
Finishing Line
Scheduling
in the steel
industry

H. Okano
A. J. Davenport

M. Trumbo
C. Reddy

K. Yoda
M. Amano

A new solution for large-scale scheduling in the steelmaking
industry, called Finishing Line Scheduling (FLS), is described.
FLS in a major steel mill is a task to create production
campaigns (specific production runs) for steel coils on four
continuous processes for a one-month horizon. Two process
flows are involved in FLS, and the balancing of the two
process flows requires resolving conflicts of due dates. There
are also various constraints along the timeline for each process
with respect to sequences of campaigns and coils. The two
types of constraints—along process flows and timelines—make
the FLS problem very complex. We have developed a high-
performance solution for this problem as follows: Input
coils are clustered by two clustering algorithms to reduce the
complexity and size of the problem. Campaigns are created for
each process from downstream to upstream processes, while
propagating upward the process timings of the clusters. Timing
inconsistencies along the process flows are then repaired by
scheduling downward. Finally, coils are sequenced within each
campaign. The FLS system enabled a steel mill to expand its
scheduling horizon from a few days to one month, and to
improve decision frequency from monthly to daily.

1. Introduction
In a major steel mill in Japan, production scheduling
for steel sheet products, also called coil products, was
conducted by skilled human experts, and the scheduling
horizon was limited to a few days. The steel mill had
finished automating the scheduling of primary steelmaking,
which covers the upstream processes of coil production,
but their problem was how to determine accurate due
dates for slabs for a longer horizon in order to utilize the
automated scheduler more efficiently. Slabs created by the
upstream processes are transformed to hot coils at a hot
strip mill (HSM) and to cold coils at a cold mill (CM),
and are finished with annealing and galvanizing processes
(Figure 1). The whole scheduling task for coil production
after the HSM, from the CM onward, is called Finishing
Line Scheduling (FLS). In order to determine accurate due
dates for slabs, therefore, the HSM and the finishing lines
must be scheduled for a longer scheduling horizon. The
steel mill first examined the feasibility of the existing

capacity planning tools for the FLS and found them not
applicable. The steel mill then created a special-purpose
scheduling system, called the FLS system, with the support
of an IBM team including the authors.

A schedule for the finishing lines consists of production
campaigns 1 on each process and a coil sequence within
each campaign. The schedule involves horizontal flows of
production campaigns along timelines on each process
and vertical flows of coils from upstream to downstream
processes (Figure 2). For simplicity, in Figure 2, arrows
are drawn for only a few pairs of coils, and only two
campaign sequences are drawn for each process. There are
actually more arrows, and there may be more than two
machines of the same type, called lines, for each process.
Each coil has several properties: width, thickness, length,
campaign type, release date, due date, priority, grade, and
so on. Among the coil properties, those other than release

1 The production campaign is a production run with specific start and end times in
which coils of a particular type are processed continuously on a process line.

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

811

and due dates, priority, and grade are all process-
dependent. Note that campaign types on one process
are not related to those on other processes. As shown
in Figure 2, therefore, two coils in the same campaign
on CM may (usually) be assigned to different campaigns

on lower stream processes. The number of coils assigned
to a campaign is typically about 50 to 500. The task of
sequencing the coils assigned to each campaign taking into
account the several constraints between coils is called the
sequencing (Figure 3). In this task, the vertical relationships

Figure 1

Process flow of primary steelmaking and coil making. Four processes targeted for scheduling in the finishing lines are shown. Work in

process (WIP) indicates that there is inventory stored at each location in the flow.

Hot strip mill

(HSM)
WIP

coil

Cold mill

(CM)
WIP

coil

Slab

Continuous

annealing

line (CAL) WIP

coil

Electro-

galvanizing

line (EGL)

Continuous galvanizing

line (CGL)

Continuous

caster

Primary steel making

Basic

oxygen

furnace

Finishing lines

Figure 2

Schematic rendering of schedules for four processes. Rectangles shown for the four processes represent campaigns, and the objects drawn

in the campaigns represent coils. Arrows between coils show that they are the same coils which should be processed from top to bottom.

Thick arrows represent coils going from CM to CGL, while thin arrows represent coils going from CM to CAL, then to EGL.

Cold mill

(CM)

Continuous

annealing

line (CAL)

Electro-

galvanizing

line (EGL)

Continuous

galvanizing

line (CGL)

WIP

WIP

day 1, day 2, … day 30+

WIP

WIP

HSM

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

812

should be taken into account, which means that a coil
must be processed after it has been through any preceding
prerequisite processes. To create campaigns for a
particular process, it is usually necessary to create
several campaigns of the same type in order to meet the
due dates and satisfy the constraints on the minimum
and maximum campaign sizes. Therefore, creation of
campaigns involves the partitioning of coils into several
campaigns with the same type so that the sequencing
problems for those campaigns become feasible. Whether
or not an instance of the sequencing problem has a
feasible solution, in this paper, is called sequenceability.
The task of creating campaigns for each process and
partitioning coils into campaigns so that every campaign is
sequenceable is called campaign allocation. The vertical
relationships should be taken into account in this task as
well. There are several types of campaigns, and some
campaign types require setups for rollers, galvanizing
liquid, and so on. Specific campaign transitions minimizing
setup costs are preferred, and some campaign transitions
also require minimizing setup times. Taking into account
the setup costs and times, the problem requires observing
the preferable sequences of campaign types, called the
campaign templates. The problem also requires creating
specific types of campaigns within specific time frames
in each month or in each week. Such a time frame is
called a chance, and the types of campaigns that must be
scheduled in chances are called the chance campaigns.
Note that the campaign templates, chances, and minimum
and maximum campaign sizes render the allocation
problem so difficult that simple capacity-planning tools
which do not consider relationships between campaigns
along the timelines cannot be used.

Some papers have been published about HSM
scheduling and production scheduling for primary
steelmaking involving a continuous caster and HSM.
However, searches find no literature specifically on FLS.
Therefore, papers on scheduling algorithms for HSM and
primary steelmaking and those on job-shop scheduling
which are relevant to FLS are reviewed here. Yasuda et al.
[1] describe HSM production scheduling that involves
decisions on which slabs are rolled in which sequence and
the orders to which slabs are assigned. They address a
two-stage solution. The first stage generates a rough
schedule of width, thickness, and reheating temperature
transitions for a campaign, i.e., the interval between roll
exchanges. The second stage assigns orders to slabs and
sequences the order–slab pairs according to the rough
schedule. Fang and Tsai [2] and Lopez et al. [3] address
analogous HSM scheduling problems and respectively
describe a genetic algorithm and a tabu search approach.
The sizes of their problems are a few hundred slabs, and
they do not address optimal ordering of campaigns. In
contrast to the HSM scheduling problem, the size of the

FLS problem is about 5,000 coils on each process, and
FLS addresses minimization of the setup cost and time
between campaigns. In addition, FLS involves constraints
on the process timings of coils in the four processes.

Numao and Morishita [4] address short-term scheduling
problems in primary steelmaking and describe a system
called Scheiker, which is a cooperative scheduling tool
that interacts with a human expert to create schedules
for material flow from the basic oxygen furnace to the
continuous caster. The human scheduler first creates
a global schedule using the Scheiker graphical user
interface. Scheiker then utilizes the rules in its expert
system kernel to identify local constraint failures and
make repairs to correct the failures. If the failures are not
fully repaired, the human scheduler modifies the schedule
to rectify the identified failures. Scheiker then again
identifies constraint failures and resolves them. This
cooperative scheduling continues until all constraints are
met and the objectives are achieved. In the FLS system,
all of the scheduling is done exclusively by the engine for
a one-month horizon. The human experts may make small
changes for short-term horizons during actual execution.

Width and thickness transitions of a coil sequence: (a) Typical

profile; (b) wide-to-narrow profile.

Figure 3

Width Thickness

C
o
il

 s
e
q
u
e
n
c
e
 (

5
0
 t

o
 5

0
0
 c

o
il

s)

Width Thickness

(a)

(b)

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

813

Lee et al. [5] address integrated scheduling at continuous
casters and HSMs. They address two techniques for caster
scheduling and a third approach for integrated caster and
HSM scheduling. The first of these generates caster
schedules by clustering similar orders and then finding
a sequence of these clusters using a heuristic search
algorithm based on the beam and branch-and-bound
search. These sequences are further improved by a
genetic algorithm. The second approach is based on a
solution framework, called asynchronous teams or A-teams
[6, 7], which can exploit several solution techniques for
finding multiple Pareto-optimal solutions. The third
approach is based on clustering and a heuristic search.
An analogous approach using A-teams was also described
by Gao et al. [8]. In contrast, the FLS problem involves
twice as many processes as their problem does, and has a
branch of the process flow which their problem does not
address.

