecture
128-bit AES
. 8.9 Mb/s-11.3 Gb/s 100-450 T-Box architecture
block cipher
Camellia 328 Mb/s-2.1 Gb/s 7-30 NESSIE recommendation
DES 1.0-3.2 Gb/s 6-17
sabit Triple-DES 334 Mb/s—1.1 Gb/s De facto standard
block cipher . o
KASUMI 287 Mb/s-1.6 GbJs 5-8 Standard cipher for third
generation cellular phone
Stream cipher RC4 1.1 Gb/s 35 WEP and Lotus Notes* support
MD5 775 Mbls 25 Single core supports two
functions
Hash function SHA-1 600 Mb/s
SHA-1 600 Mb/s—1.4 Gb/s 26-34 Single core supports four
SHA-256/-384/-512 700 Mb/s-2.6 Gb/s functions
RSA 21-1,003 opera-tion/s Dual-field multiplier supports
. . (for 1,024 bits) 20-107 GF(p) and GF(2") operations.
Public-key cipher + 2 KB SRAM No limitati p tor si
ECC on GF(p) 67-413 EC-DSA/s o limitations for operator size,
ECC on GF(2") 575-2,632 EC-DSA/s field, or curve parameters.

operation), and AddRoundKeys (bit-wise XOR). In
decryption, the inverse functions (I nvSubByt es,

I nvShi ft Rows, and | nvM xCol umms, with
AddRoundKey as its own inverse) are executed in reverse
order. The key scheduler uses four S-Boxes and 4-byte
constant values Rcon(i) (1 =i = 10). In decryption, these
sets of keys are used in reverse order.

The most critical hardware components are the S-Boxes,
and they sometimes consume half of the hardware
resources and computation time. Therefore, we optimized
them to achieve compact, high-speed AES hardware
designs. The AES S-Boxes consist of multiplicative
inversion on a Galois field GF(2*) and affine
transformations defined as 8 X 8 XOR matrices. However,
most of the conventional designs have not used the
arithmetic structure, and S-Box circuits have been
automatically synthesized from lookup tables that define
the relationship between input and output data. We first
introduced the composite field inverter on GF(((2%)%)%)
shown in Figure 3 for the compact S-Box [11]. The
inverter has a nested structure, and the arithmetic logic
is highly optimized at each nesting level. For the field
conversion between GF(2%) and GF(((2°))°), the
isomorphism functions & and 8" are used. These functions
are defined as 8§ X 8 XOR matrices, so we merged each of
them with the affine transformation into one XOR matrix.
The composite field inverter is shared between encryption

S. SHIMIZU ET AL.

and decryption S-Boxes (SubByt es and | nvSubByt es).

As a result, the gate counts for the S-Boxes were reduced
to at least one third in comparison with the lookup-table

S-Boxes.

Scalable AES hardware architecture

Figure 4 shows our compact AES architecture with the
data I/O buses omitted for simplicity. The 128-bit data

is divided into four 32-bit columns, and each column is
processed by a 32-bit ciphering block. In addition to S-Box
optimization, M xCol ums and | nvM xCol umms are
merged and compressed by factoring common terms. The
four S-Boxes in the ciphering blocks are reused by the key
scheduler. This architecture takes five cycles for one
round, and a total of 54 cycles for one encryption or
decryption.

We also designed various circuits by changing the
number of primitive components. Their performances,
using a 0.13-um CMOS standard cell library, are shown in
Figure 5 along with those for other recent AES designs
[14-18]. All of our designs show much better performance
compared with the others. In addition, our architectures
show good scalability between throughputs as a function
of gate count. We also developed a logic synthesis
methodology called twisted-BDD for high-speed
combinatorial circuits and obtained an ultrahigh-speed
AES design whose throughput is higher than 10 Gb/s [19].

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Ciphering block

Plaintext

|
’ 8{8{ 8{

AddRoundKey

{2 2R’

