
A framework for
device capability
on demand and
virtual device
user experience

R. Y. Fu
H. Su

J. C. Fletcher
W. Li

X. X. Liu
S. W. Zhao

C. Y. Chi

The proliferation of mobile devices is gradually making it
possible to access information anywhere at any time. However,
the physical capabilities of the mobile device still greatly limit
the experience of users because functionality has usually been
traded off for ubiquity. Nonetheless, the enormous growth rate
of new information appliances heralds the dawning of a
device-rich era. In this paper, we propose a framework for
augmenting mobile device capabilities with surrounding
devices. We then discuss a possible approach to represent
an augmented device as one single virtual device.

Introduction
All of the promises of the Internet rely on fast and
convenient access to information. While certain benefits
have already been realized by connecting desktop-class
personal computer (PC) users, the full potential can only
be exploited by connecting the broadest number of people
via the widest range of mobile devices. Existing ubiquitous
computing middleware has significantly extended the reach
of the computing infrastructure to mobile users, but
satisfactory user experiences and profitable business
models have not yet been exhibited. Research momentum
is shifting toward using server power more efficiently and
seeking ways for multiple client devices to collaborate.

User acceptance largely determines the success of any
system. In many parts of the world, users have primarily
experienced desktop systems. Compared with desktop
solutions, the restrictions on user experience and
capabilities brought about by smaller devices are key
inhibitors to an enterprise-ubiquitous computing adoption.
Current trends for improving user experience largely focus
on the development of powerful, multifunctional, but still
handy and mobile devices. Enterprises are accustomed to
the single-device model, where the capability of one device
largely determines the overall user experience and quality
of service for the enterprise applications. Meanwhile,
middleware today must accommodate a vast variety of
devices, which, because they continue to be resource-

constrained, limit the possibilities of the middleware. A
solution would be to shift the model to one that allows us
to distribute the single application across multiple devices,
leveraging the strengths of each physical device for the
application.

Over the past few years, significant progress has been
made in improving mobile device capability. These
activities have leveraged both single-device and
multidevice approaches.

The single-device approach emphasizes improving
inherent device capability (e.g., continual hardware and
software upgrades and multiple functions all in one). This
approach entails costly solutions that usually cannot be
replicated, are not at all flexible, and do not solve the
essential problem—the limitations of single-device
capability. In addition, while many future devices
will carry faster processors and larger memories, the
human– computer interaction will remain a problem
because mobile devices, by their nature, will not become
physically large enough to provide typical PC-level
interactions. In a study of everyday appliance examples,
Buxton questioned the value of super-appliances [1].
He suggested breaking away from the one-size-fits-all
approach and evolving to tools built for specific purposes.
The study conducted by Buxton concludes that devices will
become sufficiently inexpensive to accomplish this, and
they will be distributed around certain locations
appropriate for certain activities.

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

635

Meanwhile, new wireless technologies such as
Bluetooth** [2] have emerged to improve short-range
communication between devices. This simplifies the task
of providing distributed application capability that can
enhance user experiences by overcoming single-device
limitations. The Universal Plug and Play (UPnP**) Forum
[3] is an industry initiative to enable simple and robust
connectivity among standalone devices and PCs from
different vendors. UPnP architecture offers ubiquitous
peer-to-peer network connectivity for devices, but without
specifying how two connected devices interact together
with server-side applications. Other similar activities, such
as Jini** [4] and Salutation** [5], have similarly addressed
the requirements for interdevice communication.

Myers [6] describes the Pebbles project, which aimed at
collaboration between personal digital assistants (PDAs)
and PCs. A toolset has been developed for the PDA user
to manipulate remote desktop applications. Pebbles also
provides a simple method for a group of users to take
turns controlling applications running on a PC. In this
application, PDAs are used as remote controls and as
additional input devices for the PC.

Several researchers have also focused on methodologies
for building multimodal interaction systems. The QuickSet
project [7] involved a collaborative multimodal system
that employed a distributed, multiagent architecture to
integrate not only various user interface components,
but also a collection of distributed applications. Current
multimodal technologies duplicate interactive content on
different channels (usually graphics and voice) in order
to provide interaction alternatives. Johanson et al. [8]
describe a multibrowser system that provides a framework
for exploring multiple heterogeneous displays to view and
browse information simultaneously. The UbicompBrowser
project [9] explored the use of a handheld device to access
and control surrounding output devices so that devices
such as a standard television can be used to display Web
pages.