Wein and Chevalier [9] discuss dynamic decision policies
for assigning due dates, releasing jobs from a backlog,
and sequencing jobs. Their problem assumes that the
job shop is modeled as a multiclass queuing network,
and the objective is to minimize both the work-in-process
(WIP) inventory and the due date lead time (DDLT, the
due date minus arrival date) of jobs. They proposed a
two-step approach. The first step releases and sequences
jobs, ignoring DDLT and focusing instead on efficient
system performance. DDLT is then taken into account in
the second step to set the due dates. In FLS, coils (jobs)
are grouped into campaigns whose lengths vary from
about a few hours to a week. Each coil in a campaign is
associated with a release date from the preceding process
and a due date for the succeeding process, and its DDLT
is sometimes shorter than the campaign length. Therefore,
once coils are assigned to campaigns, the time windows of
campaigns are relatively short, and thus the sequence of
campaigns is so restricted that the simple queuing network
model does not apply. Therefore, the assignment of coils
into campaigns and campaign sequencing in FLS should
be solved at the same time.

Leachman et al. [10] address a large-scale and
multiple-process scheduling problem in semiconductor
manufacturing. Their scheduling algorithm for each
process refers only to the WIP at hand, and the system
is controlled by determining target cycle times and WIP
levels for individual processes and by periodically releasing
new jobs into the fabrication line. In their problem, each
device is typically scheduled to be set up once per shift,
which means that the campaign lengths are only one shift
long. In contrast, in FLS, campaigns can be longer than
the size of the WIP that exists when campaigns begin.
Therefore, we use off-line scheduling algorithms that refer
to all of the coils that will be released during a one-month
horizon, not only to the WIP at hand.

In this paper, we describe a four-step approach for
the FLS problem: 1) Input coils are clustered by two
clustering algorithms to reduce the complexity and size
of the problem. 2) Campaigns are created for each
process from downstream to upstream processes, while
propagating the process timings of the clusters upward.
3) Timing inconsistencies along the process flows are
then repaired by scheduling downward. 4) Finally, coils
are sequenced within each campaign. Campaign allocation,
Steps 2 and 3, addresses resolving of the due date conflicts
on the CM. Note that the process flow branches at the
CM to CGL-bound and EGL-bound (Figure 1), and that
the CM has to produce CGL- and EGL-bound coils in
proper proportion, taking into account the due dates at
the lower stream processes. Our algorithm propagates
time windows upward to provide the CM with the timing
requirements on the lower stream processes so that the
CM can be scheduled accordingly.

The remainder of the paper is organized as follows: The
FLS problem is presented in the next section. The solution
framework for the FLS system and numerical experiments
are described in Section 3. Details of each of the
algorithmic components are presented in Sections 4
through 7. Finally, our conclusions are summarized in
Section 8.

2. The FLS problem
The input data to the problem is the number of WIP coils
on each of the four continuous processes and the number
of coils that will be released from HSM to CM during the
scheduling horizon. The problem is to create production
campaigns to which coils are assigned for each line of the
processes, and to sequence coils within each campaign so
that productivity and product quality are maximized and
tardiness is minimized.

Productivity means gross production per month divided
by cost, where the term gross indicates the exclusion of
parts of sheets which cannot be delivered because of
trimming or scars. Maximization of gross production per
month is addressed in the FLS problem as minimization
of the gaps between campaigns, and maximization of
productivity is addressed directly as campaign templates
and indirectly as sequencing penalties. The gaps between
campaigns include setup times and downtimes of processes
due to both planned maintenance and lack of WIP
inventory. When the WIP inventory in front of a process
for each of the campaign types is less than the minimum
campaign size, the process has to stop until enough WIP is
supplied from upstream processes. Such a situation lowers
productivity; therefore, the upstream processes should
take into account the amount of WIP at lower stream
processes. Setups of campaigns that require extra costs
for changing of galvanizing liquid are undesirable, and
campaign templates are designed by the human experts in

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

814

the steel mill to avoid such expensive setups. For example,
a setup that requires changing only one galvanizing pot is
preferred to a setup that requires changing many. The
campaign templates are sequences of campaign types and
downtimes that require only small setups. (Downtime is
treated as a special campaign type.) Sequencing penalties
include width differences between consecutive coils to
represent minimization of trim loss. Note that the
continuous process is a process in which all of the input
coils within a campaign are welded together to make a
long strip, processed at one time, and cut into coils after
processing. When the widths of consecutive coils differ
considerably, two corners of the wider coil are cut off to
create a smooth profile (Figure 4). Therefore, in order
to increase productivity, it is preferable to make width
profiles of campaigns as smooth as possible. (In addition,
when the difference in widths or thickness is very large,
the welded juncture is weak, limiting the allowable
differences of width and thickness.) There are also
constraints on minimum campaign sizes, which are set to
decrease the number of changes of rollers or galvanizing
liquid.

Product quality is improved when the steel sheets are
properly galvanized and are not scarred. Maximization of
product quality is the production of as much high-grade
product as possible without any problems. Note that each
order is associated with a grade, and high-grade products
(for example, for the outer panels of cars) are more
expensive than low-grade products. Once a steel sheet
for a high-grade product develops problems, it must be
reassigned to a lower-grade order, whose profit margin is
lower than those of high-grade orders. Also, in continuous
processes, the rollers are worn by processing coils;
processing narrower and wider coils in that order causes a
transferring of scars, called edge marks, to the wider coils at
the positions of both sides of the narrower coils (Figure 4).
Therefore, in order to increase product quality, the width
profiles of campaigns for high-grade products should be
wide-to-narrow [Figure 3(b)]. Also, campaigns for high-
grade products should not be placed immediately after
downtimes, when the process machines are not yet stable.
This preference is reflected in the campaign templates.
There are constraints on maximum campaign sizes, which
are set to avoid scars due to worn rollers and to keep
product quality high.

Minimization of tardiness means that as many products
as possible should be shipped before the due date.

Input and output
The input data of the FLS problem is the following:

● A set of processes P � {CM, CAL, EGL, CGL} indexed
by p.

● A set of lines Lp on process p indexed by l.

● A set of coils Cp on process p indexed by i.
● The previous campaign on each line of the processes.
● Any planned downtimes.

The previous campaign is a pre-allocated campaign
which should be followed by newly created campaigns;
planned downtimes are time periods in which campaigns
cannot be created.

Associated with each coil i are

● A campaign type ci.
● A set of assignable lines Li � Lp.
● A processing time li.
● A priority: high or low.
● A release date ri if coil i has no preceding process.
● A due date di if coil i has no succeeding process.
● A corresponding coil ui in the preceding process.
● A lead time l(ui , i) to be allocated after the preceding

process.
● Any process-dependent sequencing properties.

The preceding process is the process immediately
upstream in the finishing lines from which coil i comes;
the succeeding process is the process immediately
downstream to which coil i goes. Each coil is assignable to
only specific lines Li. The process-dependent sequencing
properties include width, thickness, annealing
temperatures, and surface treatment types.

Associated with each campaign type c are the minimum
length minc and the maximum length maxc. For each line,
the following constraints are given: campaign template,

Figure 4

Edge marks and trim loss.

Process

direction

Rollers

Steel sheet

Scars
Trim loss

Trim

loss

Steel sheet

Welded

juncture

Process

direction

Steel sheet

Edge marks

Steel sheet

Rollers

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

815

chance campaigns, chance positions, and sequencing
constraints. The campaign template is defined as a graph
with campaign types as nodes and campaign transitions as
directed edges. The chances for campaign type c are time
windows at specific positions in the timeline: [ESTc

t , LFTc
t]

for the tth chance. 2 Sequencing constraints include the
allowable differences of width and thickness, width profile,
setup costs between coils, and transition speed of the
annealing furnace temperature. Most of these constraints
can be represented as a distance function between each
pair of coils.

The output data for the FLS solution is

● A set of campaigns Kl on each line l.
● A set of coils Ck assigned to each campaign k.
● A start time �k for each campaign k.
● A start time �i for each coil i.

With respect to the output data, the ordering of
campaigns on line l is denoted by �l and the ordering of
coils for campaign k is denoted by �k.