SubBytes

ShiftRows

MixColumns

AddRoundKey

vy v

. .
H H H
H H

Log

SubBytes

ShiftRows

MixColumns

AddRoundKey

v Y e v

SubBytes

ShiftRows

AddRoundKey

Ao | A1 ‘) ‘ 3] | S-Box \@ bm‘ boz‘ bos
— - —
Qa3 Ris byo| by by b3
0| 821 (922 | %23 by9(byy | by [b3
30 |33 3 |33 byp| byy | by | by
g0 | 301 | 32 | 03 | No shift >|aoo‘ am‘ gz | o3
e
a;0|a;; |35|3;3| Left rotation by 1 a9
—
—
Ay | 31 [Qgp 3 Left rotation by2 Ay 31
—
a30 | 83) | 43 | 233 | Left rotation by 3 %aso 431|482
g — - b0j -
agg | g Fo3 | | Rex) —1w) by bos
a b
Ao (A U i3 big| by| i |byy
a,|a la by | b
20 | %21 2y 23 20| 2| by by;
a3 | 43 433 by | by b bys
& — 35 [
40 | 301 | 302 | 03 Koo [Koy | Koo | Kos bog [by | boa | bos
A0 (37 [212|353 @ Ko | Kyp | Ky | Kyg byg [byy | byy| b3
Ay | 891 [| %3 Koo | Ky [koo | Koyg byg | by [by | by
30| 831 (32| 833 Kyg [Kap | Ky | Kyg byg b3y | by | by

8{ 8{ 8{

Ciphertext ‘

| 128-bit x 11
round keys

Key scheduler

Secret key ‘

32

32 32 32

A

NN

<
<
<
<
<

Rclon(9)

A

U

A

AN

AES encryption process under a 128-bit secret key.

Elliptic curve cryptography

Dual-field multiplier

Elliptic curves are classified roughly into two groups: those
defined over prime fields GF(p) and those defined over
binary fields GF(2"). Many ECC hardware architectures
have been proposed [20-32], but most of them have little
flexibility, since the parameters for the curves or the fields
were predetermined and could not be changed. The
Montgomery multiplication algorithm [33, 34] was
proposed for speeding up modular multiplication on
GF(p), which is the most computationally demanding
operation in the ECC hardware, and it was later extended
to GF(2") [35]. The algorithm can be applied to arbitrary
elliptic curves on GF(p) and also on GF(2") defined as
polynomial fields.

From the point of view of the hardware, a multiplier-
based architecture is suitable for a compact, high-speed
Montgomery multiplier. An r-bit X r-bit multiplier that
can directly interface with an r-bit system bus is the best
choice, but some conventional designs choose an n-bit X
r-bit multiplier or an n-bit adder, where n is the field size.
Then the arithmetic unit must wait until all bits of the

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

GF(2%)

Inverter
GF((2%%
GF(2»)?

GF((2%%?)

Isomorphism &

inverter

GF(29)%?

Isomorphism 3!

GE(2%)

Affine
transformation

)

GF((2%?)
mverter

~ B
Q=
1 1 T 2
S =
U =)

Composite field inverter on GF(((22)?)?) for the compact S-Box.

S. SHIMIZU ET AL.

757

758

Ciphering block 8-bit

,— data Key scheduler

LS

ShiftRows M~
InvShiftRows

(111 F

32|,32],32), 32 <<8 v

51]

2:1 2:1 2:1 2:11G

A

v\ v\ v

30bit 432 32 32 ﬁ
d | |affine™!, & ‘kcy
register y v y
2:1 \ 4:1 /
N |- SubBytes 32
GF inverters InvSubBytes

371, affine | | 37! I
o Rcon(i) 231_7
4\
MxCo /MxCo~!
A
4:1
32 AddRoundKey
D

Compact AES architecture (the data I/O buses are omitted for
simplicity).

3,000
[)
2,500 °
_ o[l7] [16]0
3 2,000 o
= . [15]
. [)
£ 1,500 .
5 1 ® Ours
= ALY = ° O Others
500k0 ollél o[17]
[18] L [14]
O
[I18] & [1I4] 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Gate count (Kgates)

Performance of various circuits we designed by changing the num-
ber of primitive components, using a 0.13-um CMOS standard cell
library.

data have arrived via the r-bit bus. If a special n-bit-wide
bus is used, it diminishes the flexibility of the operator
size.

S. SHIMIZU ET AL.

Partial product
Wallace
(\/ tree for
non-carry
bits
rlogmr-' Wallace | rlog3r-|
stages 3 tree stages
for . .
carry bits Ca
JlLarry
< HA/FA array)
2r—1
N
Carryl lSum I Sum
Final HA/FA array |
Carryl l Sum
| Carry propagation adder |
in 2r—1
v

Product for GF(p) Product for GF(2")

Basic structure of our dual-field multiplier.

Therefore, we developed a Montgomery multiplier using
an r-bit X r-bit multiplier that supports the two finite
fields, GF(p) and GF(2") [36]. Figure 6 shows the basic
structure of our dual-field multiplier. The parallel multiplier
contains a Wallace tree” part to sum up the r’-bit partial
product in carry-save (redundant binary) form, and a carry-
propagation adder to convert the redundant binary number
into a normal binary number. In our multiplier, the GF(2")
operation is successfully integrated into the Wallace
tree block without additional hardware.

