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Journals and conference proceedings represent the dominant
mechanisms for reporting new biomedical results. The
unstructured nature of such publications makes it difficult

to utilize data mining or automated knowledge discovery
techniques. Annotation (or markup) of these unstructured
documents represents the first step in making these documents
machine-analyzable. Often, however, the use of similar (or
the same) labels for different entities and the use of different
labels for the same entity makes entity extraction difficult in
biomedical literature. In this paper we present a system called
BioAnnotator for identifying and classifying biological terms
in documents. BioAnnotator uses domain-based dictionary
lookup for recognizing known terms and a rule engine for
discovering new terms. We explain how the system uses a
biomedical dictionary to learn extraction patterns for the rule
engine and how it disambiguates biological terms that belong

to multiple semantic classes.

1. Introduction

Biomedical information is growing explosively, and

new and useful results are appearing daily in research
publications. Many of these publications are available
online—for example, in the PubMed MedLine database
[1]. However, automatic extraction of useful information
from these online sources remains a challenge because
these documents are unstructured and expressed in a
natural language form. To enable data mining and
knowledge discovery from such documents, this data must
be made available in a structured format. Because of the
very large amounts of data being generated, it is difficult
to have human curators extract all of the information and
present it in a form usable by data mining and knowledge
discovery tools.

Information extraction in the biomedical domain is a
challenging task. A major problem is that because of
inconsistent naming conventions, a term may be used to
denote more than one semantic class. For example, p53
is used to specify both a gene and a protein. Another
problem is that new biological terms are continuously

being created. Therefore, although several biomedical
dictionaries and ontologies have been developed, none
of them are up to date with the latest advances in the
domain.

We have developed a system called BioAnnotator [2]
for identifying biological terms in the scientific literature
and annotating the terms with their semantic classes.
BioAnnotator first identifies terms that are already known
by doing a lookup on various publicly available biomedical
dictionaries such as Unified Medical Language System
(UMLS) [3] and Locus Link [4]. It then attempts to
identify new and unknown terms by using character- and
word-level properties of biological terms in addition to
contextual clues.

In this paper, we discuss how BioAnnotator handles
some of the challenges of biomedical information
extraction. The next section cites related work, and
Section 3 gives an overview of BioAnnotator. Section 4
describes how we use UMLS to discover some extraction
patterns for the rule engine. Section 5 explains our
technique of determining the semantic class of ambiguous
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Figure 1

BioAnnotator: Component and flow details.

biological terms on the basis of the surrounding context.
Finally, Section 6 is the conclusion.

2. Related work

The task of extracting biological terms from scientific
documents can be considered similar to the named entity
task in the Message Understanding Conference (MUC)
evaluation exercises [5]. Many biomedical information
extraction methods thus represent adaptations of methods
originally proposed for MUC [6].

Biological term extraction systems can be broadly
divided into two types: those with a rule base and those
with a learning method. In [7], protein names are
identified in biological papers using hand-coded rules. A
rule-based approach combined with dictionary lookup for
term recognition and classification is given in [8]. In [9],
supervised learning methods based on hidden Markov
models are used. In [10], statistical approaches based on
word distributions in a large corpus are used to find
biological terms. In [11], an entropy-based approach
combined with morphological rules is used for finding
terms. An excellent overview of the field is given in [12].

BioAnnotator uses a rule engine as well as biomedical
dictionaries for identifying biological terms. Some of the
previous rule-based systems have tuned their rules for
identifying a small class of terms. For example, [7] has
created rules for finding only proteins. On the other hand,
BioAnnotator attempts to identify all possible biological
terms. Instead of simply using hand-coded rules as in
previous systems, we have also used UMLS to “learn”
some patterns for extracting biological terms. Moreover,
the system is designed so that the rules can easily be
modified to identify a different class of entities. In
contrast to most of the previous systems, BioAnnotator
has also been evaluated using a publicly available corpus.
As stated in [12], good evaluation of the existing systems
is one of the main challenges in this domain.
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Biological term classification involves assigning the
correct class to a term. In the case of polysemous words,
this becomes the word sense disambiguation problem. A
technique for term classification that uses statistical
classifiers and decision trees is given in [13]. An
unsupervised method that exploits the constraints
between different occurrences of a word in a
document is presented in [14]. In [15], a machine
learning approach is used, and [16] provides a good
introduction to word sense disambiguation techniques
and evaluates them. Unlike previous systems, BioAnnotator
utilizes a hybrid approach, by combining rule-based and
learning-based techniques, for term classification and
context disambiguation.