Siemens Corporate Research [10, 11] conducts research
activities for mobile and ubiquitous multimedia access
with small screen and composite devices. Robertson et al.
[12] describe the user interface issues related to a system
in which the PDA is used as the remote control for an
interactive television. Problems such as how to split
information between devices are addressed as well. The
ICrafter project [13] involved a framework for service
user interface aggregation. This framework facilitates the
creation of user interfaces for combinations of services,
providing users the convenience of controlling several
services simultaneously.

Multibrowsing, UbicompBrowser, ICrafter, and the
Siemens research activities demonstrate a new perspective
for mobile device augmentation. However, topics such as
how to dynamically associate an application with the

unpredictable user environment and how to develop the
kinds of applications that can leverage heterogeneous
discrete device capabilities have not yet been explored.

As described above, many researchers are actively
developing multidevice collaboration systems. However,
few attempts have been made to build user-centric or
capability-on-demand systems that give mobile users
enhanced experiences while leveraging the current
infrastructure. The device-capability-on-demand (DCOD)
framework and virtual device service gateway (VDSG)
architecture, combined with the underlying virtual-device-
oriented programming model presented in this paper,
taken together, represent, we believe, the first attempt to
build such a system.

The remainder of this paper is organized as follows:
First, we present the motivation and vision for the project,
along with sample application scenarios. Potential benefits
to end users (i.e., experience improvements) are then
presented, followed by an overview of a conceptual VDSG
architecture. We then present technical details regarding
the necessary gateway, the client-side components, and the
virtual device service programming model. Finally, we
present demonstration implementations and discuss
possible future work.

Motivation
With the research knowledge we have gained, we observe
and project that

● Mobile devices will continue to evolve and will become
more powerful, but limitations on human– computer
interaction will persist.

● Appliance design will evolve toward a special-purpose
model [1]. Computer appliances will become inexpensive
and widely deployed.

● Emerging location-sensing technologies will enable more
accurate presence detection. In addition to infrared,
radio frequency identification (RFID) [14], global
positioning system (GPS) [15], Bluetooth, and the
upcoming ZigBee** [16], numerous research activities
are being conducted for presence or location detection
with ultrasonic waves [17] or video cameras [18].

● Service discovery will be the cornerstone of any
future platform that will provide user-centric services.
Specifications such as Composite Capability/Preference
Profiles (CC/PP) [19] and Bluetooth Service Discovery
Protocol have been introduced for device capability
description and service discovery.

● Wireless technologies are emerging as cable
replacements and may potentially serve as system buses
in a dispersed system. Wireless-enabled appliances—
such as television [20], projectors [21], and printers—
are already in the marketplace.

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

636

Vision
One critical factor regarding the fate of ubiquitous
computing is the user�s experience accessing information.
While much work has been done to improve connection
reliability and response time on both the server and network
sides, there are still many areas in which we can enhance
the device experience. With an awareness of the limitations
of devices and the rapid evolution of the mobile computing
environment, we initiated the research work on the
DCOD framework to enable multidevice cooperation
and federation. The framework is intended to turn
various services, existing or future ones, into true user-
centric services through these four approaches:

● Sentience: Perceive the user�s ever-changing environment.
With the help of wireless and sensory technologies in
combination with service discovery protocols, we intend
to make it possible to identify all available peripheral
devices around a user for use in the potential service
delivery.

● Adaptation: Obtain the user�s instantaneous expectations.
We will determine static user preferences, profiles, or
habits as points of reference and apply common user-
centric design principles to determine the proper
methods for dynamic service delivery.

● Association: Instantiate a service in a given circumstance.
We will select the suitable elements in the user�s
environment with respect to a specific relationship
(e.g., location, ownership, privacy, or security policy)
and link them together for a given service session.

● Virtualization: Provide the user with the most powerful
virtual device available at the time of need. That is, we
will make possible the collaboration of various different
devices to deliver a service that produces the desirable
user experience.

We envision a day in the future when many different
devices can easily cooperate and federate to form useful
and usable virtual devices to serve our daily life, providing
a consistent single-device human– computer interaction
metaphor. Thus, ubiquity and richness will be equally
satisfied.