Scalable ECC processor

Figure 7 shows the block diagram of our ECC processor
using the dual-field multiplier. The sequencer block has a
four-level hierarchical structure and supports a variety of
arithmetic functions in addition to those required for
ECC. Level 1 supports low-level functions, such as basic
modular arithmetic and Montgomery operations. Level 2
executes modular exponentiation, multiplicative inversion,
and pre- and post-processing for the Montgomery
operations by using Level 1 functions. The sequencer for
GF(p) at Level 2 provides prime number generation by
using Fermat’s primality test, RSA key generation by the
extended Euclidean algorithm, and the Chinese remainder
theorem operation. Level 3 supports basic elliptic curve
(EC) operations and on-the-fly redundant binary
conversion. The highest level, Level 4, executes the digital

2 The Wallace tree receives partial products of two numbers and feeds an
intermediate result in carry-save format to a carry-propagation adder. The tree
comprises a number of half and full adders in an irregular structure.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

signature algorithm (DSA) and EC-DSA signature
generation and verification [37]. Our architecture has a
clearly separated control structure; thus, it is easy to
design and modify the logic, and it has high flexibility for
functional extensions.

The ECC processors were synthesized for 8-64-bit
multipliers by using the 0.13-um CMOS standard cell
library. Figure 8 shows the performance of each
implementation. The number of EC scalar multiplications
per second for 160-256-bit curves is shown as a function
of the number of gates. As shown in the figure, our
hardware architecture provides good scalability in terms
of speed, area, and operator size.

Table 4 shows performance comparisons with
conventional hardware for EC scalar multiplications in
GF(2") and GF(p). Our EC processor shows the fastest
operation times in both fields, even though most of the
conventional circuits support a single field and use special
fields or EC parameters to boost speed and to reduce
hardware resources.

Autonomic network configuration technology

Requirements around networking

Embedded systems are often small and have poor user
interfaces. They can be tiny sensors or controllers without
a large display or a keyboard. Even so, embedded systems
are increasingly capable of accessing networks in order

to exchange data and control information with peer
embedded systems or with management server systems.
However, they share common challenges associated with
network configuration:

1. Quite a few network and security parameters must be
appropriately configured before the system can be
connected to the network.

2. These parameters must be modified each time the
system is connected to a different network.

3. Network problems, if present, are usually complicated
and difficult to solve.

The complexity of mobile environments can occasionally
annoy its users and make network and security
configuration difficult. When users encounter network
problems, they can become frustrated; it can be difficult
for them to locate the cause of their network troubles.
When that happens, many users know of no other course
of action than to wait and hope their network recovers by
itself.

Autonomic network configuration

To address this difficult situation, we introduced a holistic
approach to autonomically solve a wide range of network
problems without users being aware. We proposed an

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

> T
< . B
(5 '
21 Dual-field mult
E:. B WA >l Mem0O L
N g = RA » T
RN S
=S RA R ===
51 MSB i [+ — I
é = — s Key shift
8 4 Sequencer block
E °cc Level 4
2 | DSA, EC-DSA
Level 3 *
p| Address ReGUAAE | b o desubjdouble
registers |||[lq | {% binary EC scalar mult
converter
Level 2 v
mod exp, inv, pre-/post-process
Data | (CRT, prime gen)
Ly
coumer |7 Loell__3
L mod add/sub/mult !
Montgomery mult/reduction

Block diagram of scalable ECC processor using the dual-field
multiplier.

o
[=3
(=3
(=]

-O- 160-bit curve
5,000 | <+ 192-bit curve
< 224-bit curve
—¥- 256-bit curve

EC scalar multiplications per second
(95
=)
(=3
(=]
T

1] L1]]]

0
20 30 40 50 60 70 80 90 100 110 120 130
Circuit size (Kgates)

Tradeoff between speed and gate counts for EC scalar multiplication.

autonomic network configuration (ANC) technology that
takes an autonomic client approach to mask complicated
network problems. It cycles repeatedly through four
phases: a monitor, an analyzer, a planner, and an
executor. It realizes the four pillars of autonomic
computing attributes: self-configuring, self-optimizing, self-
healing, and self-protecting.

S. SHIMIZU ET AL.

759

760

Table 4 ECC hardware performance comparisons.