3. BioAnnotator overview

BioAnnotator takes raw documents and annotates the
biological terms present in them. This section gives a brief
overview of the system.

Term extraction

Figure 1 shows the overall flow of the BioAnnotator
document-annotation process. The system first uses a
shallow parser to identify noun phrases’ in the input
document. The identified phrases are examined by a term
extractor, which uses dictionaries and a rule engine to
discover biological terms. The term classifier is used

to determine the semantic classes of the biological

terms. The details of the classifier are presented in
Section 5.

Dictionaries
At present we are using three dictionaries:

Unified Medical Language System (UMLS) [3]: UMLS is
a consolidated repository of medical terms and their
relationships. Each biological concept in UMLS is
associated with semantic classes such as gene or genome
and amino acid, peptide, or protein.

e LocusLink [4]: This is our primary knowledge source for
gene names. It contains the list of genes of several
organisms such as human, fruit fly, rat, and cow.
GeneAlias: This is a locally compiled list of aliases

for some of the gene names that are not present in
LocusLink.

More dictionaries can be added by specifying them in a
configuration file. The term extractor first looks up the
entire noun phrase in the dictionaries. It then removes
stop words (words such as and, the, is, and was) from the
beginning and end of the phrase using a stop-word list.

! Although the parser can identify other types of phrases such as noun
prepositional phrases and verb groups, our evaluation shows that using only noun
phrases gives the best results.
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This list contains standard English stop words as well

as some additional words that occur frequently in the
documents of interest, such as abstracts, title, and pubmed.
The stripped phrase is then sent for lookup. If no match is
found for the phrase, each single word from the phrase is
looked up. Note that the order in which the dictionaries
are accessed is specified in the configuration file. It can
also be specified that a dictionary should be accessed only
after the rule engine fails.

Rule engine

We have seen that many biological concepts are missing
from UMLS and the other knowledge sources that we use.
For identifying these terms we use a rule engine. Though
the naming of biological concepts does not follow any
convention, many biological terms have some specific
patterns. The rules of the engine are encoded in a rule
base, which is an XML file containing regular expressions
specifying positive and negative examples of biological
term patterns. Let us illustrate these with some
examples *:

e Many biological terms contain uppercase letters,
numerical figures, and non-alphabetical characters (for
example, PTEN, c-N-ras, CD4-Positive T-Lymphocytes).
To identify these terms, we use the following two
regular expressions:

(Regul ar Expr essi on nane=
"Di gi t CapSpeci al Char")
[\ p{Upper}\d\ p{Punct}]
(/ Regul ar Expr essi on)

(Regul ar Expr essi on nane=
"Not Di gi t CapSpeci al Char")
("[\d\ p{Punct}] +%) "\ p{Upper}?
[\ p{Lower}—] +%)
[\ p{A pha}\. =1 +\.[\p{Al pha}\. -] +%)
(/ Regul ar Expr essi on)

The first regular expression matches any word that has
uppercase alphabets, numbers, or special characters. The
second regular expression can be used to filter out some
non-biological words such as 10,000, H.D.Smith, and
proper nouns.

e In the documents many biological concept names are
preceded or followed by keywords or signals that give
an indication of their class (for example, p16 tumor
suppressor gene, pancreatic alpha cells, proteins Racl and
Cdc42). We have formed regular expressions for such
signal words:

2 Our regular expressions follow the java.util.regex convention.
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(Regul ar Expr essi on nane="Cel | Si gnal ")
(?i)apoptoti(sCk)kell (s)?xlone(dx)?0
cul ture(ds) ?Cheuron(s)?strain(s)?
(I Regul ar Expr essi on)

(Regul ar Expr essi on nane="GeneSi gnal ")
(?i) mut at e(ds) ?d onco) ?gene(s) ?
(I Regul ar Expr essi on)

(Regul ar Expr essi on nane="Pr ot ei nSi gnal ")
(?i)am nolCam ne(s) ?Cenzyne(s)?
(ki nase(ds) ?0
I'i gand(s) ?Choti f(s) ?Cpeptid(elase)
pr ot ei n( sCase) ?[pr ot ease
(I Regul ar Expr essi on)

