
Web
accessibility
technology
at the IBM
Tokyo Research
Laboratory

J. Maeda
K. Fukuda
H. Takagi

C. Asakawa

This paper provides an overview of Web accessibility
technologies developed at the IBM Tokyo Research
Laboratory. Home Page Reader provides an easy and
comfortable way for the blind to read Web pages. Transcoding
technology solves problems that arise when a voice browser,
such as Home Page Reader, reads Web pages. It also offers
more comfortable ways for visually impaired people and senior
citizens to read Web pages. Accessibility Designer, the main
focus of this paper, allows page designers to learn about
disabilities and to create more accessible and usable Web
pages at authoring time. It has two modes: a low-vision
mode and a blind mode. The low-vision mode simulates
the perception of people with low vision and detects
inaccessible parts in the target page. The blind mode
visualizes the usability of a voice browser for the target
page and detects accessibility and usability problems.
Accessibility Observer makes it easier for Web developers
to detect accessibility problems.

Introduction
Research activity on accessibility at the IBM Tokyo
Research Laboratory (TRL) started in 1985. Accessibility
means access to information for all—focusing on people
with disabilities and senior citizens. Ensuring accessibility
improves the quality of life for such people by removing
barriers that prevent them from taking part in many
important life activities.

The history of our accessibility research began with
studies on digital Braille for the blind. To solve problems
with Braille punched into paper, the Braille editing system
[1], the Braille information network [2], and the Braille
dictionary system were developed.

In the mid-1990s, the use of the Internet became
popular, and the World Wide Web became an essential
information resource for our society. Today, huge amounts
of information can be obtained through the Web, and the
Web permeates our social activities.

As this environment developed, we shifted our focus,
in 1996, to Internet accessibility technologies to enable
people with disabilities to enjoy the enormous benefit of
the Internet. The first success was achieved in 1997 with
Home Page Reader [3], described in the next section. It
provided an easy and comfortable way for the blind to
read Web pages. Since then, we have been doing research
mainly on the Web, extending our targets for content that
can be made accessible and for applications to which we
can apply our technologies in accordance with changes in
the social and technical environments. Furthermore, in the
last several years, our research area has been expanded; in
addition to accessibility, we added usability. We have also
expanded our target user group from the blind to also
include people with low vision. For the purposes of this
paper, we use the term low-vision people as a generic term
for people who have weakened vision—such as people
with amblyopia or color blindness, and senior citizens with

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

735

age-weakened eyesight— but who are still able to read
Web pages.

In this paper, we focus on three changes in the
environment:

1. Evolution of Web content: In the early stages of the
Web, pages were simple, and most of their content was
text that could easily be read by Home Page Reader.
As the Web evolves, however, Web pages are gradually
becoming more complicated, and their content has
more and more visual elements, such as images, that
can often cause accessibility problems. In addition,
most business sites have recently begun providing Web
pages dynamically on demand by using new server-side
technologies, such as JavaServer** Pages (JSP**) and
servlets. These technologies make it more difficult to
improve the accessibility of pages using conventional
accessibility tools.

2. Necessity of author-side technologies: Accessibility
technologies are not only for senior citizens and
people with disabilities. Changes in social and business
environments, such as the enactment in the United
States of Section 508 of the Rehabilitation Act
Amendment, call for site owners and page designers
to make their Web pages accessible.

3. Usability: Usability means ease of use. Ensuring
usability is necessary for comfortable Web access.
There exist several standardized accessibility guidelines,
such as the World Wide Web Consortium (W3C**)
Web Content Accessibility Guidelines (WCAG) [4],
Section 508 [5], and IBM Corporate Instruction 162 [6].
They describe certain levels of accessibility. However,
Web pages complying with these guidelines are not
always easy to read. For example, most of the
accessibility guidelines require that page designers
provide an ALT attribute for each of the images. This
provides an alternate text description of the image
for user agents that cannot display images. However,
providing an inappropriate ALT attribute makes the
situation worse, not better.

This paper provides an overview of Web accessibility
technologies invented and developed at TRL. The next
section discusses Home Page Reader for the blind,
followed by a section describing accessibility issues.
After that, we illustrate transcoding technology to address
accessibility issues of already-existing Web pages. We then
demonstrate Accessibility Designer, which is the main
focus of this paper. Accessibility Designer helps Web
designers and developers ensure both the usability of
Web pages and their accessibility. It is characterized
by providing low-vision simulation and blind usability
visualization features. The following section presents the

server-side Java** Observer (Accessibility Observer) for
improving the accessibility and usability of dynamically
produced Web pages, and the final section concludes the
paper.

Home Page Reader
To provide a way for blind people to read Web pages,
Home Page Reader (HPR) was developed at TRL
and released in Japan in 1997. HPR first linearizes a
Hypertext Markup Language (HTML) document into one-
dimensional raw text. It then reads out the resulting text
using a text-to-speech engine. HPR had several features
that enabled blind users to surf the Web, even if they
were novice users. HPR thus helped the Web become a
new but essential information resource for blind people.

Before voice browsers appeared, blind people had used
regular screen readers, which were unable to handle many
of the typical features of Web pages, such as hyperlinks
and two-dimensional information layouts. There were
several other voice browsers, such as pwWebSpeak** [7],
developed in the same time frame as HPR. Compared
with other voice browsers, the unique features of HPR
were the following:

● Use of a numeric keypad for Web access: In those days,
most blind people were novices with computers that
were based on a graphical user interfaces (GUI). It was
even difficult for blind people to use a keyboard without
training. HPR, therefore, was designed for use with the
numeric keypad. In more recent years, since most users
have experience using a keyboard in GUI environments,
the current version of HPR supports both the keyboard
and the numeric keypad.