Reference Field Platform Maximum EC mult Notes
frequency (MHz) | time (ms)
EC scalar multiplications in GF(2")
Ours GF(2'") 0.13-um CMOS ASIC 510.2 0.19 | 64-bit multiplier
[20] GF(2"°) ONB ASIC 40 3.9 Massey—-Omura multiplier
[21, 22] GF(2"°) ONB Xilinx xc4020XL 15 159" | Massey-Omura multiplier
[23] GF(2"°) ONB Xilinx xcv300-4 36 6.8 Massey-Omura multiplier
[24] GF(2"°) ONB Xilinx xc4085XLA 37 1.29 | Massey-Omura multiplier
[25] GF(2”) ONB Xilinx xc4044XL 2.4 Massey—Omura multiplier
[26] GF((2)H™) Xilinx xc4062 16 4.5 Special composite field multiplier
167-bit X 16-bit multiplier and
[27] GF(2') Xilinx xcv400E 76.7 0.21 |167-bit X 167-bit squarer
For P(x) = x'7 + x* + 1
17.71 Standard form
[28] GF(2"") Xilinx xc4000XL P@x) =x"" +x" +1
11.82 Hessian form
1.1 Random curve
0.25-um CMOS ASIC 66 288-bit X 8-bit multiplier
0.65 Koblitz curve
[29] GF(2'")
80.3 Random curve
ALTERA . . -
3 82-bit X 4-bit multiplier
EPF10K259AGC599-2 456 | Koblitz curve
[30] GF(2'") ASIC 50 7 1024-bit adder
EC scalar multiplications in GF(p)
Ours GF(p) 192 bits | 0.13-um CMOS ASIC 137.7 1.44 | 64-bit multiplier
- - 1linx xcv - -bit X &-bit multiplier
31 GF(2'" =2 — 1) | Xili 1000E-8 40 3 192-bit X 8-bit multipli
ARM7 + arithmetic unit
- - unit essian form wit
32 GF(Q2"™* - 2% -1 ASIC 50 30 1 uni Hessian f ith
a=p-—3

*Authors’ estimate based on reference.

The autonomic client approach is more effective in
solving complicated network problems than a collection
of straightforward approaches to each problem. The first
reason for this is that a problem may be caused by one
critical element, or it may result from an interaction of
noncritical elements. For example, a fatal error with
the default gateway stops everything, while unlucky
coincidences with simultaneous bursts of traffic on two
intermediate routers in the Internet can also stop Internet
accesses. Many network components affect network
performance, and they change their status and interact
with each other continuously. The second reason for the
effectiveness of the ANC technology is that there can be
more than one good solution. Users are happy as long as

S. SHIMIZU ET AL.

they can enjoy network services with reasonable performance.
They are willing to accept any good solution, whether or
not it is the best solution. The third reason is that users
may have several implicit and explicit levels of network
performance requirements, depending on location, time,
content, and cost.

Working around the problem is also a reasonable
solution that users can sometimes achieve by themselves.
Since they are not the network administrator, their goal is
to do something to access network services (such as the
location server), but not to address the underlying network
problems. If they have alternatives, they may simply
choose to bypass problems instead of removing them. For
instance, switching from a wireless local area network to

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

an Ethernet connection can be a workaround for troubles
with a hub, and switching to another proxy server will
bypass a faulty proxy server.

Figure 9 shows the ANC system structure. The four
ANC entities—monitor, analyzer, planner, and executor—
correspond to the four-phased autonomic approach. They
communicate with one another in order to reduce the
frequency of interactions and to maximize the effectiveness
of ANC features. Note that each entity is ready for
customization to accommodate a wide range of system
requirements.

Monitor

The monitor detects any unusual states (e.g., increases in
error rates, drop rates, and collision rates) by constantly
monitoring network activities at various levels of the
Transmission Control Protocol/Internet Protocol (TCP/IP)
architecture hierarchy. For example, it looks at Ethernet
headers in the network layer, IP headers in the Internet
layer, TCP headers in the transport layer, and HyperText
Transfer Protocol (HTTP) headers in the application
layer. The monitor can report on fatal errors (such as
drops and bit errors) and many sensitive symptoms (such
as increasing delay).

ANC has two types of engines: a passive monitor and an
active monitor. The passive monitor is completely silent; it
simply tracks the packets initiated by applications or the
operating system (OS). It can monitor the normal network
traffic, detecting many kinds of errors and unusual
behavior. The active monitor, on the other hand, is a kind
of explorer. It creates its own network packets to check
the state of network components. This monitor can be
used to produce network packets for diagnostics when
the passive monitor detects evidence of certain kinds of
problems that produce only indirect symptoms, such as
delays in network transmissions. It is also necessary in
order to probe alternate paths such as another network
interface card (NIC) or gateway, because they may
otherwise not be activated or used by the OS.