Biological concept names often contain prefixes and
suffixes that give an indication of their class [17]. For
example, many proteins end with ase (for example,
amylase). Therefore, the following regular expression is
useful:

(Regul ar Expr essi on nanme="Pr ot ei nSuf fi x")
. +ase$
(/ Regul ar Expr essi on)

As discussed in the next section, we try to learn these
prefixes and suffixes from UMLS. The input to the rule
engine is a noun phrase with all of the leading and trailing
stop words removed. The input phrase is matched with the
regular expressions. If there is no match, the individual
words of the phrase are matched with the regular
expressions. Each match is given a score based on the
importance of the regular expression (also specified in the
rule base). If the overall score is greater than a threshold
specified in the configuration file, it is considered to be a
biological term. For example, in the phrase protein-kinase
proto oncogene, protein-kinase is a protein signal and
oncogene is a gene signal. If the combined score of
the two matches is greater than the threshold, the
term is considered to be a biological term. (Note that
BioAnnotator outputs one annotation per term, even if
the subterms are themselves identified as biologically
relevant.)

Evaluation

We performed a formal evaluation of BioAnnotator term
extraction using the publicly available GENIA 1.1 corpus
[18]. This corpus contains abstracts of 670 research papers
as well as a list of the biological terms manually identified
in them by human experts.

The BioAnnotator results are compared with the
manual annotations. When a term from BioAnnotator is
matched with a human-annotated term, one can look for
an exact or approximate match. For an exact match, the
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Figure 2

Example trie for the prefixes dehydro and deoxy as well as the
words isobutyl and isoleucine.

annotations from BioAnnotator and experts should match
exactly. For an approximate match, one of the annotations
should be a substring of the other. Table 1 summarizes the
results, in which, for a system which finds m correct terms
and n incorrect terms, the precision is m/(m + n), and in
a document containing p biological terms, the recall would
be m/p. Note that we have also shown the F-score, which
is the harmonic mean of precision and recall. It is
calculated as (2 * Precision * Recall)/(Precision + Recall).
Further details about the evaluation are presented in [2].

4. Learning affixes from UMLS

Biological concept names often contain prefixes and
suffixes that give an indication of their class [17]. For
example, many proteins end with ase. Instead of simply
trying to determine the prefixes and suffixes manually
as in previous systems [7], we also try to “learn” these
patterns by mining UMLS. The biological concepts

in UMLS are grouped into semantic types such as
Amino Acid, Peptide or Protein, and Carbohydrates.
Our objective is to identify the common prefixes and
suffixes for several semantic types of interest. The
procedure is as follows:

e Preprocessing UMLS biological terms: We first extracted
all of the strings in the UMLS database which belonged
to a particular type. We then removed all punctuation
marks, numbers, etc. from the strings, leaving only the
normalized English. After processing, for example, the
string (I'R,2'S,3'R,4'S)-1-(2',3',4'-trihydroxycyclopent-1'-
yl)-1H-uracil was reduced to rsrs trihydroxycyclopent yl H
uracil. We divided this processed string further, into
individual words. We then removed all duplicate words,

Table 1 Precision and recall of the BioAnnotator.

Match type Precision Recall F-score
Approximate 0.8652 0.9425 0.9022
Exact 0.6029 0.6859 0.6401

Table 2 Prefixes and suffixes discovered for some UMLS

N

emantic types.

Semantic type Prefix Suffix
Amino Acid, acetyl, hydro, methyl ase, amide, nyl
Peptide, or
Protein

Biologically Active dihydro, hydro, iso ene, ium, rol
Substance
Carbohydrates deoxy, hydro, poly ethyl, mycin, oxy

Identifying prefixes: We stored this list of words in a trie
[19], which is a multiway tree structure useful for storing
strings over an alphabet. In a trie all strings sharing a
common stem or prefix hang off a common node. An
example trie for the prefixes dehydro and deoxy as well
as the words isobutyl and isoleucine is shown in Figure 2.
From this trie we find the nodes N, where the number
of leaf nodes in the subtree rooted at N is above a
threshold value. By listing the strings corresponding to
these nodes, we can determine the common prefixes for
the given semantic type. We chose the threshold so that
the ratio of the number of terms having the prefix to the
total number of terms for the given semantic type is
sufficiently high.