● Reading of hyperlinks in a female voice and plain text
in a male voice: Blind people can easily find all of the
hyperlinks on the Web page by listening for the female
voice.

● Table navigation function [8]: This allows blind people to
manage the two-dimensional navigation of a table. By
using three features—a table cursor, a table pointer,
and a cell-jumping key— users can easily move and
understand the current cell position in the table. These
features also enable users to easily hear the headers
of both the column and the row of the current cell.

● Fast-forward key for quick reading: The HPR fast-forward
key allows users to skim Web pages quickly and easily.

HPR contains many other features, such as a history list
and form input support, and today it is still one of the
most powerful tools for blind people. HPR is available in
11 languages and supports blind people throughout the
world [9].

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

736

Accessibility issues
When Home Page Reader was first developed, Web pages
were not as complicated as they are now, and it was
relatively easy for blind people to access the Web.
However, the authoring trend is becoming much more
visual, and the Web is becoming even less accessible to
blind people. Several issues arise when blind people try to
access the Web nonvisually. One major issue is the time it
takes to find the main content of a page. A voice browser,
such as Home Page Reader, reads the Web content in the
order in which the tags appear in the HTML file, but there
are usually banners, indexes, and forms at the top of a
Web page, and blind users have to listen to that heading
information before the main content is read. Also, because
Web page layout is designed for intuitive recognition using
visual scanning, similar issues often interfere when blind
users try to find specific information on a page. Moreover,
page designers often forget to provide equivalent
alternatives for visual elements. Problems like these
make nonvisual Web access more difficult.

More complicated Web pages also create serious
problems for low-vision people. Typical issues for low-
vision people are the size and color of page elements,
such as text blocks and images. Most Web pages are
created by young people with perfect vision, and most of
those authors have trouble imagining the difficulties low-
vision people might experience while accessing pages
they have authored.

We developed two technologies to solve these
problems—transcoding technologies and Accessibility
Designer. The former is applied to already-existing Web
pages, while the latter is used at authoring time. They are
described in the next two sections.

Transcoding technology
To improve the readability of existing Web pages on the
client side, various attempts have been made, both for
blind users (see the section above) and low-vision users.
These attempts have included built-in Web browser
features, style sheet settings for the browser, augmented
browsers [10, 11], and screen magnifiers. They allow the
user to change the style of the Web page according to
his or her preference. However, it is difficult for these
approaches to implement functions more advanced than
just changing the “style” of the Web page.

On the other hand, some major Web sites, such as those
of the American Foundation for the Blind [12] and the British
Broadcasting Corporation [13], have their own mechanisms
for changing the style of their Web content. UsableNet [14]
is also offering a server-based customizing service for
Web content that creates text-only views of the content
of specific Web sites. A drawback of such server-side
approaches is that they require the client to be accustomed
to using and managing his or her preferences for each site.

To overcome this drawback, we adopted the transcoding
approach to provide functions that change not only the
style, but also the structure of a Web page. In this paper,
the term transcoding means a technology— based on an
intermediary processor interposed between Web servers
and the client�s browser—that can transform Web content
according to a user�s predefined preferences.

Figure 1 shows the basic architecture of the transcoding
system. The system consists of three components: a
transcoding engine, a user profile database, and an
annotation database. The transcoding engine is the main
component that transcodes a target HTML document. The
user profile database stores the profiles of registered
users. A user profile specifies the favorite settings of
a user when reading Web pages. Settings include font
sizes and text colors, as described below. The annotation
database stores the annotations of Web pages that will be
used with the transcoding process. Each annotation set
for a Web page contains information on positions of the
visually fragmented groups in the page, their roles (e.g.,
main content), and the relative importance of the groups.
We use the IBM WebSphere* Transcoding Publisher
(WTP) [15], and our transcoding system is a plug-in for
WTP.

When a user sends a request to the system for a Web
page, the transcoding system requests and receives the
Web page on behalf of the user. The annotation of
the page and the user profile are then retrieved. The
transcoding engine transcodes the Web page according
to the annotations and user profile, and then sends the
transcoded Web page to the user. The algorithms of
annotation-based transcoding are detailed in [16 –20].

For blind users, the transcoding system provides the
following four functions [21]:

Basic architecture of the transcoding system.

Figure 1

Annotation

database

User

profile

database

Transcoding

engine

(HTTP)

(User

profile)

(Page

info)

HyperText Transfer

Protocol

(HTTP)

Transcoding systemClients Web servers

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

737

1. Adding a skip to the main content link: This function
dynamically inserts a skip to the main content link at
the top of the target page by specifying the beginning
position of the main content on the basis of heuristic
rules. By following this link, users can immediately
jump to the main content of the page without reading
distracting menus, advertisements, etc.

2. Simplification of the Web page: This function obtains
other HTML documents from the same Web site as the
target Web page in order to calculate the difference
between those documents and the target document. By
considering the differences, the common parts of the
target page, which are specified by a template in most
cases, can be removed. When users move to a new
document, they access only newly updated information,
without the clutter of repeated material.