The passive and active monitors complement each
other. For example, they can check the availability of the
primary domain name system (DNS) [38] server in the
following way. The passive monitor constantly watches
for DNS query and response packets resulting from the
normal operations of the user, while the active monitor
periodically sends its own DNS query packets to the server
to check its availability or responsiveness, as may be
necessary when there are no application-driven DNS query
packets for a long time.

Analyzer

The function of the analyzer is to determine what is
happening in the network by analyzing the results reported

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

’ IP applications ‘ ’ Executor

Monitor Analyzer| | Planner! | Report

Protocol stack ‘

’ Monitor

‘ Network interfaces ‘

Structure of autonomic network configuration (ANC) system.

by the monitor. It directs the monitor to the target (such
as DNS packets to the primary DNS server) and the
method (passive or active, and if active, how often).

It changes its direction in accordance with the results
reported by the monitor. As an example of its operation,
assume that the analyzer has the assignment of reporting
to the planner whenever the DNS server becomes
unavailable. It asks the passive monitor to constantly track
DNS packets and it also asks the active monitor to send a
dummy DNS packet when there have been no DNS
packets for a sufficiently long time.

Planner

The planner maintains the configuration policies in terms
of network performance, availability, and costs. It
communicates with the analyzer to obtain the necessary
information to support the given policies. To illustrate its
operation, assume that the planner has a policy goal of
keeping the network available, and it develops one or
more recovery plans when the network becomes
unavailable. It may ask the analyzer to check the
availability of the DNS server and default gateway. If it
detects any trouble with the primary DNS server, it will
check the availability of the secondary DNS server. If
there is more than one NIC, it can configure the analyzer
to check an alternative NIC to determine whether a
backup network connection is available.

Executor

Once the executor receives reports from the planner about
the problems and alternate recovery plans, it applies the
configuration policy from the planner and makes the final
decisions on changing the configuration. It may receive
more than one policy from the planner and may even
receive some contradictory recovery plans. It is the
responsibility of the executor to resolve any
contradictions.

S. SHIMIZU ET AL.

761

762

— Cradle

The IBM mobile computer core contains a CPU and disk drive. The
user can carry it around and make use of any display and keyboard
equipped with a cradle.

Network environment detection service for an IBM PC core
system

The IBM PC core system’ consists of a core and cradle,
as shown in Figure 10. The core is portable and contains a
CPU, memory, and disk drive. The cradle has external
connectors to the power, display, keyboard, mouse, and
network. Thus, users can carry their cores with them and,
as long as there is an available cradle connected to a
display and keyboard, they can plug in their core and work
in their familiar computing environment. This system was
developed in the IBM Yamato Laboratory on the basis of
the modular computer design concept.

The core system is ideal for an organization in which
people share computers installed in many locations, such
as large enterprises and universities. There can be several
cradles in different locations, each set up with a display,
keyboard, mouse, and network. Anyone can use a
personalized core at any of these locations. Their
computing environment would remain the same, just as if
they were transporting their entire computer system. At

3 The IBM PC core system was demonstrated at the IBM Forum 2004, held in
February 2004 in Tokyo, Japan. It is designed to deliver corporate solutions with a
new compact unit.

S. SHIMIZU ET AL.

the same time, cradles can be shared with others. The
cradle enables any core to recover its computing
environment.

However, most of the time users must do more than
simply dock their cores to the cradle. Although the OS in
the core can detect changes in the hardware configuration,
it does not automatically configure network parameter
settings. Users usually have to set up the IP parameters,
proxy server, and file sharing each time they move
from one cradle to another, but changes in network
environments can be so frequent that users are often
frustrated.

ANC technology can be used to detect the network
environment and supply the core system with a capability
for autonomic network configuration. ANC monitors all
incoming network packets and analyzes them to identify
the media access control (MAC) addresses of key network
components, such as the default gateways, the DNS
servers, and the Dynamic Host Configuration Protocol
servers. This eliminates network setup frustration and
makes the core system more attractive, even to users
unfamiliar with the network.

Location-based systems with the IBM PC core system

We demonstrated ANC capability for location-based
network services using the core system. In the
demonstration, there are two locations, an office and a
warehouse, and two applications, mail and inventory. The
mail application launches when the core connects to the
office environment, and the inventory application launches
when it connects to the warehouse environment.