Identifying suffixes: Suffixes can be discovered using a
similar procedure by storing the strings in reverse order.
Removing common English patterns: Many of the prefixes
and suffixes that are determined from UMLS may be
common to all English words and not biologically
significant. Therefore, we determined the common
prefixes and suffixes of English words (determined from
a general English corpus) and filtered these from the
discovered biological patterns.

Using the above technique, we could identify common

prefixes and suffixes for several UMLS semantic types.

However, for some types such as Element, Ion, or Isotope,

no frequently occurring prefixes and suffixes were

discovered. In certain cases, we could group together

since we do not wish to identify prefixes and suffixes just
because they are part of very common biological terms.
After this preprocessing step, we were left with a unique
list of words.

S. MUKHERJEA ET AL.

concepts for related semantic types and identify patterns
for a more general concept (parent of the semantic types
in the UMLS hierarchy). An example is Biologically Active
Substance, which consists of semantic types such as
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Hormone and Enzyme. Table 2 shows some of the prefixes
and suffixes that were identified for three UMLS semantic
types by our technique. Terms having these prefixes and
suffixes in the biomedical literature can be identified as
biological terms by the rule engine. Moreover, if the
prefixes and suffixes are not present in more than one
semantic type, the engine can also classify them on the
basis of the UMLS Semantic Network. However, many
prefixes and suffixes are common among several semantic
types (for example, hydro).

Evaluation

We used the Genia corpus to evaluate our technique of
extracting prefixes and suffixes from UMLS. For each
discovered prefix and suffix for a semantic type, we
calculated the number of biological and nonbiological
terms having that prefix and suffix. If the discovered
prefix/suffix is biologically relevant, the number of
biological terms having that pattern will be significantly
higher than the number of nonbiological terms. On the
basis of this observation, we evaluate the effectiveness of
our pattern (prefix/suffix) extraction technique for a
semantic type as follows:

e Let m be the total number of biological terms having
the prefixes/suffixes discovered for a semantic type.

e Let n be the total number of nonbiological terms having
the prefixes/suffixes discovered for a semantic type.

e The precision of a pattern (prefix/suffix) for a semantic
type is then calculated as m/(m + n).

Table 3 shows the results for several semantic types. In
most cases the precision is more than 80%, indicating that
biological terms can be identified using the discovered
prefixes and suffixes with a high degree of accuracy.
However, the table also indicates that for certain semantic
types such as Plant, other techniques are needed to
improve the precision.

5. Term classification using context
disambiguation

BioAnnotator also attempts to determine the semantic
class for each identified biological term. If a term is
identified using UMLS, the UMLS semantic class is
associated with the term. If a term is identified using
LocusLink, its semantic class is Gene or Genome:
LocusLink. Gene names identified by GeneAlias are
classified similarly. If a phrase is identified using the rule
engine, we try to guess its class.

Unfortunately, the large number of polysemous words
in the biological domain makes it difficult to characterize
an identified entity. To disambiguate the admissible
possibilities, the standard approach is to rely on the
context in which the entity appears to provide additional
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Table 3 Precision of extracted patterns from UMLS
mining.

Semantic type Prefix Suffix

(%) (%)

Amino Acid, Peptide, or Protein 90.45 88.79
Biologically Active Substance 88.16 87.69
Carbohydrates 89.6 84.26
Organophosphorus Compound 88.10 85.70
Plant 74.6 83.17

clues to the intended meaning [16]. Often such
disambiguation is either based on rules or based on
machine learning approaches. However, the lack of
consistency in the nomenclature of biological terms makes
a purely rule-based approach impractical. Similarly, the
lack of a suitably large quantity of labeled data makes
machine-learning-based approaches harder to use. We
combine rule-based and learning-based approaches for
disambiguation in an attempt to remove the individual
drawbacks of each approach. The three classes we considered
for disambiguation are proteins, genes, and RNA.

Rule-based disambiguation

The rule engine identifies contextual and surface clues for
the protein and gene classes. For example, if a word of
the phrase matches the regular expressions for GeneSignal,
CellRoot, or ProteinSuffix, it can be classified respectively
as Gene, Cell, or Protein. If two words in the phrase give
different clues, the last matched regular expression
receives preference. For example, the phrase protein-kinase
proto oncogene has contextual clues for both protein and
gene. Since the last match is for GeneSignal, it can be
classified as a gene. (Note that if we identify a term
because it contains only words with special characters,
numbers, or common biological prefixes or suffixes, we
cannot guess its class.)