3. Reordering the page content: According to the
annotations of the target Web page, the page can be
divided into visually fragmented groups. Each group
has its own role (e.g., main content, header, and
advertisement), and importance. In most cases, the
groups in the original page are not arranged according
to their importance. The reordering function sorts them
in descending order of their importance values supplied
by the annotation and inserts a table of contents—with
links to them—in the reordered page. This mechanism
is of great benefit to nonvisual users, because they can
read the most important groups first and can jump
arbitrarily from group to group.

4. Adding ALT attributes to image links: This function
automatically inserts ALT attributes, attempting to fill
in the missing ALT attributes for image links. It does
this by extracting the title of the destination page
linked to the image, and provides this information
about the link to the user.

Users can select which functions to invoke, and their
selections are stored in their user profile. They can also
select their preferences, also stored in the user profile
database.

For low-vision people, five functions are provided:

1. Changing text size.
2. Changing line height: The larger the fonts and lines,

the easier it is for users to read the page. However,
enlarging fonts and lines also means that the amount of
visible information in the browser window decreases.
Users can choose their preferred settings.

3. Enlarging images: Two modes can be selected. In the
static mode, all images are enlarged when the page
is displayed. In the dynamic mode, only an image
specified by using the mouse cursor will be enlarged.

4. Changing foreground and background colors: This
function changes foreground and background colors

to ensure sufficient contrast between them. Users can
also choose from predefined color combinations.

5. Creating a digest of the page (WebDigest) [22, 23]: As the
fonts and lines in a Web page become larger, a larger
area is required to display all of the page content. To
view the whole page, the user must awkwardly scroll
through it. The WebDigest function reduces and
simplifies page content while preserving the overall
layout of the page. The digested page consists of
several visually fragmented groups, each specified by an
annotation. Users can navigate through the groups in
the digested page with a keyboard or a mouse. When
they want to read the full content of a group, they can
simply press the enter key or click the mouse, and the
complete group content pops up with the original page
layout.

Our accessibility transcoding system was publicly
evaluated by low-vision users, including senior citizens,
through a Lycos** Japan site in 2001. It was also tested by
blind students at a school for the blind in Japan, funded
by the Telecommunications Advancement Organization of
Japan (2002–2004). It was very favorably received by the
users. However, we found it difficult to broadly deploy
such a transcoding approach because of legal constraints,
such as copyright issues. This approach is suitable for
closed services to specific Web sites.

Accessibility Designer
The technologies introduced in the previous section deal
with existing Web pages. They are required because
numerous Web pages have already been created. On
the other hand, it would be much more effective if page
designers would ensure the accessibility of their pages
at the time of authoring. Recent changes in the social
environment, such as the implementation of Section 508 in
2001, motivate page designers to consider the accessibility
of their pages.

Until now, programs called accessibility checkers have
been used as author-side tools to evaluate the accessibility
of Web pages. They analyze an HTML document and
check whether the document is compliant with accessibility
guidelines, e.g., Web Content Accessibility Guidelines.
Such tools can be used as a first step of accessibility,
but their effects are very limited because accessibility
guidelines do not consider usability very well, and
analyzing HTML tags and attributes is insufficient to
evaluate the accessibility and usability of the Web page
as displayed by a Web browser.

For Web authors, one of the most effective ways to
learn about Web accessibility is to experience how
disabled people access the Web by themselves using
assistive technology software, such as Home Page Reader,
JAWS** [24], or ZoomText** [25]. However, it is not very

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

738

easy for nondisabled authors to have experiences similar
to those of people with disabilities, even if they use such
assistive applications. For example, it would take a lot of
time for sighted users to learn how to access the Web
nonvisually using applications like Home Page Reader,
because it is designed for the needs and preferences of
blind users. Another approach would be to observe the
real environments that disabled people use to access the
Web with their assistive technology software. It would
also be difficult for authors to have such experiences.

To overcome these difficulties, we developed Accessibility
Designer, a disability simulator for Web authors to use
as they work on their own computers at authoring time.
It has functions to simulate two disabilities, low vision
and blindness, and it can automatically detect usability
problems.

Low-vision mode
The low-vision mode evaluates the accessibility and
usability of Web pages for low-vision people. One of the
notable features of this mode is its presentation-based
approach; that is, it simulates the way that low-vision
people see a Web page and evaluates accessibility and
usability on the basis of the simulation.

Without this tool, page designers cannot avoid using
accessibility checkers that analyze HTML tags and
attributes. But applying such text-based approaches to the
evaluation of accessibility for low-vision people has little
effect, because HTML analysis has very limited capability
to examine the appearance of the rendered Web page. For
example, tools adopting the text-based approach can detect
images without their ALT attributes, but they cannot
detect characters whose foreground and background
colors do not have enough contrast.

There are several low-vision simulators. Vischeck [26]
is a Web application that simulates color-blind vision.
Xproof [27] is an application program that also simulates
color blindness. However, these applications simulate only
low vision; they cannot automatically detect accessibility
problems from simulated Web pages or images. For
example, Vischeck has a function for color-blind image
correction, but it cannot be used to correct HTML
documents. Therefore, checking the accessibility of a
number of Web pages using only these simulators is an
exhausting task for page designers. Nor can these tools
be used to analyze the total accessibility of a Web site.