In this system, ANC controls not only the settings, but
also the application launches by detecting the network
environment to which the core is connected. When the
ANC is equipped with network environment detection, it
gives the core location-awareness features and can support
busy mobile users actively moving from one location to
another.

Core technology ready for customization

ANC is an important core technology for embedded
systems to enable network communication because it
autonomically maintains network connectivity. Although
the ANC architecture is independent of the system

and application, and the ANC monitor can track any
network packets, we did not develop a general network
configuration tool. Such a tool usually has too many
functions and a complicated user interface for setting
parameters, and it may still not meet user requirements
completely. Instead, we developed ANC technology as a
core technology that can easily be customized. Offerings
such as innovative IP macros are key to an on-demand
design service. Because ANC is a core technology that can
easily be tailored in accordance with functional and system

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

requirements, it can be delivered in a small module with a
short development time.

The location-based system for embedded systems is an
example of the type of applications that ANC can make
possible with its network environment detection service.
ANC directly monitors low-level network packets and
quickly and safely configures the computing environment
for a specific location, even before the IP address is
allocated.

In addition to the network environment detection
service, ANC technology can support other services, such
as security and performance management services. We
have core technologies and implementations ready for
customization to provide reasonable solutions for real
requirements and problems with a very short development
time.

Concluding remarks

In this paper, we have discussed fundamental enablers
for the on-demand infrastructure for design services and
specific enablers for the technology services business.
Three technical topics have been discussed: design
methodologies and tools for rapidly developing embedded
system hardware and software, cryptographic hardware IP
macros, and an ANC core.

In terms of design methodologies and tools, we
elaborated on the characteristics of SoC development
for leading-edge digital consumer products and on the
requirements for system prototyping on FPGAs. We
explained that because of the lack of external device
models, a real-time interface to external devices is
desired. On the basis of this observation, we described our
development of the world’s first FPGA-based, real-time
system prototyping tool for PowerPC SoC, which works
in a real environment. We defined the design flow and
described its application to the development of a leading-
edge digital consumer product. We confirmed that the tool
and methodology fit well into SoC development in this
domain.

For device security, we discussed the cryptography IP
macros for ASIC development. We showed that these
cryptography IP macros offered world-class advantages in
their optimization level for performance, silicon efficiency,
and power dissipation.

Finally, we discussed ANC technology, which can
autonomically maintain network connectivity, rendering it
an important core technology for embedded systems
dependent upon network communication.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,

Inc., Xilinx, Inc., IEEE, Bluetooth Special Interest Group, or
Intel Corporation in the United States, other countries, or both.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

References

1. S. Walkers, “Reprogrammable Hardware Emulation
Automates System-Level ASIC Validation,” Proceedings of
the Wescon/’90 Conference Records, Electron Conventions
Mgt., November 1990, pp. 140-143.

2. W.-J. Fang and A. C.-H. Wu, “Performance-Driven Multi-
FPGA Partitioning Using Functional Clustering and
Replication,” Proceedings of the 35th Design Automation
Conference (DAC), June 1998, pp. 283-286.

3. M. Meerwein, C. Baumgartner, T. Wieja, and W. Glauert,
“Embedded Systems Verification with FPGA-Enhanced
In-Circuit Emulator,” Proceedings of the 13th International
Symposium on System Synthesis, September 2000, pp. 143—
148.

4. Virtex-II Pro Platform FPGAs: Complete Data Sheet,
Xilinx, DS083 March 9, 2004; see http://direct.xilinx.com/
bvdocs/publications/ds083.pdf.

5. A. Satoh, Y. Kobayashi, H. Niijima, N. Ohba, S.
Munetoh, and S. Sone, “A High-Speed Small RSA
Encryption LSI with Low Power Dissipation,” Proceedings
of the 1997 Information Security Workshop (ISW ’97),
September 1997, pp. 174-187.

6. Sony Electronics Inc.; see http://bssc.sel.sony.com/
Professional/puppy/index.html.

7. R. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,” Commun. ACM 21, No. 2, 120-126
(February 1978).

8. National Institute of Standards and Technology, “Data
Encryption Standard (DES),” FIPS Publication 46-3,
October 1999; see http://csrc.nist.gov/publications|/fips/
fips46-3/fips46-3.pdf.

9. “IBM PowerPC 405LP,” IBM PowerPC processor news
(October 2001); see http://www-306.ibm.com/chips/products/
powerpc/newsletter/oct2001/new-prod2.html.