Learning-based disambiguation

Labeled data in the biological domain is hard to obtain.
Because manual labeling is laborious and time-consuming,
we use author-disambiguated occurrences of terms as
training instances, as in [15]. Authors often include
disambiguating information by preceding or following a
term with its class (for example, p53 gene). We collect all
of the words and phrases in the context of the term along
with positional information to form a context vector. We
exclude the locally disambiguating term (in this case
protein, gene, or RNA) from the context. The learning
approach we used was Naive Bayes. We found that,
compared with other learning techniques, Naive Bayes
allows easier scaling and significantly faster training and
classification. The learning algorithm learns the class
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Table 4 Performance of the learning-based disambiguator
on the locally disambiguated dataset.

Feature characteristics Accuracy (%)

Two-way  Three-way
Bag of words' 80.56 77.95
Positional information 85.83 83.16
Case-sensitive 86.37 85.47
Fixed window 76.07 65.77
Stop-word removal 84.54 82.93
Retain phrases (flexible window) 93.88 92.56
Retain phrases (fixed window) 71.79 70.57

A collection of words without their positional information.

assignment probabilities given different contexts. Given a
term, we collect all of the words or phrases near the term
along with their distance from the term. The method
assigns a class ¢, (i € 1, - -+, N), where N is the total
number of possible classes) to a term given a context
vector K (= {k,, - -+, k_}) such that the probability
P(c/K) is maximized. Using the Bayes rule,

P(K/c,)
P(c/K) = PK)

P(c,), (D

where P(c,) is the a priori probability of class c,. The a priori
probability of the evidence P(K) is a constant for all senses
and hence does not influence the maximization of P(c/K).
Also, because of the naive Bayes independence assumption
for the features, we can rewrite (1) as

P(c) x [] P(k/c), )

where these probabilities are computed from the training
data via maximum-likelihood estimation.

Persistence of sense

The constraints between different occurrences of a term
in a document can be usefully exploited. In [14] the
one-sense-per-discourse [20] hypothesis was applied to
disambiguation, exploiting the fact that the sense of a
term is highly consistent within a given document. In
biological abstracts, however, we found that even though
the document is short, a term can occur in multiple senses
within it. Significantly, though, we noted that within the
document, once the sense of a biological term is
established, the authors continue to use the term in

the same sense. A change in sense is often indicated

by explicit inclusion of a disambiguating term. We
looked at 20 MedLine abstracts and found that out of
113 occurrences of an entity following its earlier use

in the document, 68 retained their sense (60.18%)

and 34 of the occurrences were used in a different sense
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but were locally disambiguated. Only one occurrence had
a change of sense without being disambiguated locally.

Combined rule-based and learning-based
disambiguation

This disambiguation is based on combined evidence from
the different sources. For each term to be classified, the
overall evidence score B, is computed as

B, =aW

class

+ o, W +P., 3)

persistentsense i

where P, is the probability that the term belongs to sense i

as predicted by the learning-based classifier, and W, and

las:
persistentsense respectively are the weights assigned to tahse
evidence from the rule engine and persistent sense. At
present these weights are heuristically determined; in the
future, we plan to learn them automatically. The term
a, = 1 when the class determined by the rule engine is
the sense i, and 0 otherwise; «, = 1 when the persistent
sense is the sense i, and 0 otherwise. The sense with the

maximum overall evidence score is assigned to the term.

Evaluation

We evaluated the learning-based disambiguator on locally
disambiguated terms using tenfold cross-validation. Our
training and testing data was a set of 11,000 MedLine
abstracts obtained by querying the PubMed database using
a list of gene/protein names. Out of a total of 86,809
occurrences of gene/protein names specified in the list,
9,217 (10.62%) were author-disambiguated. The context
window size” is fixed at 8. In Table 4 we summarize the
results of the classification using the learning-based
disambiguator. The table shows that retaining phrases
improves performance greatly. Such phrases were marked
by BioAnnotator and were used as the context vector for
a term without splitting them into the component words.
We also noticed that not using the positional information
resulted in a steep drop in performance. The classification
accuracy in the two-way case of using two classes shows
better results than the three-way case of using all three
classes (proteins, genes, and RNA).