Constraints and preferences
The output schedule should satisfy the following constraints
and preferences (the latter are marked with an asterisk):

ESTi � � i

�ui
� lui

� l(ui , i) � � i

�
�k (j)� l

�k (j) � �
�k (j�1)

�k1
� lk1

� l(k1 , k2) � �k2
,

k1� � l(j), k2� � l(j � 1)
coil i must be assigned to

a campaign of type ci

coil i must be scheduled
on line � Li

ESTc(k)
t

� �k � LFTc(k)
t � lk

for any chance t
� i � li � LFTi

minc(k) � lk � maxc(k)

for all campaigns k
campaign orderings

follow campaign
templates

coil orderings follow
sequencing
constraints

[release date]
[vertical relationship]
[continuous sequence]

[setup time between
campaigns]

[campaign type]

[assignable line]

[chance campaign]
[due date]*

[min–max campaign sizes]*

[campaign templates]*

[sequencing constraints]*

for each coil i and each line l of processes, where l(ui, i)
denotes the lead time between coil i and its preceding coil
ui, l(k1, k2) denotes the setup time between two campaigns

k1 and k2, and c(k) and lk respectively denote a campaign
type and the length of campaign k. Note that preferences
may be violated when there is no feasible schedule. The
due date constraint is marked as a preference because
there may be no feasible schedule that satisfies both the
due dates and the other constraints. The campaign
templates are shown as a preference for the same
reason.

Objectives
The objectives to be minimized for the FLS problem are
shown in Table 1, in which the elements are listed
basically in the order of importance assigned by human
experts. The first three objectives (marked with �) are
counted as weighted sums. Tardiness for coils with
different priorities is treated with different weights. The
other objectives are considered in the order shown.
When an input coil (or cluster) has an EST at a much
later position, the makespan 3 is determined by that coil,
disregarding the other parts of the schedule. From a
practical point of view, schedules with fewer gaps at early
parts of the horizon are preferred, and the makespan is
not very important. The minimization of gaps between
campaigns reflects this preference (Figure 5). The
sequencing constraint violation is listed last because
detailed coil sequences are required for a horizon of only
a few days. Except for the first few days in the beginning
of a schedule, the primary objective in terms of
sequencing is to guarantee sequenceability, which is not
explicitly shown in Table 1.

System targets
The targets of the FLS system are as follows: 1) Create
a one-month schedule within one hour of running time;
2) minimize tardiness; 3) maximize productivity; and 4)
maximize product quality. The first target makes the size
of the problem very large. The number of coils to be
processed by all of the continuous processes in one month
is 20 to 25 thousand. The issue arising here is how to
reduce the problem complexity and size by clustering the
coils or by decomposing the problem without significantly
affecting the solution quality. The second target involves
a tradeoff between tardiness and the constraints in
campaign allocation. Tardiness can be minimized by
creating small campaigns or by ignoring the campaign
templates. However, setup costs will become large in such
a schedule. The third target involves a line balancing
problem. As shown in Figure 1, the process flow in the
steel mill branches after CM, with one branch going to
EGL and the other to CGL. Unless CM produces EGL-
bound and CGL-bound coils in proper proportions, either

2 The terms EST and LFT respectively indicate earliest start time and latest finish
time.

3 The term makespan indicates the duration from the beginning of the scheduling
horizon to the completion of the last coil on each line.

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

816

EGL or CGL may be starved for coils and stop. Such
stops (downtimes) should be avoided because they lower
productivity. The consideration of the different product
flows to avoid downtimes is called line balancing. The
fourth target relates to the sequencing constraints and
also to the maximum campaign size and the campaign
templates.

3. Solution framework
In order to reduce the problem complexity and size, the
FLS system incorporates two types of clustering: outlier
and performance. Dimensions, time windows, and other
parameters usually constrain the neighborhood of coils
that can be scheduled together, and many of these
neighborhoods are large for most typical coils. Such coils
are likely to be sequenceable even if they are randomly
assigned to campaigns. In contrast, coils with a small
neighborhood or no neighbors, the outlier coils, should be
put into campaigns along with near-neighbor coils which
connect them to normal ones. By creating clusters of
outlier and connecting coils, it is possible to separate the
sequenceability problem from campaign allocation, and
the problem complexity is reduced. This type of clustering

is called outlier clustering. Normal coils and the outlier
clusters are further clustered by performance clustering
in order to reduce the problem size.

The FLS problem has two interrelated problems:
horizontal and vertical. The horizontal problem involves
campaign allocation and sequencing, and the vertical
problem involves line balancing and vertical relationships.
Handling them at the same time, however, is not practical
because of the complexity. The FLS system thus adopts
a horizontal engine for campaign allocation which runs
independently for each process. The vertical problem is
addressed by time window propagation and upward and
downward scheduling. A time window [ESTi, LFTi] is
assumed for each cluster i, which means that cluster i
should be scheduled at the earliest start time (EST) or
later, but (preferably) no later than the latest finish time
(LFT). The time windows are set based on the release and
due dates and the lead times, as shown in Figure 6(a).
The time window propagation defines a narrowed and non-
overlapping time window for each cluster [Figure 6(b)],
so that the horizontal engine for each process
can work independently without worrying about the
vertical relationships. For example, after creating the

Figure 5

Example of gap penalty. The bottom schedule is the best and has the smallest gap penalty. Coils or clusters marked with X have earliest

start times (ESTs) at their positions, and they cannot be moved earlier.

100 200 300 400

150 200 250 400

190 210 400

100/1002 � 100/3002 � 0.0111

50/1502 � 150/2502 � 0.00462

10/1902 � 190/2102 � 0.00459

X

X

X

X X X X

X X X X

X X X X

Table 1 Objectives to be minimized for the FLS problem.

�p�P� i�Cp
max {� i � li � LFTi , 0} [tardiness]�

�p�P� l�Lp
�k�Kl

max, {minc(k) � lk , 0} [minimum campaign size violation]�

�p�P� l�Lp
� j[�k2

� (�k1
� lk1

)]/�k1

2 , k1 � � l(j), k2 � � l(j � 1) [minimize gaps between campaigns]�

�p�P� l�Lp
campaign template violation [campaign template violation]

�p�P� l�Lp
�k�Kl

max{lk � maxc(k) , 0} [maximum campaign size violation]

�p�P� l�Lp
sequencing penalty [sequencing constraint violation]

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

817

line schedule for CM, the process timings of the clusters
on CM are propagated downward, as illustrated in
Figure 7.

The line balancing problem and tardiness minimization
require resolving conflicts of due dates on CM. These are
addressed in two steps: upward and downward scheduling.
In upward scheduling, campaign allocation is performed
from downstream to upstream processes, one by one,
using the ESTs of initial time windows for the input
clusters. As processes are scheduled, the process timings
of clusters on lower stream processes are propagated
upward to set the LFTs for the preceding clusters. When
campaigns are allocated for CM, the timing requirements
on all of the lower stream processes are represented as
propagated time windows, and thus the horizontal engine
can take line balancing into account by referring to

the propagated time windows. Note that, when upward
scheduling is completed, there may be vertical relationship
violations because the campaign allocation uses the initial
time windows and they do not include margins for
preceding processes. The purpose of the upward scheduling
is not to obtain feasible solutions, but to obtain LFTs on
the CM that reflect the timing requirements on the lower
stream processes. A feasible solution is then created by
scheduling downward for the CGL, CAL, and EGL.

Sequencing for each campaign is performed after
creating the campaigns. Sequencing problems are so
process-dependent that the FLS system adopts different
sequencing engines for each of the processes. The solution
framework of the FLS system is summarized as follows: 1)
upward scheduling for downstream-to-upstream processes,
2) downward scheduling for upstream-to-downstream
processes, and 3) sequencing for each campaign, where
the upward and downward scheduling are performed for
each process by the horizontal engine. This horizontal
engine consists of the following steps:

1. Outlier clustering.
2. Performance clustering.
3. Campaign allocation.
4. Time window propagation.

Theoretically, the whole problem can be represented as a
single optimization problem, but handling such a huge
problem is not practical with respect to both development
and maintenance. We thought it would be preferable to
decompose the problem into smaller components for
which detailed heuristics can be captured easily.
Therefore, we designed the campaign allocation step to
run independently for each of the processes. The listed
algorithmic components are described in the following

Figure 6

(a) Initial time windows for a cluster on three processes. The

earliest start times (ESTs) are calculated from upstream to down-

stream processes, and the latest finish times (LFTs) are calculated

in the opposite direction. (b) Propagated time windows for a cluster

on three processes. The propagated time windows are calculated

inside their initial time windows so that they do not overlap one

another. The initial time windows are those depicted in Part (a).

CM

CAL

EGL

TimeESTi � ri

ESTi � ri

LFTi'' � di''

LFTi � di

ESTi'

ESTi

ESTi

ESTi''

LFTi

LFTi

LFTi'

LFTi

pi

pi' pi'

pi''Lead time

Lead time

Lead timeLead time

Lead time

Initial time windows

Total lead time

(a)

(b)

CM

CAL

EGL

Lead time

Initial time windows Propagated time windows

Time

Figure 7

Propagated time windows for a cluster after scheduling CM. The

scheduled time on CM of cluster i, i, is propagated downward to

recalculate the time windows on CAL and EGL.