10. National Institute of Standards and Technology,
“Advanced Encryption Standard (AES),” FIPS Publication
197, November 2001; see http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

11. A. Satoh, S. Morioka, S. Munetoh, and K. Takano, “A
Compact Rijndael Hardware Architecture with S-Box
Optimization,” Advances in Cryptology (ASIACRYPT
2001); published in Lecture Notes in Computer Science
2248 (C. Boyd, Ed.), 239-254 (2001).

12. V. S. Miller, “Use of Elliptic Curve in Cryptography,”
Proceedings of Advances in Cryptology (Crypto °85);
published in Lecture Notes in Computer Science 218 (H. C.
Williams, Ed.), 417-426 (1986).

13. N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Comp.
48, 203-209 (1987).

14. M. Aigner, “Scalable AES HW-Module,” Institute for
Applied Information Processing and Communications,
Graz University of Technology, July 2001; see http://
www.laik.tu-graz.ac.at/research/visi%20design/
aes%20for%20smartcards/aes-brochure/
IAIK_AES_Module.pdf.

15. Helion Technology, Overview Datasheet—High
Performance AES (Rijndael) cores for ASIC, 2002; see
http://www.heliontech.com/downloads/
aes_asic_helioncore.pdf.

16. Ocean Logic Pty Ltd., OL_AES-AES Core family Rev 1.4;
see http://www.ocean-logic.com/pub/OL_AES.pdf.

17. Amphion Semiconductor, CS5265/75-AES Simplex
Encryption/Decryption Cores; see http://
www.amphion.com/e-d.html.

18. S. Mangard, M. Aigner, and S. Dominikus, “A Highly
Regular and Scalable AES Hardware Architecture,” IEEE
Trans. Computers 52, No. 4, 483-491 (April 2003).

19. S. Morioka and A. Satoh, “A 10 Gbps Full-AES Crypto
Hardware with a Twisted-BDD S-Box Architecture,”
Proceedings of the 2002 IEEE International Conference on

S. SHIMIZU ET AL.

763

764

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Computer Design: VLSI in Computers and Processors
(ICCD’02), September 2002, pp. 98-103.

G. B. Agnew, R. C. Mullin, and S. Vanstone, “An
Implementation of Elliptic Curve Cryptosystems over
F,155, IEEE J. Selected Areas in Commun. 11, No. 5,
804-813 (June 1993).

S. Sutikno, A. Surya, and R. Effendi, “An Implementation
of ElGamal Elliptic Curves Cryptosystems,” Proceedings of
the 1998 IEEE Asia-Pacific Conference on Circuits and
Systems (APCCAS’98), November 1998, pp. 483-486.

S. Sutikno, R. Effendi, and A. Surya, “Design and
Implementation of Arithmetic Processor F,155, for
Elliptic Curve Cryptosystems,” Proceedings of the 1998
IEEE Asia-Pacific Conference on Circuits and Systems
(APCCAS’98), November 1998, pp. 647-650.

K. H. Leung, K. W. Ma, W. K. Wong, and P. H. W.
Leong, “FPGA Implementation of a Microcoded Elliptic
Curve Cryptographic Processor,” Proceedings of the 2000
IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), April 2000, pp. 68-76.

M. Ernst, S. Klupsch, O. Hauck, and S. A. Huss, “Rapid
Prototyping for Hardware Accelerated Elliptic Curve
Public-Key Cryptosystems,” Proceedings of the 12th
International Workshop on Rapid System Prototyping (RSP
2001), June 2001, pp. 24-31.

L. Gao, S. Shrivastava, and G. E. Sobelman, “Elliptic
Curve Scalar Multiplier Design Using FPGAs,”
Proceedings of the First International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES’99); published in Lecture Notes in Computer
Science 1717 (C. K. Koc¢ and C. Paar, Eds.), 257-268
(August 1999).

M. C. Rosner, “Elliptic Curve Cryptosystems on
Reconfigurable Hardware,” Master’s Thesis, ECE
Department, Worcester Polytechnic Institute, Worcester,
MA, May 1998.

G. Orlando and C. Paar, “A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2"),
Proceedings of the Second International Workshop on
Cryptographic Hardware and Embedded Systems (CHES
2000); published in Lecture Notes in Computer Science
1965, 41-56 (August 2000).

N. P. Smart, “The Hessian Form of an Elliptic Curve,”
Proceedings of the Third International Workshop on
Cryptographic Hardware and Embedded Systems (CHES
2001); published in Lecture Notes in Computer Science
2162 (C. K. Kog, D. Naccache, and C. Paar, Eds.), 118—
125 (May 2001).