Functions
The basic idea of the low-vision mode of Accessibility
Designer is to make an image by rendering a Web page,
to simulate the view of low-vision people by using image
transformation techniques, and to detect inaccessible parts
of the page by applying image analysis techniques. Figure 2
shows a block diagram of the main functions of this

mode. As can be seen in the figure, this mode consists
of five parts: the low-vision model, and the rendering,
simulation, image analysis, and result presentation
functions.

The low-vision model is a database that stores image
transformation techniques and their parameters for
simulating various types of low vision. Examples of
the stored data are shown in Table 1. These types and
parameters can be arbitrarily combined, though none
of the image transformation techniques are new.

The rendering function renders an HTML document to
create what we call an original image. In the rendering
process, the correspondences between HTML elements
and their positions in the image are calculated and stored.
This function can be provided by well-known technologies,
such as the rendering engine of a Web browser.

The simulation function applies image transformation
techniques to the original image according to designated
low-vision types and parameters. The output image of
the transformation is called the simulated image.

The image analysis function analyzes both the original
image and the simulated image to detect characters that
cannot be read by people with the designated vision
problems. There are two necessary conditions for a
character to be judged as readable: Its foreground and
background colors must be distinguishable from each
other, and its shape must be retained even after the
simulation. To determine whether a character satisfies
these conditions, the following steps are followed.

First, for each color appearing in the original image,
a binary image is produced in which that color becomes
the foreground and all of the other colors become the
background. A connected component-labeling technique is
applied to the binary image to extract all of the connected

Main functions of the low-vision mode of Accessibility Designer.

Figure 2

Low-

vision

model

Simulation

Result

presentation

Image

analysis

Rendering

HTML document

Original image

Position

of HTML

elements

Inaccessible

position

Image

transformation

method

Low-vision types

Results

User of the tool

Original

image
Simulated

image

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

739

components. The connected components are screened to
extract components that can be regarded as characters. A
thinning algorithm is applied to each character to extract
its shape, and the shape is stored. To describe the shape
of a character, the crossing numbers of pixels in the
connected component are used.

For each character in the original image, the connected
component at the same position in the simulated image is
then extracted. Foreground and background colors of the
connected component are tested to determine whether
they can be distinguished from each other. If there is no
color problem, the shape of the connected component is
calculated in the same manner as in the original image.
The shapes of the character in the original image and of
the corresponding connected component in the simulated
image are compared in order to judge whether the shape
of the character is retained after the simulation.

The result presentation function in Figure 2 acquires
the positions of the unreadable characters from the image
analysis function. It also acquires the correspondences
between the HTML elements and their positions from the
rendering function. Using this information, this function
specifies the HTML elements that contain unreadable
characters and shows them to the user (a Web page
designer).

User interface
Figure 3 presents the user interface for the low-vision
mode of Accessibility Designer, which is implemented
using the Standard Widget Toolkit. Most of its
components are used in common with the blind mode.
In the upper left area is an embedded Web browser,
not an image, so that the user can actually navigate
the Web. This part is common to both the low-vision
and the blind modes.

The upper right part is peculiar to this mode. There are
two buttons at the top of this area, the simulation button
and the setting button. The setting button opens the setting
panel with the low-vision types that can be chosen. The
current prototype can deal with three types, each of which
has its own parameters:

1. Weak eyesight. Parameter: quality of eyesight (20/20 to
20/200).

2. Color blindness. Parameter: type of color blindness
(protan, the abnormality of red-sensitive cone pigment;
deutan, the abnormality of green-sensitive cone
pigment; or tritan, the abnormality of blue-sensitive
cone pigment.)

3. Degradation of crystalline lens transparency. Parameter:
age bracket (20s to 60s).

These types can be arbitrarily combined by using check
boxes. When the settings have been chosen, the
appropriate simulation functions are immediately invoked.
The simulate button also invokes the simulation and
follow-on functions with the current settings that are
displayed between the simulate button and the setting
button. The simulated image of the page is displayed
under these buttons.

When problems are detected as a result of the image
analysis function, a tree view of the categorized problems
is displayed in the lower left area (Figure 3). The user can
select the category of problems to be listed in the line
view at the bottom center. The line view presents the
problems of the selected category line by line. Each line
consists of a type, description, severity, position, area,
and foreground and background colors (optional) for a
problem. By selecting lines in this view, the positions of
the corresponding problems are displayed in the simulated
image. The lower right area provides overall page rating
for accessibility and usability for low-vision people. This
area also presents a problem map that visualizes the
distribution of all problems in the page.

Examples
Figure 4 shows two examples of the simulation of weak
eyesight. Figure 4(a) is a sample page in which simple
characters and complex characters are lined up in two
columns. The font size of the characters in the first row is
5 points, and the font size increases by 5 points from line
to line.

Figure 4(b) shows a result of a simulation of the view of
a person with 20/40 eyesight who is looking at a 19-inch

Table 1 Examples of data records for the low-vision model.

Low-vision type Image transformation technique Parameters

Weak vision Convolution of a cylindrical function
that represents a blur

Radius of the cylinder

Degradation of crystalline
lens transparency

Degradation of luminance values of
colors according to their wavelength

Degraded luminance values

Color blindness Substitution of a color for a different
color on the same “confusion line”

Type of color blindness

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

740

Figure 4

Simulations of weak eyesight: (a) Original page; (b) eyesight 20/40; (c) eyesight 20/200.

(a) (b) (c)

Figure 3

User interface for the low-vision mode of Accessibility Designer.