DCOD application scenarios
Despite the great progress made in network and
communication technologies, business travel continues to
be inevitable. The following scenarios are focused on a
future businessman�s customer visit:

● Waiting for the flight: John, a senior salesperson, is
waiting for a flight to an important customer site.
Suddenly, his mobile phone beeps, indicating an
incoming message. It is an urgent e-mail from his
colleague, Susan. The mobile phone is not capable of

showing every detail in the message on its screen, since
several large pictures are attached. However, it prompts
John that a nearby private kiosk can do the job. John
enters the kiosk and clicks the OK button on the mobile
phone, and the entire e-mail message is shown instantly
on the kiosk screen. Susan informs him that some
changes must be made in the customer presentation.
Unfortunately, it is time to board the flight.. . .

● Work on the flight: John remembers that he has to
make some amendments to the customer presentation.
However, his laptop is now “sleeping” in the overhead
cabinet, and he hates to wake up the passenger beside
him in order to retrieve it. However, by clicking an icon
on his PDA, he makes a wireless connection to his
laptop and starts editing the file using the on-flight
personal liquid crystal display (LCD) and his PDA,
while collaborating with Susan through voice and video.

● In the customer building: At the reception area in the
customer building, John identifies himself and is granted
a visitor badge which will take him to permitted areas
and along a designated path only. He receives navigation
instructions on appropriately located displays as he walks
to the customer conference room. A central security
system working behind the scenes tracks his movement
and projects the directions on the displays along the
route.

● In the conference room: By pressing an icon on the
PDA, John wakes up his laptop sleeping in the bag and
chooses the presentation file. The PDA prompts him
that several wireless fidelity (WiFi)-enabled devices can
be used to show the slides.

● Making a presentation: Several key managers and
engineers enter the conference room, and it is time
for the presentation. John selects the desired projector,
and the presentation slides are shown on the projector
screen. The PDA screen displays the speaker�s notes,
a presentation outline, and a projector control panel.
When the agenda page of the presentation is about
to be shown, John selects both the projector and the
desktop screen, and the agenda appears on both. It stays
on the desktop screen during the entire presentation.
John has embedded several video clips in the
presentation document to make it more animated.
Whenever such a slide is about to be shown, the PDA
prompts John that it will use the television in the room
to display the video clip. While the video clip is playing,
John uses his PDA as a remote control for the
television.

The presentation is a success, largely because of the
ease with which John is able to leverage the appropriate
devices available to him in a simple yet dynamic manner.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

637

DCOD user experience
Application capabilities and the experience of end users
are two of the most important aspects of the life cycle of
each information system, for their effectiveness largely
determines the fate of the system. The DCOD framework
aims to provide end users with a feature-rich experience
through on-demand multidevice cooperation.

To avoid confusion when using multiple devices, the
framework assumes that one mobile device carried by the
end user acts as the master device. The master device is
the initiator of the service request. When the master
device is not capable of handling the service alone, it
selects the appropriate secondary device or devices to
assist. The master device then becomes the end user�s
control point to manipulate all selected secondary devices.

Since most application developers are familiar only with
the single-device programming model, and most popular
authoring tools are designed with this assumption, the
DCOD framework introduces a new concept—a virtual
device. A virtual device appears as one physical device,
although its capabilities may be derived from many
different physical devices. The virtual device conceals
details of the user environment and multidevice
collaboration. It reveals only the capabilities available to
the end user, isolating the user from the underlying details
of the multiple physical devices.

The framework provides a new programming model
under which application authors may design applications
according to specific needs, without binding the
application to a single physical device for all of its

runtime needs. At runtime, the DCOD framework maps the
virtual device to the user�s actual environment. Figure 1
illustrates the new experiences the DCOD framework may
bring to end users and authors.

VDSG architecture
As shown in Figure 1, a virtual device service gateway
(VDSG) is required to deliver the promised user
experiences of the DCOD framework. The VDSG is
the core of the DCOD framework. By associating
user environment capabilities with application-defined
capability requirements, it assists applications that demand
more capability than the primary device can offer.

As shown in Figure 2, the VDSG architecture comprises
primarily the device manager, the security manager, the
device federation engine, the content delivery engine,
the administration interface, the virtual device service
interface, and the virtual device Web adapter. The VDSG
aims to support Web and non-Web applications, but since
current efforts are focused on Web applications, the term
application is used here to mean Web application unless
otherwise specified.