LFTi � di

ESTi

ESTi

LFTi

Fixed

length

Initial time windows Propagated time windows

TimeScheduled time on CM

�

CM

CAL

EGL

Lead time

Lead time

ESTi � ri

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

818

sections except for the time window propagation, which
has already been discussed. The inputs for the steps of
campaign allocation and time window propagation are
clusters, not coils. In their descriptions, however, the
notations for coils defined in the subsection on input and
output are used for clusters.

Numerical experiments
Numerical experiments were conducted using a problem
instance made for evaluation. The problem setting is as
follows: There are two lines for each process: CM, CGL,
CAL, and EGL. For each line of CM, 120 clusters were
released at random between day 1 and day 15. The length
of each cluster on CM is three hours. WIP clusters
amounting to ten days are supplied for each CM line.
The clusters on CM lines were associated with succeeding
process lines equally among each line of CGL and CAL.
The clusters bound for CAL were also associated with
succeeding process lines equally among each of the EGL
lines. The length of each cluster on CGL, CAL, and EGL
is six hours. WIP clusters amounting to five days were
supplied for each of the CGL, CAL, and EGL lines. The
lead time between processes was set to one day. The total
lead time for EGL clusters, i.e., LFT on EGL minus EST
on CM (Figure 6), was set to 12 days, and the total lead
time for CGL clusters, i.e., LFT on CGL minus EST on
CM, was set to eight days.

The clusters on CM were randomly associated with one
of the campaign types A, B, C, D, and E. No campaign
template was specified for CM. The setup time between
CM campaigns was set to zero. The clusters on CGL were
randomly associated with one of the campaign types G, H,
I, and chance. The H type is for high-grade products,
which should not be placed immediately after G or
chance. The setup time between G, H, I, and chance was
set to eight hours. Clusters amounting to three days were
associated with the chance, and their time windows were
set between day 11 and day 15. The clusters on CAL were
associated with one of the campaign types P and Q. No
setup time was specified for switching between them. The
clusters on EGL were randomly associated with one of the
campaign types V, W, X, Y, Z, and chance. The campaign
template was specified as V 3 W 3 X 3 Y 3 Z. The
setup times from Z to V and between the chance and the
others was set to eight hours. The campaign templates for
CGL and EGL were represented as the distance matrices
shown in Tables 2 and 3, where the distance is a virtual
cost between campaign types. The distance matrix defines
a directed graph, consisting of nodes as the campaign
types and weighted arcs as transitions between them, in
which minimum cost paths represent the campaign
template. There were no planned downtimes in this
experiment. The maximum campaign sizes for CM, CGL,
and EGL were one day, 14 days, and two days, respectively.

The maximum campaign size was not specified for CAL.
The minimum campaign size was set to 12 hours for all of
the processes.

Figure 8 shows the results of the numerical experiments.
In the upward scheduling shown in Figure 8(a), EGL and
CGL were first scheduled with initial time windows set to
their clusters. Let �EGL and �CGL denote scheduled times
of the clusters on EGL and CGL, respectively. CAL was
then scheduled with the clusters associated with LFTs
propagated upward from EGL as LFTCAL � �EGL � DAY.
CM was scheduled last, with the clusters associated with
the LFTs propagated upward from CGL and CAL as
LFTCM � min{�EGL � 2DAY, �CAL � DAY} and
LFTCM � �CGL � DAY. In the downward scheduling,
the length of the time window on each process was set to
four days (Figure 7). Figure 8(a) shows the result of the
upward scheduling. The slanted vertical lines in the figure
represent points at which two connected clusters involve a
vertical relationship violation, which may happen because
the LFTs are not always observed. Note that, in this step,
clusters are tentatively sequenced within each campaign
in order to check the vertical consistency. After the
downward scheduling, the violations were repaired
and a feasible solution was obtained [Figure 8(b)].

A naive solution that schedules only downward involves
gaps (downtimes) on CAL between day 4 and day 5
[Figure 8(c)]. The proposed solution that schedules
upward and downward does not involve gaps on CAL
and EGL [Figure 8(b)]. This is because, in the proposed
solution, the CM could consider the timing requirements
of lower stream processes. When the extent of vertical

Table 2 Distance matrix for the campaign types on CGL.

G H I Chance

G 0 10 5 10

H 10 0 1 10

I 10 1 0 10

Chance 10 10 10 0

Table 3 Distance matrix for the campaign types on EGL.

V W X Y Z Chance

V 0 1 10 10 10 10

W 10 0 1 10 10 10

X 10 10 0 1 10 10

Y 10 10 10 0 1 10

Z 1 10 10 10 0 10

Chance 10 10 10 10 10 0

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

819

Figure 8

(a) Schedule obtained by upward scheduling. The slanted vertical lines represent vertical relationship violations. (b) Schedule obtained by

the proposed solution method. Timing requirements of the lower stream processes are propagated upward [Part (a)], and then the vertical

relationship violations are resolved by downward scheduling. (c) Schedule obtained by using downward scheduling only. Observe the

undesirable gaps between campaigns on CAL and EGL.

(a)

(b)

(c)

1CM

2CM

1CGL

2CGL

1CAL

2CAL

1EGL

2EGL

A A A A A A A A AB B B B B B B B B BC C C C C C C C C C CD D D D D D D D D D DE E E E E E E E

A A A A A A A A AB B B B B B B B B B BC C C C C C C CD D D D D D D D D DE E E E E E E E E E E E

G GI I I IH H H

G GI I I IH H H

P P P P P PQ Q Q Q Q

P P P PQ Q Q

V V V VW W W WX X X XY Y Y YZ Z

V V V VW W WX X X XY Y Y YZ Z Z Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1CM

2CM

1CGL

2CGL

1CAL

2CAL

1EGL

2EGL

A A A A A A A A AB B B B B B B B B BC C C C C C C C C C CD D D D D D D D D D DE E E E E E E E

A A A A A A A A AB B B B B B B B B B BC C C C C C C CD D D D D D D D D DE E E E E E E E E E E E

G GI I IH H H

G GI I I IH H H H

P P P P P P P P P PQ Q Q Q Q Q Q Q Q

P P P P P P PQ Q Q Q Q Q

V V V V V VW W W W W WX X X X XY Y Y Y YZ Z Z Z Z

V V V VW W W WX X X X X X X XY Y Y Y Y Y YZ Z Z Z Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1CM

2CM

1CGL

2CGL

1CAL

2CAL

1EGL

2EGL

A A A A A AB B B B B BC C C C C C C CD D D D D D D D DE E E E E E

A A A A A AB B B B B B B B BC C C C C CD D D D D D DE E E E E E E

G G GI I I I IH H H H

G G GI I I I IH H H H H

P P P P P P P P P P PQ Q Q Q Q Q Q Q

P P P P P P P P PQ Q Q Q Q Q

V V V V V VW W W W W W WX X X X X XY Y Y Y YZ Z Z Z Z ZChance

Chance

Chance

Chance

Chance

Chance

C
ha

nc
e

V V V V V V VW W W W W WX X X X X X X XY Y Y Y Y Y Y YZ Z Z Z Z Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

820

relationship violations is small, as in the schedule shown
in Figure 8(a), the downward scheduling step may be
replaced by local search on the violated clusters.

Comparison with capacity planning approach
In the proposed solution, schedules are created by running
the campaign allocation engine for each process as
depicted in Figure 9(a). The campaign allocation engine
can take into account the campaign templates, such as “H
should be placed after I,” while the vertical relationships
are addressed by the time window propagation. An
alternative approach we have considered is off-the-shelf
capacity planning programs. Placing daily buckets for each
process, such tools can iteratively assign associated coils
to the buckets in the ascending order of their due dates
[Figure 9(b)]. For example, a coil processed by CM, CAL,
and EGL is assigned to the earliest assignable buckets at
CM, CAL, and EGL at the same time. Campaigns can
be created afterward according to the contents of the
buckets. A drawback of this approach is that it cannot
consider the constraints along timelines, that is, the
campaign templates. We considered applying local search
for the created campaigns, but such an approach seemed
to make the solution complicated. Therefore, we gave
up this approach and sought for other approaches
which are suitable to address the constraints along
timelines.

4. Outlier clustering
The FLS system performs the allocation of coils to
campaigns independently of the sequencing of coils within
a campaign. However, within a campaign, there are
constraints that must be satisfied with respect to the way
that coils can be sequenced. These constraints are usually
based on the dimensions of the coils, such as width
and thickness, but may take into account line-specific
characteristics as well, such as the annealing temperature
for CAL. The majority of coils have properties such that
it is, in general, fairly easy to satisfy the sequencing
constraints. However, there are often a small number
of coils within certain campaigns which have atypical
properties, such as very wide or very narrow coils.
Such coils usually cause problems during sequencing,
since the number of coils with which they can
feasibly be sequenced is quite small. We call these
outlier coils.