Tree view

of problems

Original page

Overall rating

and problem map

Setting button

Simulated image

Simulation button

Line view

of problems

Corresponding

position and line

of a problem

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

741

monitor with the resolution set to 1280 � 1024 pixels, at
a viewing distance of 30 cm. The characters judged to be
hard to read are surrounded by rectangles. Figure 4(c)
presents a simulation of the view of a person with 20/200
eyesight under the same conditions. The results show that
the low-vision mode of Accessibility Designer can simulate
the fact that the weaker the eyesight, the wider the range
of characters that become difficult to read, and that, as
the characters become smaller and more complex, they
become harder to read.

Figure 5 demonstrates an experiment on color
blindness. Figure 5(a) is a sample page. In the table, the
foreground colors vary from black to white by way of
green and the background colors vary from black to white
by way of red. Figure 5(b) is a simulated image of the
view of color blindness (deutan). Rectangles indicate the

characters whose foreground and background colors are
judged to be hard to distinguish from each other. The
estimation is based on an algorithm from “Techniques for
accessibility evaluation and repair tools” [28]. Characters
at the upper left corner (black characters on black
background) and lower right corner (white characters on
white background) could not be recognized as characters
in the first step of the image analysis function, and
therefore were not processed further.

Advantages
Table 2 illustrates a comparison between our presentation-
based approach and conventional text-based approaches as
accessibility- and usability-checking tools for low-vision
people. First, our approach can check visual attributes,
such as colors and font sizes, but text-based approaches
cannot. For example, one of the most popular accessibility
checkers, Bobby** [29], cannot check colors. It therefore
extracts all of the lines from an HTML document that
include images (�IMG� tags) and color-related attributes,
and requires the authors to check them manually.

Second, the presentation-based approach can check any
content displayed by a Web browser, regardless of the
source (for instance, even the characters within an image),
but the text-based approach can check only what is written
in an HTML document.

Third, the user of our approach can see simulated
images of various types of low-vision problems and can
learn how easy or difficult they are to read by people with
the selected type of visual impairment. This provides a
good experiential education for page designers.

Figure 5

Simulation of color blindness: (a) Original page; (b) deutan color blindness.

(a) (b)

Table 2 Comparison of our presentation-based approach
and conventional text-based approaches.

Presentation-
based approach

Text-based
approaches

Ability to check visual
attributes

Yes No

Ability to check non-HTML
content

Yes No

Education and training for the
authors

Yes No

Applicability to non-Web
media

Yes No

Ability to check nonvisual
attributes

No Yes

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

742

In addition, and digressing a little from the Web, our
presentation-based approach can be applied to non-Web
media, such as presentation materials, portable data
format (PDF) files, and scanned images from printed
documents, as long as they can be converted into digital
images. On the other hand, the presentation-based
approach cannot check nonvisual attributes, such as the
ALT attributes of images.

As described above, our presentation-based approach
is much more powerful than conventional text-based
approaches in checking accessibility and usability for low-
vision people. However, it is basically unable to check
nonvisual attributes. Therefore, complementary use of
a presentation-based approach (the low-vision mode
of Accessibility Designer) and a text-based approach
(the blind mode described below) is very effective in
comprehensively evaluating the accessibility and usability
of a Web page.

Blind mode
One of the most crucial factors in improving usability for
the blind is navigability. Sighted users can easily recognize
the main content in a page, since it is often located in the
center of the page, with a white background, a large font,
and a large image as visual cues indicating important
information. In the voice format, there are no visual cues,
such as font sizes, colors, or images. Only text information
can be extracted from pages, and they have a serialized
format without any visual layout information. Blind users
need to access such serialized formats and need to explore
within the serial structure without using any pointing
devices, only keyboards. This severe issue is well known
as the navigability problem for nonvisual Web access.

To check these Web issues, accessibility guidelines have
recommended that sighted Web designers access target
pages by using voice browsers. However, they have been
facing essential difficulties with this method. One is the
time it takes to read a Web page out loud, often several
minutes per page. Another is the difference in hearing
ability between the sighted and the blind. Since blind users
are always being exposed to speech information rendered
by voice browsers, their listening ability on average is
much more developed than that of sighted users. In
addition, voice browser have specialized interfaces for
nonvisual operation, so it is very hard to learn how to use
them effectively.

Another way to check navigability is to use accessibility
checkers. However, in spite of the severity of the
navigability issue, most of the accessibility checking tools
have no function for checking that aspect. The WAVE
[30, 31] has a function to indicate the reading order of
each text block in a page by using small numbered labels
on each text block. This makes it easy for Web designers
to check the reading order of the text blocks. However,

they cannot check the usability more realistically—for
example, by being able to answer questions such as How
long does it take from the top to the main content? or How
effective are the skip-navigation links? In addition, the
numbering method is not intuitive for the sighted.

Therefore, our Accessibility Designer has a function
to visualize the reaching time for each element in a page.
Figure 6 presents the user interface for the blind mode
of Accessibility Designer. When a user of Accessibility
Designer selects the blind mode and presses the visualize
button, a simulated view is displayed in the upper right
area. In this simulation, we are focusing especially on the
issues of navigation ability.