Device manager
Discovery of device presence and capability is the
cornerstone of any environment-dependent application,
such as those required for this project. The primary job
of the device manager is to discover and maintain
information about devices that are available to and
accessible by the mobile user. This is essential to support
the ability of the device federation engine (see the
description below) to map service requirements to the
proper devices. An agent active on each device presents
the capabilities of its host and its status using the CC/PP
format (see the description below). The DCOD framework
makes use of the location-based service gateway [22] to
determine the vicinity relationship between master and
secondary devices.

Device discovery is critically important, but, given the
breadth of devices in use today, it is also difficult to
implement. Each type of device has its own set of special
capabilities that must be identified and prioritized to
enable effective use of the available secondary devices.

Device federation engine
The device federation engine (DFE) matches device
capability requirements from the application with the
available secondary device information maintained by the
device manager and selects proper candidate devices for
application runtime binding. The DFE composes the
appropriate aggregated best set of device capabilities
from the set of devices available, given the specifications
provided by the application. As shown in Figure 2, the
DFE comprises the following entities.

User experience of device capability on demand (DCOD).

Figure 1

Application/service

Virtual device service gateway (VDSG)

 Author

End user

RequestPerform

Control/interact

Secondary devices Master device

• Virtual device
• Environment
 independence

• Device collaboration
• Device capability on demand

RequestPerform

Virtual
device

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

638

Matching engine
The matching engine takes application requirements and
secondary device information as input parameters and
selects candidate devices (device groups) that can be
content object containers. Given that an application is
composed of a set of pages, with each page containing
element groups and elements, a content object may
be a page, an element group, or an element. Figure 3
illustrates the high-level workflow of the matching
engine.

The application author uses a document profile (a
CC/PP-like description—see the section on the virtual
device programming model) to define the requirements
of a content object. The device manufacturer (or, more
specifically, the underlying device agent) uses CC/PP to
describe the hardware and software capabilities of the
device. The matching engine first attempts to discover all
secondary devices that can directly execute a selected
content object, and then seeks those devices that can
process the object solely through media adaptation. The
matching engine may also request the composition engine
(see the description in the following section) to integrate
discrete capabilities from different devices. Through
adaptation and composition, the matching engine can
provide more candidate devices (device groups) for the
selected content object.

For example, suppose that an input element is about to
be rendered in a Web page. The information is presented
in the following format: �input ref�“username”� �label�
user name �/label� �/input�. Actually, this simple

content object requires both input and output capabilities.
Suppose that the secondary device database currently
contains four potential devices: a PDA, a screen, a
microphone, and a speaker. Table 1 illustrates all
possible candidate devices for executing the
input element.

For an application composed of a set of pages, the
author may use a document profile to define the device
capability requirements of each individual page. When
associating devices with application requirements,
depending on a user profile, the matching engine will first
attempt to identify a single device that can execute the
page. If a single device is not available, it will apply a
divide-and-conquer tactic by separating the page element
into groups over which the same matching algorithm will

Figure 2

Virtual device service gateway (VDSG) architecture.

Device manager

Device federation engine (DFE)

Administration

Virtual device service (VDS) interface

Web application adapter (WAA)
(Web proxy)

Web application server

VDSG

Applications

Non-Web applications

Master device

Devices

Secondary devices

Content delivery engine (CDE)

Push

Security manager

Matching
engine

User profile

VD manager
Composition

engine
Leasing
engine

Channel
manager

Synchronize

High-level workflow of matching engine.

Figure 3

Selected content object

Secondary
device

database

CC/PP matching

Adaptation

Combination

Adaptation–combination

Candidate
container device

(group)

Direct comparison

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

639

be executed. Figure 4 illustrates the workflow of page
matching.

The matching engine may generate more than one
candidate device (a device group) for a given page. To
facilitate decision-making, the DCOD framework must
consult the user profile information to determine the
variable wishes of the end user.

Composition engine
When the matching engine encounters a content object
that cannot be executed by any single device but can be
executed by using the combined capabilities of more than
one device, the combination of devices is selected. For

example, if it encounters a 10 � 10 data collection table
with only a PDA and a projector available, it will use both
devices to process the table. The composition engine is
designed to create new virtual capabilities from more than
one physical device. In this example, the composition
engine combines the input of the PDA and the output of
a projector to display the table and handle the application
input. Table 2 illustrates possible composition types. The
first composition type, a keyboard/mouse from one
device with a graphical user interface (GUI) being
output to another, has been implemented in the
DCOD framework.