Figure 10

(a) Width/thickness plot of coils of a particular campaign type,

showing middle range of coils (oval area) and outliners (points

outside the oval). (b) Output of outlier clustering. The shaded ovals

represent clusters connecting outlier coils to middle-range coils.

T
h
ic

k
n
e
ss

Width

T
h
ic

k
n
e
ss

Width

A

B
C

(a)

(b)

Comparison of (a) the proposed solution (upward and downward

scheduling using a horizontal scheduler); (b) the capacity planning

approach (put clusters into the daily buckets in order of due dates).

CM

CAL

EGL
1

2

3

4

5

CM

CAL

EGL

3 4

(b)

(a)

2

1

Figure 9

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

821

In order to avoid possible sequencing problems with
outlier coils after allocation, the horizontal engine runs
an “outlier clustering” algorithm before allocation,
which associates outlier coils with other coils that can
be sequenced with them. All of the coils within an outlier
cluster are then allocated to the same campaign during
the allocation phase of the engine. Figure 10(a) illustrates
a typical distribution of coils with respect to their width
and thickness properties. The majority of the coils lie
within what we call a “middle range,” presented within the
oval area on the graph. Coils within the middle range are
compatible with many other coils with respect to how their
width and thickness properties satisfy the sequencing
constraints with other coils. Thus, whatever the campaign
to which the middle-range coils are allocated, the
expectation is that it should not be too difficult to feasibly
sequence these coils. Coils outside the middle range are
outlier coils, which will be hard to sequence. The primary
goal of outlier clustering is to form clusters which connect
outlier coils to coils in the middle range. The output of
outlier clustering for the example illustrated in Figure 10(a)
is presented in Figure 10(b). The shaded ovals represent
clusters of outlier coils created by the outlier clustering
algorithm. The directed arcs in the solution graph represent
a feasible direction of sequencing between two coils.
(Note that the sequencing constraints are asymmetrical,
since in general wide to narrow sequences of coils are
preferred. In order to guarantee that clusters are
sequenceable, therefore, we sequence coils within
clusters.) Three outlier clusters were created here. Cluster
A forms a path of coils away from the middle-range coils
toward the narrowest coil. Such a cluster would probably
be placed at the end of a sequence of coils in a campaign.
Cluster B forms a path connecting coils from and back to

the middle range. Cluster C connects the widest coils to
the middle range.

Transition graph
The primary data structure for representing coils and
constraints in outlier clustering is the transition graph. A
transition graph is associated with a particular campaign
type on a particular process. A transition graph for a
campaign type is constructed from all of the coils with
the same campaign type on a particular process.

In the transition graph, nodes represent coils. Nodes
are labeled with the priority of the coil: high or low. A
directed edge from node A to node B indicates that it
is feasible to sequence the coil represented by node A
directly before the coil represented by node B in some
campaign with respect to the sequencing constraints.
For all of the processes, these include width and
thickness constraints, feasibility with respect to assignable
lines (LA � LB � �), and overlaps of time windows
([ESTA, LFTA] � [ESTB, LFTB] � �). For the annealing
line, the temperature constraint is also checked. Edges
are included for only feasible transitions. Each edge is
labeled with a transition cost, which lies in the range
between 0.0 and 1.0. When this cost is 0.0, the two coils
represented by the adjacent nodes have exactly the same
properties, such as width and thickness. When the cost
is 1.0, the difference between the width and thickness
properties is the maximum allowable while still ensuring
feasibility. For example, when the widths of coils B and
C are 1,020 mm and 1,000 mm, respectively, and the
maximum widening and narrowing allowances are 20 mm
and 30 mm, respectively, the transition cost from B to C
with respect to width is 20/30 � 0.67, and that from C to
B is 20/20 � 1.0.

An example of a transition graph is illustrated in
Figure 11. The maximum widening and narrowing
allowances are the same as for the example above, and
the maximum allowable thickness difference is 0.4 mm.
The transition costs shown in the figure are the
average values of the costs with respect to width
and thickness.

Greedy clustering algorithm
A simple greedy algorithm is used to perform outlier
clustering. The algorithm works by first creating a priority
queue, where each entry in the queue contains the
following information about each coil: 1) the coil
identifier, 2) the scheduling priority of the coil, 3) whether
the entry is for an incoming or outgoing connection for
this coil, and 4) the number of possible incoming or
outgoing connections to other coils. The priority queue
sorts these entries in order of decreasing scheduling
priority, followed by increasing number of incoming or

Figure 11

Example of a transition graph for outlier clustering. High-priority

coils are represented by shaded nodes, low-priority coils by light

nodes. Edge weights represent transition costs with respect to se-

quencing constraints.

Width

T
h
ic

k
n
e
ss

950 980 1,000 1,020 1,050

0.5

0.8

1.2

AB

C

D

E

F

0.5

0.8

1.00.8

1.0

0.90.7

0.70.9

1.0

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

822

outgoing possible connections. For the transition graph
example given in Figure 11, the outlier data for the coils
represented in this graph, sorted in order of priority,
would be the following:

1. { A, high, incoming, 0 },
2. { F, high, outgoing, 0 },
3. { F, high, incoming, 1 },
4. { A, high, outgoing, 1 },
5. { E, high, incoming, 2 },
6. { E, high, outgoing, 3 },
7. { C, low, incoming, 2 },
8. { D, low, incoming, 2 },
9. { B, low, outgoing, 2 },

10. { C, low, outgoing, 2 },
11. { D, low, outgoing, 2 },
12. { B, low, incoming, 3 }.

The greedy clustering algorithm works by successively
removing entries from the priority queue; for each
entry, if there are any available incoming or outgoing
connections for the selected coil, it selects a connection
and records it in the cluster. The logic for selecting a
connection takes into account a number of factors, such
as attempting to minimize the edge cost of the selected
connection and maintaining a consistent direction for the
direction of the cluster toward or away from the middle-
range coils. The transition graph is then updated, which
involves removing edges from the graph representing
connections between coils which are no longer possible.
For example, if coil D is assigned to be an incoming
connection to coil B, it can no longer be an incoming
connection to coil E. Other edges are removed to prevent
cycles occurring in the transition graph, which would lead
to infeasible orderings in clusters. Propagation of time
windows is also performed within the graph as coils are
added to outlier clusters. This may also result in edges
being removed from the transition graph if they come to
represent connections that become infeasible with respect
to the time windows of the connecting coils. Note that
after propagation, the data stored in the priority queue
may no longer be current, since the number of possible
connections for a coil may have changed. We need to
recompute this data for any coils affected by propagation,
which may also result in the priority queue order being
changed.

The greedy algorithm could be extended to perform
a more rigorous depth-first backtracking search, but
in practice this was not found to be necessary for the
problems for which we used the clustering algorithm. In
the few cases in which clustering could not connect all
outlier coils to the middle range, a number of relaxations
could be attempted, such as relaxing some of the time

windows of the coils or bringing in substitutable coils
from other campaign types to help make connections.

5. Performance clustering
Performance clustering takes a set of coils on a process
and groups near-neighbor coils into clusters that can be
treated as indivisible units by other algorithms in the FLS
system. The performance-clustering algorithm uses the
transition graph to find the closest pair of coils and groups
them one by one, while putting more priority on clustering
such that the resulting transition graph of clusters has
more edges between clusters so that the loss of scheduling
flexibility is limited. The purposes of performance
clustering are to reduce the problem size for subsequent
algorithms, and to create clusters of at least the minimum
campaign size.

The input data for the performance clustering is

1. A set of coils of a particular campaign type.
2. A set of clusters created during outlier clustering.
3. The maximum cluster duration.
4. The maximum allowable edge cost for connecting coils

and/or clusters.

The output of performance clustering is a set of
clusters. The coils in a cluster are explicitly sequenced,
making it straightforward to determine the effective time
window of the cluster. Clusters created by previous
clustering steps are respected during performance clustering;
that is, all of the coils in an input cluster retain their
relative order in the output cluster.

The multiple-fragment clustering algorithm operates
by creating a transition graph in which nodes represent
clusters and directed edges between each pair of nodes
indicate that one can feasibly merge the adjacent clusters
into a single cluster. The algorithm steps are as follows:

1. Create a cluster for each input coil.
2. Create a node for each cluster (including input

clusters).
3. Create edges between clusters by evaluating coil

sequences, time windows, and maximum cluster size
constraints. Save the costs associated with feasible
edges in the priority queue.