S. Okada, N. Torii, K. Itoh, and M. Takenaka,
“Implementation Coprocessor over GF(2") on an FPGA,”
Proceedings of the Second International Workshop on
Cryptographic Hardware and Embedded Systems (CHES
2000); published in Lecture Notes in Computer Science
1965, 25-40 (August 2000).

J. Goodman and A. Chandrakasan, “An Energy Efficient
Reconfigurable Public-Key Cryptography Processor
Architecture,” Proceedings of the Second International
Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2000); published in Lecture Notes in
Computer Science 1965, 175-190 (August 2000).

G. Orlando and C. Paar, “A Scalable GF(p) Elliptic
Curve Processor Architecture for Programmable
Hardware,” Proceedings of the Third International
Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2001); published in Lecture Notes in
Computer Science 2162, 349-363 (May 2001).

S.-B. Xu and L. Batina, “Efficient Implementation of
Elliptic Curve Cryptosystems on an ARM7 with Hardware
Accelerator,” Proceedings of the 4th International
Information Security Conference (ISC’01); published in

»

S. SHIMIZU ET AL.

33.

34.

36.

37.

38.

Lecture Notes in Computer Science 2200, 266279
(October 2001).

P. L. Montgomery, “Modular Multiplication Without Trial
Division,” Math. Comp. 44, No. 170, 519-521 (1985).

C. K. Kog, T. Acar, and B. S. Kaliski, Jr., “Analyzing and
Comparing Montgomery Multiplication Algorithms,”
IEEE Micro 16, No. 3, 26-33 (June 1996).

. C. K. Kog and T. Acar, “Montgomery Multiplication in

GF(2%),” Designs, Codes, & Cryptog. 14, No. 1, 57-69
(April 1998).

A. Satoh and K. Takano, “A Scalable Dual-Field Elliptic
Curve Cryptographic Processor,” IEEE Trans. Computers
52, No. 4, 449-460 (April 2003).

National Institute of Standards and Technology, “Digital
Signature Standard (DSS),” FIPS PUB 186-2, January
2000; see http://csrc.nist.gov/publications|/fips/fips186-2/
fips186-2-changel.pdf.

J. Postel, “Domain Name System Structure and
Delegation,” RFC 1591 (RFC1591), March 1994; see
www.fagqs.org/rfcs/rfc1591.html.

Received October 17, 2003, accepted for publication
February 23, 2004; Internet publication September 17, 2004

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Shigenori Shimizu [BM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (shimizus@jp.ibm.com). Dr.
Shimizu is a Senior Technical Staff Member working in
computer architecture. He received B.E., M.S., and Ph.D.
degrees, all in instrumentation engineering, from Keio
University, Japan, in 1977, 1979, and 1983, respectively. He
joined the research staff of the Japan Science Institute of
IBM Japan (now the Tokyo Research Laboratory) in 1983.
His areas of specialization have included VLSI architecture
and design, multiprocessor architecture and design, and
various embedded technologies. Dr. Shimizu also held several
management positions, and currently leads the Systems and
Technology Department in the Tokyo Research Laboratory.

Hiroshi Ishikawa [BM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (e04131@jp.ibm.com). Mr.
Ishikawa manages the Technology Services Group. He
received B.S. and M.S. degrees in mechanical engineering
from Waseda University in 1981 and 1983, respectively. He
then joined the Tokyo Research Laboratory, where he has
worked on electrical circuit and protocol design for various
applications of robotics and wired and wireless
communications.

Akashi Satoh [BM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-ken
242-8502, Japan (akashi@jp.ibm.com). Dr. Satoh received
B.S., M.S., and Ph.D. degrees in electrical engineering from
Waseda University in 1987, 1989, and 1999, respectively. He
joined the Tokyo Research Laboratory in 1989 and was
involved in the research and development of digital and
analog VLSI circuits. Dr. Satoh’s current research interests
include algorithms and architectures for data security and
high-performance circuit implementations.

Toru Aihara IBM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-ken
242-8502, Japan (aihara@jp.ibm.com). Mr. Aihara received a
B.S. degree in electrical engineering in 1983 and an M.S.
degree in electronic engineering in 1985, both from Tokyo
University. He joined the Japan Science Institute of IBM
Japan (now the Tokyo Research Laboratory) in 1985. Mr.
Aihara was involved in research on low-power systems and
wireless communication, and also in the standardization of the
Bluetooth technology.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

S. SHIMIZU ET AL.

765