Pebbles [6] provides a simple method of using a PDA to
control a PC by using soft keyboard and stylus input on
the PDA screen to emulate real PC keyboard and mouse
operations. In this solution, the PDA and the PC will each
install an agent to communicate with each other and
interact with the local operating system, making their
solution platform-dependent.

Under the DCOD framework, we chose a browser-based
approach. The input objects that are run on the browser
of one device capture local keyboard and mouse actions
and turn them into browser document object model
(DOM) events [23]. The DOM events are then transferred
to the browser on the output device for rendering. Figure 5
illustrates the high-level workflow of the input and
output device composition.

Leasing engine

Under the DCOD framework, access to many of the
secondary device capabilities is based on the concept of
leasing. A lease is a grant of guaranteed access over a
requested time period. Each lease is negotiated between
the consumer and the provider of the capability. Leases are
either exclusive or nonexclusive. Exclusive leases ensure that
no one else may use the resource during the leasing period;
nonexclusive leases allow multiple users to share a resource.

Page matching workflow process.

Figure 4

Find single device
container

Secondary
device

database

Start

Found?

Split page

Find container
for each part

All found?

Can page
be split?

Page
profile

Return device(s)

Return device
group(s)

End

Yes

Yes

Yes

No

No

No

Table 1 Examples of a match engine. (I: input; O: output, CE: composition engine; TTS: text-to-speech engine; SR: speech
recognition engine.)

Possible containers Method Requirements

PDA Directly compare None

Screen (O) � PDA (I) Combine CE

Speaker (O) � PDA (I) Combine and adapt CE � TTS

PDA (O) � microphone (I) Combine and adapt CE � SR

Screen (O) � microphone (I) Combine and adapt CE � SR

Speaker (O) � microphone (I) Combine and adapt CE � TTS/SR

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

640

Content delivery engine
The content delivery engine (CDE) is responsible for
delivering applications to the user environment devices
that can provide the required functions. Each device
function is defined as an application delivery channel
(ADC). An ADC is registered to the CDE when the
appropriate function is selected, and the CDE maintains
life cycles of all ADCs related to an application. Since an
application page might be split and executed on multiple
devices, the order of page part delivery and the event
exchange among page parts are most important. In
addition, the variables, especially global variables that
appear in multiple page parts, must be synchronized. The
synchronization component of the CDE controls this
critical process.

The push component of the CDE is responsible for
delivering page parts to appropriate ADCs. ADCs can be
categorized as fat or thin according to the intelligence and
complexity of their providers. The provider of a fat ADC

is smart enough to process complex communication
protocols and data stream formats (e.g., Web browser,
media player, word processor). The provider of a thin
ADC can provide only simple data stream types over the
network. How a page part is delivered to an ADC depends
largely on the ADC type. For example, when delivering a
page part to a fat ADC, the content may be kept in its
original format, but for a thin ADC, the page part has to
be transformed into raw data streams appropriate for that
device.

Web application adapter
The Web application adapter (WAA) acts as a Web proxy
server so that when the master device sets the WAA as its
Web proxy, the WAA can capture responses of the service
requested by the master device. The WAA is the bridge
for Web applications to fulfill virtual device functionalities.
Figure 6 illustrates the high-level architecture of the WAA
and its relationship with other components of the VDSG.

High-level workflow of the input and output device composition.

Figure 5

Composition engine

Input
device

Output device

Browser

Browser
Keyboard

object
Mouse
object

MouseKeyboard

DOM events

High-level architecture of the Web application adapter (WAA).
(XHTML: Extensible Hypertext Markup Language; SMIL: Syn-
chronized Media Integration Language.)

Figure 6

Virtual device service gateway (VDSG)

WAA

Web application server
Applications

XHTML + SMIL parser

Container
finding

Device
matching

Leasing

Layout
design

Delivery Data
object

Push Synchronize

Table 2 Possible device composition types.