4. Obtain the next edge (i, j) from the priority queue.
If there is no next edge, terminate.

5. If both i and j are contained in the same cluster,
discard this edge to avoid creating a cycle, and go to
Step 4.

6. Merge cluster i into cluster j.
7. Remove all of the out-edges of i and all of the in-

edges of j.
8. Determine the time window and the size of the newly

combined cluster {ij}.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

823

9. Re-evaluate all of the in-edges and out-edges of {ij},
remove infeasible edges, and update the priority
queue costs for feasible edges.

10. Go to Step 4.

Note that the multiple-fragment algorithm is a well-known
heuristic for the traveling salesperson problem (TSP), which
starts with each point as a fragment consisting of a single
point and patches the closest pairs of fragments one by
one without making any points of degree three or small
loops (see for example [11]).

As an example, consider an input with three coils A,
B, and C, and one two-coil cluster {DE}. After creating
clusters {A}, {B}, and {C}, suppose that evaluating all
pairs of edges between clusters results in the graph shown
in Figure 12(a). We choose the lowest-cost edge e5, and so
merge cluster C into cluster B. All of the in-edges of B
and the out-edges of C are removed. Suppose that after
re-evaluation we find that edge e3 changes its cost to 20.
The new graph is shown in Figure 12(b). We again choose
the lowest-cost edge e2 and form cluster {ADE}. Suppose
that on re-evaluation the remaining edges are not feasible;
we then terminate with the graph shown in Figure 12(c).

The cost of linking two clusters in performance
clustering is dynamically re-evaluated in the multiple-
fragment algorithm in order to take into account time
window flexibility, while the edge cost used in the outlier
clustering is static. The difference between the maximum
EST and the minimum EST over all coils in a cluster gives
the minimum amount of time the earliest available coil
must wait to be processed. This wait time, the ESTGap,
must be no greater than MaxESTGap for the process.
Similarly, the difference between the maximum LST and
the minimum LST over all jobs in a cluster, the LSTGap,
must be no greater than MaxLSTGap for the process. For
the purposes of edge scoring, we define the time window
component to be the ratio of the ESTGap and the
MaxESTGap. This quantity is added to the geometric
component described in the outlier clustering section to

obtain the edge score. A useful extension to the edge cost
function is to consider sequencing flexibility loss as well.
Recall that in the discussion above, when two clusters are
merged, the in-edges of the target cluster and the out-
edges of the source cluster are removed. Given two edges
e1 and e2 having the same cost, we can decide between
them on the basis of the extent to which committing each
edge would reduce the overall sequenceability of the set of
clusters. One measure of this is the sum of the out-degree
of the source and the in-degree of the target. We call this
measure the disruptiveness of the edge. The more accurate
but significantly more expensive measure is to actually
evaluate the feasible edges remaining after committing e1

and compare this to the feasible edges remaining after
committing e2 instead.

6. Campaign allocation
Campaign allocation is a task to create campaigns and
assign given clusters— outlier and performance—to the
campaigns for each process, taking into account the
constraints and preferences described in Section 2,
except for those for sequencing. The detailed sequencing
constraints are not considered in this task to reduce the
complexity of the problem and to keep it independent of
the processes. The campaign templates are not directly
considered, but they are represented as distances between
each pair of campaign types and reflected indirectly as
minimization of the total distance between allocated
campaigns. We assume that each cluster has the same
properties as a coil, and that Cp denotes a set of input
clusters for process p. The output of campaign allocation
is a partition of Cp into lines, a partition of the clusters
into campaigns for each line l, and the process timing �i

of each cluster i.
The algorithm used for campaign allocation is based

on the traveling salesperson problem with time windows
(TSPTW), and implementation ideas are taken from
previous studies in this area (see for example [12]). The
variation of the TSPTW discussed here is the multiple
TSPTW with color (campaign-type) constraints, where
“multiple” means that plural lines are considered at the
same time.

Solution representation for campaign allocation
Campaign allocation solutions are represented by sets of
disjoint clusters and orderings of clusters for each of the
lines l � 1, . . . ,  Lp . Given an ordering of clusters �l,
the output schedule is created as follows: The process
timing �i for the first cluster, i � �l(1), is calculated as
a continuation from the previous campaign, and that
for the other clusters, i � �l(j), j � 1, are calculated as
continuations from the previous clusters, �l(j � 1), within
the ordering. First, tentatively set �i to the finishing time

Figure 12

Multiple-fragment clustering algorithm.

e
8
: 20 e

8
: 20

e
6
: 22 e

6
: 22

e
2
: 18

e
3
: 10

e
1
: 17

e
5
: 8

e
4
: 14

e
2
: 18

e
3
: 20

e
7
: 48 ADE

CB

(a) (b) (c)

DE A

B C

DE A

CB

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

824

of the previous cluster. If the campaign types of the
previous and current clusters are different, the setup time
between them is added to �i. If �i 	 ESTi, �i is reset to
ESTi. If i is associated with chance terms and �i is not
contained in any of the chance terms, the closest chance
term after �i is found. Let t be the EST of the closest
chance term after �i. If t � �i � �, �i remains as it is;
otherwise �i is moved to t, where the threshold � is a
tuning parameter. The gaps created between clusters by
EST or chance terms are filled with other clusters during
the local search phase described later.

Construction of campaigns
For the initial solution for a process, the best solution is
selected from the solutions created by the nearest neighbor
method with randomization. In this method, campaigns
with random sizes are placed at the earliest available
positions, as illustrated in Figure 13. The type of a newly
placed campaign is selected with some randomization
based on the distance from campaigns which have already
been allocated. Note that the distances between campaigns
are defined to represent the campaign templates, and they
include many ties. The randomization is intended to break
ties randomly to create various solutions.

The size of the newly placed campaign is set to a
random value, with consideration of the minimum and
maximum sizes of the campaign. The size is also limited
by the next chance timing, as in the campaign labeled 4
in Figure 13. If the earliest position is associated with
a chance term, e.g., the position of campaign 6, the
associated chance campaign is placed without this
randomization to ensure that chances are handled
properly. Clusters with the same campaign type as the
newly placed campaign are selected and assigned to the
campaign in order of decreasing priority, followed by
increasing EST. To implement this procedure in linear
time to the number of the input clusters, for each cluster
i, the other clusters Cp\{i} are sorted in advance in
decreasing order of priority, in increasing order of EST,
and in decreasing order of the distance from i. The sorted
list is called the neighbor list. When clusters are assigned
to a new campaign, the first cluster is selected on the basis
of the neighbor list of the last cluster of the previous
campaign. The set of clusters to fill in the new campaign
are selected in the order of the neighbor list of the first
cluster. Finally, the best solution among the created
solutions is selected, and the resulting orderings
�1, . . . , � Lp  are passed to the local search described
in the next subsection.

Local search for campaign allocation
Local search applies two types of neighborhood
operations: 2-opt and path-move. The 2-opt operation
reverses a path of clusters within a campaign [Figure 14(a)],

and the path-move operation moves a cluster or a path of
campaigns within a line or across lines [Figure 14(b)]. The
latter shows a move operation for a path of campaigns
within a line. The path-move operation for a cluster
is used so that the due date violations of individual
clusters are minimized, and small gaps between clusters
are filled.

The local search in campaign allocation uses the
following framework: An active cluster list is initialized
with all of the input clusters. A base cluster is removed at
random from the list, and the neighborhood operations

Figure 13

Construction order of campaigns for a process with two lines. The

campaigns labeled 1 through 6 are created in that order. Campaign 6

is a chance campaign whose start timing is given as input, and the

size of campaign 4 is bounded accordingly.

Previous campaign

Previous campaign

Chance

campaign

1 6

32

Line 1

Line 2

Fixed

Fixed

4

5

Figure 14

(a) 2-opt operation; cluster 2 is the base, and cluster 4, EST
4
 � EST

2
,

is the partner. (b) Path-move operation for a path of campaigns within

a line. Path-moving across lines or for a cluster is also possible.

Path to be swapped by 2-opting

Resulting path after 2-opting

1 2 3 4 5

1 4 3 2 5

Path to be moved

Path after moving

1 6

1 6

2 3 4 5

2 3 45

(a)

(b)

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

825

with respect to the base are examined. That is, candidate
2-opt and path-move operations, which cut edges that
have the base as one of the ends are examined one by
one. While examining the neighborhood operations, the
first one that reduces the objective value is accepted,
and the remaining candidate neighborhoods are discarded.
After each application of the neighborhood operations
(that is, when the operations have reduced the objective
value), the clusters at both ends of the two cut edges in
2-opting or the four cut edges in path-moving are inserted
into the active cluster list. The local search continues until
the list becomes empty. The objective function is defined
on the basis of the objectives described in Section 2,
except for the sequencing constraint. The candidates for
a 2-opt with a base are created as follows: The partner
clusters for the base are first chosen from clusters within
the same campaign, whose ESTs are earlier than the base
and which are placed after the base. The candidate paths
to be reversed by 2-opting are the paths from the base
to each of the partners. Note that the rule for choosing
partners is designed to minimize tardiness by 2-opting.
The candidates for a path-move with a base are created as
follows: The partner clusters for the base are first chosen
as the base itself and the last clusters of the campaigns on
the same line placed after the base. The candidate paths
to be moved are the paths from the base to each of the
partners, that is, either the base itself, the latter half of
the campaign from the base, or consecutive campaigns.
The destinations considered for the candidate paths are
the transition points of the campaigns. As campaigns are
moved by local search, the distances between campaigns
are minimized, and the orderings of the campaigns are
gradually refined so that the campaign templates are
satisfied.