Evaluation of the combined evidence model using
locally disambiguated occurrences is unfair, since the
rules used in this model utilize this local disambiguation
information and would hence yield accuracy figures close
to 99%. In this case, the persistence of sense information
is also not useful, since the disambiguating word allows
classification without using persistence information. To
test the combined disambiguator, we prepared a test bed
of 19 hand-tagged documents containing 339 occurrences
of gene/protein/RNAs.

3 The term context window size refers to the number of words examined at either
side of the phrase being disambiguated.
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For the combined disambiguator, the weight W is set
to 2.0 to give the rule-based classifier highest priority. The
weight WG nense 18 €t t0 0.55. In Table 5, classification
results for different configurations of the disambiguator
are shown on the hand-tagged dataset. The performance
of the disambiguator based on learning only is rather poor
on this set compared with its performance on the earlier
locally disambiguated set. The possible reasons for the

drop could be the following:

e Because of the small size of the test set, it may not be
representative.

e The locally disambiguated training instances may not be
sufficient as examples for all cases.

e The system assigns senses to cases which are not truly
classifiable (e.g., tumor suppressor gene activity).

However, the use of persistence of sense and rules
enhances the performance greatly.

6. Conclusion

In this paper we have presented a biological annotation
system which uses a variety of knowledge sources along
with syntactic information, term properties, and contextual
clues to identify and classify known and new terms.
BioAnnotator attempts to mine biomedical knowledge
sources to learn extraction patterns in order to identify
new and unknown biological terms. We have also
developed a technique for context disambiguation. Our
evaluation shows that the system has good precision and
recall.

Systems such as BioAnnotator that extract and classify
terms from biomedical literature can be utilized to support
more complex text analysis tasks for researchers. We
believe that the semistructured documents that result from
BioAnnotator provide opportunities for additional types of
knowledge discovery from biomedical document corpuses.
For example, in the extraction of relations between
biological entities (for example, protein—protein
interactions), it is first necessary to recognize and classify
the entities taking part in the interactions [21]. Term
extraction is also useful for automatically updating
biomedical databases such as SwissProt [22], which are at
present largely hand-curated. We have also developed a
Web-based application for a semantic search of online
biomedical research publications based on the annotated
documents. A traditional keyword-based search retrieves
only publications that contain the specified keywords.
Thus, searching on genes will not retrieve a very relevant
document that discusses p53 (a type of gene). On the
other hand, since we have annotated the documents with
the semantic classes of the biological terms, our semantic
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Table 5 Performance of different configurations of the
disambiguator on the hand-tagged dataset.

Mode Accuracy (%)

Two-way Three-way

Learning-based 63.33 59.05
Learning-based with persistence of sense  69.33 65.08
Combined model (learning + rules + 81.00 76.19

persistence)

search application will be able to retrieve all of the

relevant documents. Another application of the

annotations produced by the BioAnnotator to discover the

biological significance of gene clusters is presented in [2].
Future work is planned along various lines:

e At present BioAnnotator learns only affixes of biological
terms from UMLS. Besides prefixes and suffixes,
biological concept names often contain root forms that
give an indication of their class. For example, many
cell names contain blast, cyt, or phore (for example,
leucocytes). We must extend our algorithm to learn these
root forms. We also must also develop techniques to
learn other types of patterns that can be used to identify
biological terms. For example, protein, cell, or gene
signals can be determined from an annotated corpus.

e Our present evaluation of the UMLS mining technique
determines only whether the discovered prefixes and
suffixes are biologically relevant. We must also evaluate
whether the discovered prefixes and suffixes are relevant
for a particular semantic type.

e Our current technique of context disambiguation is

restricted to proteins, genes, and RNA. We must extend

the algorithm so that it can disambiguate among other
semantic classes also. Moreover, since many of the

gene names in LocusLink are common English words

(for example, we, high, star), an effective method of

disambiguating between two words is required. We plan

to use the part of speech of the words for this purpose.

Acquiring labeled data for learning is extremely difficult

in this domain. In this work we have exploited the fact

that explicitly disambiguated terms are often present in
documents. In the future we plan to utilize metadata,
such as MeSH descriptors assigned manually to each

MedLine abstract, for disambiguation.
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