Figure 7 shows an example of this visualization function.
We call this function blind usability visualization. It shows
the times required to reach each element in a page with
standard voice Web browsers. It calculates the times from
the top of a page to each element when a user uses voice
output, then visualizes these times by using graduated
shading. In the figure, the left side shows a page without
any intrapage links, such as the skip-to-main-content link
and the page index links. The main content (top story)
area is shaded black, showing that it will take a long
time to arrive at this area. The right side of the screen
shows an improved page with a skip-to-main-content link.
The main content area is shaded light gray, showing how
blind users can now access the top story easily. These
two pages have the same appearance when rendered by
standard browsers such as Microsoft Internet Explorer,
but they are significantly different from the blind usability
point of view. The blind mode allows its users, e.g., Web
designers and site administrators, to evaluate the
navigability of their pages at a glance. The blind mode of
Accessibility Designer creates this visualization on the
basis of text output from a voice browser and page
structure analysis, as follows:

1. Create a text rendering based on a voice Web browser
engine. Text elements are associated with the document
object model nodes.

2. Analyze the page structure, such as intrapage links,
heading tags, and list tags.

3. Calculate the reaching times on the basis of the user
operation model (type of voice browser, heading
navigation overhead, etc.).

4. Assign shades to each text element and insert information
about cascading style sheets (CSS) into the HTML file.

5. Convert each image into text with its ALT text.
6. Visualize accessibility-related tags (table headers,

heading tags, form elements, intrapage links, etc.).

We are currently evaluating the effectiveness of these
blind usability visualization functions by using them for

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

743

Figure 7

Example of blind usability visualization.

More than 45 seconds to get to the main content. Only 3 seconds to get to the main content.

Insert “skip-to main” link

Reaching time color:

0 30 60 90

Figure 6

User interface for the blind mode of Accessibility Designer.

Problem list

Browser view

Overall rating

Visualized text

structure

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

744

practical page renovation tasks. We are also conducting
some usability testing.

Accessibility Observer
Server-side Java, such as servlets and JSP, are becoming
widely used for Web application platforms. These
technologies enable developers to provide various
applications through the Web and to extend the role of
the Web from being an information infrastructure to being
a social infrastructure. Such applications are widely used,
but many of them are not accessible for people with
disabilities and senior citizens. If they were to become
accessible, it would be extremely useful and valuable for
these groups of people.

However, the improvement of accessibility for these
server-side Web applications by using existing accessibility
checkers is quite difficult. For server-side Java, each
HTML document is generated from a Java program called
a Java servlet. If an accessibility checker— one that
provides problem reports based on the line numbers of

the HTML document— detects an inaccessible part in the
generated HTML, Web developers have to search through
the Java code to find the corresponding positions where
the HTML section was generated.

For an application using JSP, the matter becomes even
more complicated. JSP allows a Web developer to easily
create a Web application by separating the application
logic from its design. Therefore, a typical JSP page
integrates several modules, such as JSP tag libraries
or JSP includes, for the sake of fast development
and easy maintenance of the system. For example,
developers can break a Web page down into reusable
parts—such as header.jspf, footer.jspf, or
navigation.jspf—and they can then assemble
Web pages using these parts as JSP includes. Moreover,
there are some frameworks for making templates and
assembling presentation pages from component parts
[32–34]. In these frameworks, many JSP-based pages use
more than ten components. Before the actual execution of
the JSP, it has to be compiled into a servlet. Thus, it is

Figure 8

Accessibility Observer system architecture.

Compile

Foo1.java

Foo2.java

Stack
trace

HTML DOM
tree

Servlet–HTML
map

Parse HTML
document

JSP Servlet HTML
Execute

JavaBeans Tag libraries

Retrieve the
stack trace
when a text
block is output

Control and dataflow analysis

<HTML>
 <HEAD> out.write ("<HTML> WrWn<HEAD>");

<% ThinkPad
tp=new ThinkPad();%> ThinkPad tp=new ThinkPad();

_jspx_th_logic_write_1.setName("price");
...
_jspx_th_logic_write_1.doStartTag();
...

JSP/servlet map

output=value.toString ();

Write (pc, output)

value=...

Dataflow graph

If (value!=NULL)

output=value.to.String (); return

Control flow graph

<bean:write
name="price"... />

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

745

difficult for developers to find the generating position of
the inaccessible part.

To address this situation, Accessibility Observer for
server-side Java was developed at TRL. Before execution,
Accessibility Observer prepares a mapping between the
JSP and the compiled servlet. At runtime, Accessibility
Observer observes the JSP/servlet writer and creates a
mapping between fragments of generated HTML and the
corresponding code positions of the servlet (Figure 8).

By using these mappings, Accessibility Observer narrows
the search range down to a point. For instance, if a user
indicates the position in an HTML document (the red
sections in Figure 9), Accessibility Observer traces it
back to the servlet and back to the related JSP or taglibs.
Analysis of control flow and dataflow can also be used to
narrow the range of corresponding modules and source code.

Although the development of Accessibility Observer was
originally motivated by accessibility needs, it can also be
used as a general support tool to analyze, debug, or
modify Java-based dynamic Web content. It allows Web
developers to easily modify the attributes of the objective
element or to find the position of the source code that
creates the data in a particular table.

Figure 10 shows an example using Accessibility
Observer. This sample client has a browser view, an
HTML source code view, and a Java information view. In
the browser view, users can click any position to highlight
it, and the corresponding position of the HTML is also

highlighted in the HTML source code view on the right
side. At the same time, in the Java information view, the
designated JSP/servlet information, such as the package
name, file name, line number, and so on, appears. Users
can click on some part of the HTML to locate the
corresponding position in the browser view while also
seeing the associated JSP/servlet information.