7. Sequencing
Finding the minimum cost ordering �k of coils Ck assigned
to each campaign k is called sequencing. The sequencing is
done for every campaign in the FLS system, and it is also
called from a schedule-editing program used by the human
experts. The FLS system creates a layout of campaigns
and orderings of coils for a one-month horizon, and the
schedule for a few days from the beginning is passed to
the human experts. The human experts finally fix the
orderings of the coils considering the situations changed
after running the FLS system, such as priority changes
and delays or failures in coil making in the preceding
processes. Therefore, the sequencing program should be
fast enough that a sequence of a few hundreds of coils
can be obtained within a minute. Note that the input for
sequencing is not clusters, but coils. Thus, the scalability
of the sequencing programs (sequencers) cannot be
ensured by the performance clustering described in
Section 5.

In this task, detailed sequencing constraints which
differ greatly for different processes should be taken into
account, and so different sequencers were implemented
for each of the processes. Although the detailed
constraints differ greatly for each process, they share the
same type of constraints regarding allowable differences of
width and thickness. For most of the campaign types on
every process, the overall profile of widths should be wide
to narrow in order to avoid edge marks, as described in
Section 2 [see Figure 3(b)]. For campaign types or
processes whose wide-to-narrow preference is strong, the
sequencing problem resembles the simple sorting problem;
for those whose wide-to-narrow preference is weak, it
resembles the traveling salesperson problem with time
windows (TSPTW). We selected the TSPTW as a base
model for all of the sequencers, and implemented process-
dependent constraints on top of the base program.

In the next two subsections, the base TSPTW program
and the proximity search method used in the base
program are described. The detailed description of the
CGL sequencer, which is regarded as the most difficult
process in the finishing lines in terms of sequencing,
appears in another report [13].

TSPTW-based sequencing
The TSPTW is a well-known problem for which various
heuristics have been proposed by many researchers [12].
In particular, the subject problem has a distinct structure
similar to that of the geometric TSP, which is known to
be easier than non-metric TSPs. Note that polynomial-
time approximation schemes are known for the former
problem, whereas no performance guarantee is possible
for the latter class of problems. Note also that for the
TSPTW, even finding a feasible solution is known to be
NP-hard, but in practice it is as easy as the TSP when the
time windows are wide. In the sequencing problem, the
TSP “cities” to be visited are coils each having a specific
width and thickness. In terms of both width and thickness,
distance and maximum difference between each pair of
coils are defined. By mapping the coils on a plane of
width and thickness as shown in Figures 10(a) and 10(b),
the sequencing can be seen as a problem to find the
minimum-cost path that visits all of the coils on the
plane. The time windows of the coils are relatively wide
compared to the campaign length, so that the geometric
characteristics are dominant in sequencing.

The algorithm used in the base program for sequencing
has the same structure as that used for campaign
allocation described in Section 6, consisting of a
construction heuristic and local search. The solution
representation is an ordering �k. The process timing �i of
each coil i is calculated by scanning �k from the beginning
to the end as �

�k(j) � max{EST
�k(j), �

�k(j�1) � l
�k(j�1)}. As

described in Section 2, there must be no gaps in process

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

826

timing between consecutive coils. The objective function
is defined to penalize such gaps so that gaps are filled
during the local search. The objective function is a linear
combination of penalties for gaps, tardiness, edge marks,
transition costs, and various process-dependent constraints.

The construction heuristic used for the sequencers is
the addition heuristic. In this heuristic, the first and the
last coils, �k(1) and �k( Ck), are determined first, and
the current solution is created from those coils. The coil
nearest to the current solution is then selected from among
the unvisited coils and inserted into the position in the
current solution which least increases the objective
value. This continues until all of the coils have been
added. This procedure can be efficiently implemented
using a priority queue to hold the nearest unvisited coil
from each of the coils in the current solution. The local
search used for the sequencers applies the 2-opt and
path-move operations in the same way as in campaign
allocation. The structure of the local search is also the
same as for campaign allocation; i.e., an active list of base
coils is used. A significant difference from the campaign
allocation is the use of the geometric characteristics, as
described in the next subsection.

Using the geometric structure
In the sequencers, queries for the nearest-neighbor coils
or for near-neighbor coils within some radius from a given
coil are used many times. For this purpose, we use a two-
dimensional k-d tree [14] where the dimensions represent
width and thickness. Before the k-d tree is created, the
dimensions of the input coils are normalized by the
average allowable differences of width and thickness so
that the rectangle of the allowable differences on the
width/thickness plane becomes a square. This rectangle
is called the transition rectangle (Figure 15).

When the allowable differences of width and thickness
are a and b, respectively, the search radius is set to
(r/2)�a 2 � b 2 for finding the near-neighbor coils. The
tuning parameter r is a radius factor used to limit the
search area. The coils found by the k-d tree inside the
circle are examined one by one to check whether a
transition from the search point (center of the circle)
is permissible, taking into account all of the properties.
Figure 16 shows the performance of the CGL sequencer
plotted against the radius factor. (A computer with a
1-GHz processor and a 512-MB memory was used.) The
figure shows that the implementation using the k-d
tree is efficient, and it is possible to meet the time
requirements by setting the search radius appropriately.

O(1)-time feasibility check in sequencing
In the construction and local search heuristics of the
sequencers, the objective function takes O(n) time to

evaluate the exact cost of a coil sequence, where n �  Ck
is the number of coils in the sequence. The same amount
of time is required even if a coil sequence is updated
only locally because a local change might affect the
whole sequence for some constraints such as tardiness,
temperature transitions, wide-to-narrow constraint, and so
on. For example, it must scan the sequence forward and
backward to compute the target furnace temperature for
the continuous annealing line. Though such a linear time
algorithm might seem practical, the reality is that the
objective function is evaluated within a loop of O(n) or
higher complexity, thus making the whole computational
cost more than quadratic, which is impractical.

To make the computation faster, we adopted a two-
stage evaluation: 1) In the first stage, the cost of the new
sequence is “estimated” in O(1) time. 2) If the estimated

Figure 15

Transition rectangle.

Width

T
h
ic

k
n
e
ss

b

a

2

1 a2 � b2

Search

point

Figure 16

Performance of the sequencer.

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

T
im

e

(s

)

Number of coils

k-d tree (radius factor � 2.0)

k-d tree (radius factor � 1.0)

k-d tree (radius factor � 0.5)

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

827

cost is lower than the cost of the original sequence, the
cost of the new sequence is then exactly evaluated using
O(n) time; otherwise, the new sequence is discarded
without actually evaluating the objective function. Note
that, for time windows, an O(1)-time feasibility check
algorithm which does not reject feasible solutions
is already known [15], whereas in our logic, which
considers various constraints, the first stage may reject
feasible solutions in rare cases. Most of the neighborhood
solutions examined in local search will be worse than the
current one, especially when the search is near a local
optimal solution. Therefore, rejecting obviously worse
solutions in the first stage can greatly speed up the
sequencers.

To estimate the new sequence in O(1) time, we
propagate information forward and backward through the
sequence and store additional information for each of the
coils. Given the changed parts of the sequence, the cost of
the sequence is estimated in the first stage by referring
only to the additional information around the changed
parts. As a result, we were able to make the sequencers
15 to 50 times faster without making the solution quality
worse.

8. Conclusions
A new solution for the finishing line scheduling (FLS)
problem in a major steel mill has been described. The
production schedules for finishing lines involve various
types of production campaigns because the number of
kinds of steel sheet products produced in the steel mill is
very large. Therefore, minimization of the setup cost and
time between campaigns is one of the main requirements
of the FLS problem. The problem also requires ensuring
the timing consistencies of coils across four processes.
Capacity planning tools are not applicable to this problem
because of these complex constraints. To the best of our
knowledge, there is no prior study in the literature that
addresses the FLS problem as of the time at which this
paper is being written.