Composition type Example

GUI (O) � Keyboard/mouse (I) Wall-screen (O) � PDA (I)

GUI (O) � voice (I) Wall-screen (O) � speaker (I)

Voice (O) � Keyboard/mouse (I) Speaker (O) � IBM ThinkPad* (I)

MultiGUI (O) Two small screens to create a bigger one

Multivoice (O) Multiple speakers play different parts of the same source

Multikeyboard/mouse (I) Use PDA handwriting and keyboard of a PC to input

Keyboard/mouse (I) � voice (I) Use keyboard and microphone to input

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

641

The WAA parses the service response transmitted via
HyperText Transfer Protocol (HTTP) and abstracts service
requirements. Next, the WAA calls functions of the device
matching engine to find an appropriate candidate device
(device group) to process the service response. When the
leasing component has ascertained that the selection is
appropriate, the WAA redesigns the layout of the service
interface according to the interaction features of the
candidate device, and then calls the push component to

deliver the service response to the selected device. For
those variables that exist in two or more separated page
parts, the WAA replicates the information in each of the
related parts and utilizes the synchronization component
to maintain their consistency.

Administration
The administration component maintains a user profile
for the device selection preferences, including place,
service, and device selection, in order to help the
system select a proper candidate if the matching
engine provides more than one choice. Once a choice
is made by the system, the administration task generates
a confirmation interface to inform the end user of the
secondary device choice. The administration task also
provides an alternative approach for manual device
selection. This allows the end user the flexibility of
making a personal choice. Figure 7 shows the wizard
interface of the confirmation and selection page generated
by the administration task.

Security manager
In principle, the role of the security manager is to monitor
communication among the master device, the secondary
devices, and the VDSG, and to handle security across
multiple devices. The security manager includes support
for sensor networks used by the VDSG to detect the
presence and status of secondary devices and the networks
interconnecting the devices.

Figure 7

Confirmation page and selection page.

Client-side components.

Figure 8

Virtual device service gateway (VDSG)

Hardware implementation

Browser wrapper
+ local database

Web browser

Local
database

Device agent

Device
manager

Channel
manager

Push
engine

Synchronization
engine

Channel
agent

Event Data

Pull
engine

Device description

DOM
event

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

642

Security issues are another significant area in the
DCOD research activities, which are needed to address
problems such as multidevice authentication and
multidevice encryption. No major breakthrough has
yet been made, but we have identified that the working
scope should focus on ad hoc network security.

Client-side components
As described in the previous section, a client-side device
is composed of hardware and one or more ADCs that
represent the capabilities of the device. Figure 8 illustrates
the architecture of the device. A client-side device
comprises primarily a device agent, a device description,
an extended Web browser, and hardware.

The device agent implements the discovery protocol
used by the client device to detect the existence of the
VDSG and register itself. The client-side stack also
includes a leasing protocol to support leasing requests.

The device description component is used to describe
the capabilities of the client-side device, including its

hardware characteristics and the features of each ADC.
CC/PP is used to describe the capabilities.

A Web browser is now embedded in many computing
devices, but common browsers must be enhanced with
a wrapper to become an available ADC. The wrapper
comprises a channel agent, a DOM event manager, a local
database, and a proactive pull engine. The channel agent
registers the ADC to the VDSG when selected by the
matching engine; it then takes control to provide for
channel life cycle management. Both the DOM event
component and the local database component are used to
synchronize with other browsers. The proactive pull engine
component enables the Web browser to support push
operations.

Virtual device programming model
The DCOD framework provides mobile users with
enhanced capabilities by breaking the physical boundaries
of devices, enabling delivery of a service to multiple
devices. To determine which devices should be selected

Figure 9

Framework of a virtual device application. (XHTML: Extensible Hypertext Markup Language; VDDL: Virtual Device Description
Language; SMIL: Synchronized Media Integration Language; XML: Extensible Markup Language.)

XHTML

Web application

Web page
VDDL

xmlns:smil="http://www.w3.org/2001/SMIL20"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:vddl="http://www.ibm.com/2003/vddl">

<Head>
 <link rel="docprofile" href = "xxx.dprof" type="text/uddl">
 ¡-
</Head>

xxx.dprof

• Capability profile
• Segmentation profile

<Segment 1, smil:seq begin="0">
 ¡-
</Segment 2>
 ¡-
<Segment 2, smil:seq begin="3s">
 ¡-
</Segment 2>

SMIL_Timing

XML_Eventing

• Intersegment synchronization
 schema

• Intersegment event
 schema

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

643

and how to split a service across devices, the framework
provides a language to describe device capability
requirements and instructions on how to split a service,
known as the Virtual Device Description Language, or
VDDL. VDDL is a markup language that includes a set
of device capability classes and Boolean expressions.
The application developer uses VDDL to define the
capabilities of his desired device and the virtual device,
and then designs the service modules on the basis of
virtual device requirements. At runtime, the system
associates the virtual device with the user environment,
enabling the virtual device environment.