In this way, users can easily understand the correlations
among the browser view, the HTML, and the Java source
code. This helps developers to analyze, debug, and modify
Java-based dynamic Web content.

Conclusions
This paper presents an overview of accessibility
technologies developed at the IBM Tokyo Research
Laboratory. Home Page Reader and accessibility
transcoding technology were reviewed, and Accessibility
Designer was described. Accessibility Designer makes it
possible for page designers to learn about disabilities,
because it demonstrates the accessibility issues faced by
blind and low-vision people. With it, designers can create
much more accessible and usable Web pages at the time
of authoring. Accessibility Observer makes it easier for
Web developers to detect accessibility problems by
mapping an HTML position and the corresponding Java
source code position.

There are many research topics to be considered in the
future. First, techniques for client-side dynamic content,

Figure 9

Tracing back to the point of origin.

HTML DOM tree

HTML document
Foo1.java

Java code

User

Internal data Stack traceJSP/servlet map Servlet/HTML map

<HTML><HEAD>

...

Foo2.java

Control, dataflow
graph

JSP

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

746

such as JavaScript**, are widely used these days, and
making the resulting pages accessible presents significant
and difficult challenges. In some cases, the accessibility
technologies described in this paper can be applied to
such content, but much more effort is still required to
ensure the accessibility of Web pages based on these
techniques. Second, from the point of view of the Web
site owner, site-wide technologies that deal with a number
of— or all of—the pages in the Web site are also useful.
They can improve the accessibility of the Web site, for
instance by detecting problems with page templates and by
finding specific subdirectories that have larger numbers of
inaccessible pages than other parts of the site. Finally, as
the Web becomes a place not only to acquire information,
but to conduct general activities, such as shopping, we
need many more studies of technologies to find ways
to make it easier for senior citizens and people with
disabilities to interact with the Web and conduct activities
online.

The environment surrounding accessibility will change
in the future as well. However, our goal is not to simply
follow such changes, but to establish the process of
ensuring accessibility for every aspect of information
technology. We are striving to make steady progress
toward that goal through our research activities.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc.; W3C host institutions: Massachusetts Institute of
Technology, European Research Consortium for Informatics
and Mathematics, or Keio University; isSound Corporation,
Carnegie Mellon University; Freedom Scientific; Ai Squared,
Inc.; or Watchfire Corporation in the United States, other
countries, or both.

References
1. A. Koide, C. Asakawa, and N. Suzuki, “Research on

Computer Aids for the Visually Disabled,” Computers as
Our Better Partners: Proceedings of the IISF–ACM Japan
International Symposium, March 1994, pp. 66 – 69.

2. C. Asakawa, “Braille Information Network: Braille
Forum,” Computers as Our Better Partners: Proceedings of
the IISF–ACM Japan International Symposium, March
1994, pp. 148 –149.

3. C. Asakawa and T. Itoh, “User Interface of a Home Page
Reader,” Proceedings of the 3rd International ACM
SIGCAPH Conference on Assistive Technologies (ASSETS
�98), April 1998, pp. 149 –156.

4. Web Content Accessibility Guidelines 1.0; see http://
www.w3.org/TR/WCAG10/.

5. Section 508 of the Rehabilitation Act; see http://
www.section508.gov/.

6. Developer guidelines for Web Accessibility; see http://
www.ibm.com/able/guidelines/web/accessweb.html.

7. J. C. De Witt and M. T. Hakkinen, “Surfing the Web with
pwWebSpeak,” Proceedings of the 1998 Technology and
Persons with Disabilities Conference; see http://
www.csun.edu/cod/conf/1998/proceedings/159.htm.

8. C. Asakawa and T. Itoh, “User Interface of Nonvisual
Table Navigation Method,” CHI �99, extended abstracts
on Human Factors in Computing Systems, May 1999,
pp. 214 –215.

Figure 10

Example of the use of Accessibility Observer.

Browser view HTML source code view

View/HTML

H
T

M
L

/Ja
v
a

Java information view

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

747

9. IBM Corporation, Home Page Reader 3.0; see http://
www.ibm.com/able/solution_offerings/hpr.html.

10. J. T. Richards, V. L. Hanson, and S. Trewin, “Adapting
the Web for Older Users,” Proceedings of HCI
International 2003 (Universal Access in HCI), June 2003,
pp. 892– 896.

11. IBM Corporation, Easy Web Browsing Solution; see http://
www.research.ibm.com/trl/projects/access_c/ewb.htm.

12.

13. BBC Education, Betsie Home Page; see http://www.bbc.co.
uk/education/betsie/.

14. UsableNet Inc., LIFT Text Transcoder; see http://
www.usablenet.com/products_services/text_transcoder/
text_transcoder.html.

15. IBM Corporation, WebSphere Transcoding Publisher; see
http://www.ibm.com/software/webservers/transcoding/.

16. H. Takagi and C. Asakawa, “Transcoding Proxy for
Nonvisual Web Access,” Proceedings of the 4th
International ACM SIGCAPH Conference on Assistive
Technologies (ASSETS 2000), November 2000, pp.
164 –171.

17. C. Asakawa and H. Takagi, “Annotation-Based
Transcoding for Nonvisual Web Access,” Proceedings of
the 4th International ACM SIGCAPH Conference on
Assistive Technologies (ASSETS 2000), November 2000,
pp. 172–179.