Issues in designing the solution were the complexity
and size of the problem. In order to reduce the problem
complexity, we separated the problems of sequenceability
and timing consistency from campaign allocation by using
outlier clustering for sequenceability, and by using time
window propagation and upward and downward scheduling
for timing consistency. In order to reduce the problem size
for campaign allocation, we introduced performance
clustering. The scalability of the sequencers was ensured
by the radius factor and the O(1)-time feasibility check.
These approaches made it possible to scale our solution
up to large amounts of input data, which, in the case of
the subject steel mill, comes to 20 to 25 thousand coils,
while satisfying the one-hour limit for running time.

By using the FLS system, the steel mill can provide
the primary production scheduling system with accurate
due dates of coils for a one-month horizon. The systems
integration has just been completed, and the cost savings
have not yet been determined. The expected merits
yielded by the FLS system are the following: plan lead
time reduction, inventory reduction, workforce reduction,
capability for quick rescheduling, and accurate due date
quotation, where the plan lead time means the time
required from order input to production, the inventory
means the number of work-in-process (WIP) coils, and the
workforce is for sequencing and for the creation of chance
tables. The steel mill created rough production campaigns
of daily buckets for a one-month horizon, called a chance
table, to use for due date quotation or for workforce
planning. Since the FLS system can automatically create a
production schedule more precise than the chance table,
creation of the chance table itself is no longer necessary.
The FLS system has allowed the steel mill to create
schedules with a one-month horizon every day, and has
increased the potential decision frequency from monthly
to daily.

Acknowledgments
The authors would like to express sincere gratitude to Mr.
Yuhichi Shibata at IBM Business Consulting Services for
his valuable comments and suggestions on the manuscript.

References
1. H. Yasuda, H. Tokuyama, K. Tarui, Y. Tanimoto, and M.

Nagano, “Two-Stage Algorithm for Production Scheduling
of Hot Strip Mill,” Oper. Res. 32, 695–707 (1984).

2. H.-L. Fang and C.-H. Tsai, “A Genetic Algorithm
Approach to Hot Strip Mill Rolling Scheduling
Problems,” Proceedings of the International Conference on
Tools with Artificial Intelligence, IEEE, Piscataway, NJ,
1998, pp. 264 –271.

3. L. Lopez, M. W. Carter, and M. Gendreau, “The Hot
Strip Mill Production Scheduling Problem: A Tabu Search
Approach,” Eur. J. Oper. Res. 106, 317–335 (1998).

4. M. Numao and S. Morishita, “Co-operative Scheduling
and Its Application to Steelmaking Industries,” IEEE
Trans. Indust. Electron. 38, 150 –155 (1991).

5. H.-S. Lee, S. S. Murthy, S. W. Haider, and D. V. Morse,
“Primary Production Scheduling at Steelmaking
Industries,” IBM J. Res. & Dev. 40, 231–252 (1996).

6. S. N. Talukdar, L. Baerentzen, A. Gove, and P. S.
de Souza, “Asynchronous Teams: Cooperation Schemes
for Autonomous Agents,” J. Heuristics 4, 295–321 (1998).

7. S. N. Talukdar, P. S. de Souza, and S. Murthy,
“Organizations for Computer-Based Agents,” Int. J. Eng.
Intell. Syst. 1, 75– 87 (1993).

8. H. Gao, J. Zeng, and G. Sun, “Multi-Agent Approach for
Planning and Scheduling of Integrated Steel Processes,”
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2002, pp. 427– 432.

9. L. M. Wein and P. B. Chevalier, “A Broader View of the
Job-Shop Scheduling Problem,” Manage. Sci. 38, 1018 –
1033 (1992).

10. R. C. Leachman, J. Kang, and V. Lin, “Slim: Short Cycle
Time and Low Inventory in Manufacturing at Samsung

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

828

Electronics,” Interfaces 32, 61–77 (2002).
11. J. L. Bentley, “Fast Algorithms for Geometric Traveling

Salesman Problems,” ORSA J. Computing 4, 387– 411
(1992).

12. D. S. Johnson and L. A. McGeoch, “The Traveling
Salesman Problem: A Case Study,” Local Search in
Combinatorial Optimization, E. H. L. Aarts and J. K.
Lenstra, Eds., John Wiley and Sons, Inc., New York,
1997, pp. 215–310.

13. H. Okano, T. Morioka, and K. Yoda, “A Heuristic
Solution for the Continuous Galvanizing Line Scheduling
Problem in a Steel Mill,” Research Report RT-0478, 2002;
IBM Tokyo Research Laboratory, 1623-14 Shimo-tsuruma,
Yamato-shi, Kanagawa-ken 242-8502, Japan.

14. J. L. Bentley, “K-d Trees for Semidynamic Point Sets,”
Proceedings of the Sixth Annual ACM Symposium on
Computational Geometry, 1990, pp. 187–197.

15. G. A. P. Kindervater and M. W. Savelsbergh, “Vehicle

Combinatorial Optimization, E. H. L. Aarts and J. K.
Lenstra, Eds., John Wiley and Sons, Inc., New York,
1997, pp. 337–360.

Received October 15, 2003; accepted for publication May

Hiroyuki Okano IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (okanoh@jp.ibm.com). Mr.
Okano joined the IBM Tokyo Research Laboratory in 1990
after receiving B.S. (1988) and M.S. (1990) degrees in
information science from the Tokyo University of Agriculture
and Technology. After five years of research on user
interfaces and systems software, Mr. Okano joined the
operations research group and started work on combinatorial
optimization. Since then, he has been working on developing
solutions to several optimization problems in logistics and the
manufacturing industry. His research interests include
scheduling and optimization, local search techniques, and
stochastic sensitivity analysis.

Andrew J. Davenport IBM Research Division, IBM
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (davenport@us.ibm.com). Dr.
Davenport received his M.Sc. and Ph.D. degrees in computer
science from the University of Essex, United Kingdom. He
spent four years working as a Research Scientist in the
Enterprise Integration Laboratory at the University of
Toronto, Canada, where he focused on developing new
constraint programming technologies to solve complex
planning and scheduling problems in industry. In 1999 he
joined the IBM Research Division, where he is a Research
Staff Member in the Department of Mathematical Sciences.
He is currently working on projects applying constraint
programming, mathematical optimization, and artificial
intelligence technologies to a range of customer problems in
electronic commerce, production planning, and scheduling.

Mark Trumbo Dragonfly Consulting, 3-320 Chapel Street,
Ottawa, Ontario K1N 7Z3 Canada (marktrumbo@rogers.com).
Mr. Trumbo joined IBM in 1988 after receiving a B.S.E.E.
degree from the University of Washington; he joined the
Manufacturing Research Department at the IBM Thomas J.
Watson Research Center in 1990. After receiving an M.A.Sc.
degree from Simon Fraser University in 1994, Mr. Trumbo
returned to the IBM Research Division to concentrate on
planning and scheduling for the steel industry; over the course
of several years, he successfully implemented inventory
application, slab design, and cast design systems for a major
Japanese steel producer. Now an independent consultant, Mr.
Trumbo continues to collaborate closely with IBM Research
and IBM Global Services to provide solutions for customers
in the metals industry.

Chandra Reddy IBM Research Division, IBM Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (creddy@us.ibm.com). Dr. Reddy joined IBM in
1998 after receiving a Ph.D. degree in computer science from
Oregon State University. Since then, he has been working on
developing solutions to several optimization and scheduling
problems arising in the steel industry. Several of these
solutions have been successfully deployed and are in
production at two of the world�s leading steel makers. His
research prior to joining IBM focused on both theoretical and
practical aspects of machine learning of compact hierarchical
control knowledge for planning and problem solving. Dr.
Reddy�s research interests include scheduling and optimization,
machine learning for planning and classification, data mining,
and artificial intelligence.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 H. OKANO ET AL.

829

Routing: Handling Edge Exchanges,” Local Search in

28, 2004; Internet publication September 17, 2004

Kunikazu Yoda IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (yoda@jp.ibm.com). Mr. Yoda
received a B.S. degree in applied mathematics and physics
and an M.S. degree in applied systems science from Kyoto
University in 1994 and 1996, respectively. He joined the IBM
Research Division in 1996, initially working on data mining.
He was subsequently involved in a variety of projects
including network security, optimization, autonomic
computing, and grid computing. Mr. Yoda�s research interests
lie in the area of reliable distributed systems, fault-tolerant
distributed algorithms, and discrete algorithms in optimization
problems.

Masami Amano IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (amanom@jp.ibm.com). Mr.
Amano received B.S. and M.S. degrees in information science
from Kyoto University. He joined the IBM Research Division
in 2001 to work on optimization technologies such as
production scheduling and transportation scheduling. His
current interest is optimization for supply chain management
in the manufacturing industry.

H. OKANO ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

830