18. T. Sakairi and H. Takagi, “An Annotation Editor for
Nonvisual Web Access,” Proceedings of HCI International
2001 (Universal Access in HCI), August 2001, pp. 982–985.

19. H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda, “Site-
Wide Annotation: Reconstructing Existing Pages to be
Accessible,” Proceedings of the Fifth International ACM
SIGCAPH Conference on Assistive Technologies (ASSETS
2002), July 2002, pp. 81– 88.

20. K. Fukuda, H. Takagi, J. Maeda, and C. Asakawa, “An
Assist Method for Realizing a Web Page Structure for
Blind People,” Proceedings of HCI International 2003
(Universal Access in HCI), June 2003, pp. 960 –964.

21. H. Takagi and C. Asakawa, “Page-Customization
Allowing Blind Users to Improve Web Accessibility by
Themselves,” Proceedings of HCI International 2001
(Universal Access in HCI), August 2001, pp. 1003–1007.

22. J. Maeda and M. Kobayashi, “WebDigest: Visually
Enhanced Web Page Representation with Layout
Preservation,” Research Report RT-0345, 2000; IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-
shi, Kanagawa-ken 242-8502, Japan.

23. J. Maeda, K. Fukuda, H. Takagi, and C. Asakawa,
“WebDigest: Layout-Preserving Visually Enhanced Web
Pages,” Proceedings of the 2003 Symposium on Applications
and the Internet (SAINT 2003), January 2003, pp. 418 –
421.

24. Freedom Scientific, JAWS; see http://www.freedomscientific.
com/index.html.

25. Ai Squared, Inc., ZoomText; see http://www.aisquared.com/.
26. Vischeck; see http://www.vischeck.com/.
27. Colorfield Software, Xproof; see http://www.colorfield.com/

xproof/.
28. Techniques for Accessibility Evaluation and Repair Tools;

see http://www.w3.org/TR/AERT#color-contrast.
29. Watchfire Corporation, Bobby; see http://bobby.

watchfire.com/.
30. L. R. Kasday, “A Tool to Evaluate Universal Web

Accessibility,” Proceedings of the 2000 Conference on
Universal Usability (ACM), November 2000, pp. 161–162.

31. WAVE 3.0 Accessibility Tool; see http://www.wave.
webaim.org/.

32. Apache Software Foundation, Jetspeed; see http://
jakarta.apache.org/jetspeed/site/.

33. Apache Software Foundation, Tiles; see http://
jakarta.apache.org/struts/userGuide/dev_tiles.html.

34.
www-106.ibm.com/developerworks/websphere/zones/portal/.

Received October 16, 2003; accepted for publication

J. MAEDA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

748

http://www.afb.org/.
American Foundation for the Blind, My AFB; see

IBM Corporation, WebSphere Portal Server; see http://

February 17, 2004; Internet publication September 16, 2004

Junji Maeda IBM Research Division, IBM Tokyo Research
Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa-ken
242-8502, Japan (maeda@jp.ibm.com). Mr. Maeda received an
M.S. degree in information science from the University of
Tokyo in 1989. He joined the Tokyo Research Laboratory in
1992. His research interests include Web accessibility, image
and video processing, and digital media. He was named a
Master Inventor at IBM Research in 2003. Mr. Maeda is a
member of the IEEE Computer Society, the Association for
Computing Machinery (ACM), the Information Processing
Society of Japan (IPSJ), and the Institute of Electronics,
Information and Communication Engineers (IEICE).

Kentarou Fukuda IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (kentarou@jp.ibm.com). Dr.
Fukuda received M.E. and Ph.D. degrees in information and
computer sciences from Osaka University, Japan, in 1998 and
2000, respectively. He joined the Tokyo Research Laboratory
in 2000. His research interests include Web accessibility, Web
application development, and multimedia systems. Dr. Fukuda
is a member of the Institute of Electronics, Information and
Communication Engineers (IEICE) and the Information
Processing Society of Japan (IPSJ).

Hironobu Takagi IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (takagih@jp.ibm.com). Dr.
Takagi joined the Tokyo Research Laboratory in 1999. He has
conducted research and development on nonvisual computer
interfaces. In 2000 he received a Ph.D. degree from the
Department of Science, University of Tokyo. Dr. Takagi is a
member of the Association for Computing Machinery (ACM),
the Information Processing Society of Japan (IPSJ), and the
Japan Society for Software Science and Technology (JSSST).

Chieko Asakawa IBM Research Division, IBM Tokyo
Research Laboratory, 1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa-ken 242-8502, Japan (chie@jp.ibm.com). Dr.
Asakawa joined the Tokyo Research Laboratory in 1985.
Since that time she has conducted research and development
on nonvisual computer interfaces for the blind, including the
Home Page Reader in 1997. She received recognition from
the Japanese Ministry of Health and Welfare in 1999 and
was inducted into the Women in Technology International
Hall of Fame in 2003. She received a Ph.D. degree from the
Department of Advanced Interdisciplinary Studies in the
Graduate School of Engineering at the University of Tokyo
in 2004. Dr. Asakawa is a member of the IBM Academy of
Technology, the Association for Computing Machinery
(ACM), the Institute of Electronics, Information and
Communication Engineers (IEICE), and the Information
Processing Society of Japan (IPSJ).

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 J. MAEDA ET AL.

749