The basic virtual device programming model is
XHTML � VDDL � SMIL � XML, as shown in Figure 9.
XHTML is used to structure and lay out application
modules; the SMIL timing mechanism is used to define
the order of segment delivery, and the XML event
mechanism is used to define intersegment events for
service delivery and data synchronization. VDDL includes
two parts, the capability profile and segmentation profile,
which together define the service profile.

Figure 10 illustrates a sample service profile written in
VDDL. In this example, the system recognizes that the
presentation documents can be split into two parts. One

Figure 10

Document profile sample.

<?xml version="1.0" ?>
 <vdsgroup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="VDS_VDDL_schema.xsd">
<vdsgroup>
 <groupset>
 <group>
 <group_id>slide</group_id>
 <source>/html/frameset/frameset/frameset/frame[@id="show"]</source>
 <device_requirement>
 <requirement_item>largeScreen</requirement_item>
 <requirement_item>mediumScreen</requirement_item>
 </device_requirement>
 <device_requirement>
 <requirement_item>fullColor</requirement_item>
 </device_requirement>
 <device_requirement>
 <requirement_item>movie</requirement_item>
 </device_requirement>
 </group>
</groupset>
<groupset>
 <group>
 <group_id>navigationbar</group_id>
 <source>/html/frameset/frame[@id="navbar"]</source>
 <device_requirement>
 <requirement_item>smallScreen</requirement_item>
 </device_requirement>
 </group>
 <group>
 <group_id>outline</group_id>
 <source>/html/frameset/frameset/frame[@id="outline"]</source>
 <device_requirement>
 <requirement_item>smallScreen</requirement_item>
 </device_requirement>
 </group>
 <group>
 <group_id>note</group_id>
 <source>/html/frameset/frameset/frameset/frame[@id="note"]</source>
 <device_requirement>
 <requirement_item>smallScreen</requirement_item>
 </device_requirement>
 </group>
</groupset>
</vdsgroup>

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

644

part shows the slide, which requires a large screen with
full color and movie support. The other part shows the
navigation bar, the outline, and the speaker notes, which
require only a small screen. In a real environment, the
large screen content might be delivered to a projector and
the speaker notes to a PDA.

Implementation and demonstration
We have completed two DCOD demonstrations for the
future facilitation of Office Environment and Mobile
Worker. The first demonstration shows an enterprise
visitor browsing the enterprise Web site and presents
slides by using a dynamic combination of his Pocket
PC PDA and surrounding equipment. The second
demonstration shows a mobile worker who receives,
browses, and replies to e-mails via his mobile phone with
the help of a nearby flat-screen television.

The first demonstration system consists of a Pocket PC
PDA, some networked utilities with RFID tags, and an
application server. RFID is used for presence, location,
and rough orientation detection. The application server
provides a Web interface for users to browse enterprise
services that are available in their current area. We put
client-side software components into utilities such as the
printer, wall-screen, television, projector, and speaker
interconnected by a common access mechanism over
HTTP. In this system, the PDA is used as a console device
to access information and services from the enterprise
application server. The VDSG first determines available
resources surrounding the PDA by tracking its position.
Next, it invokes proper viewers to render multimedia
content on selected displays and prints document
handouts on nearby printers in order to augment the
projector for an advanced presentation scenario. Since
the implementation is based on HTTP, only an extensible
Web browser is required on the PDA.

In this demonstration, an enterprise visitor is granted a
PDA with a wireless connection to enterprise services. The
visitor can then learn more about the local environment
through the PDA browser. Web pages customized for the
PDA are shown on directly on the PDA screen, but when
the system encounters rich content, such as large pictures,
video, or audio clips, it picks proper secondary devices
and renders the content. Figure 11 is a snapshot of the
demonstration.

In another demonstration scenario, the visitor makes a
presentation. In this demonstration, the visitor can make
use of all necessary devices in the conference room— e.g.,
a projector for the slides, a PDA for the speaker notes
and to use as the control panel, and a television for
embedded video—to make an impressive and effective
presentation. Compared with the previous scenario, this
demonstration includes an additional application, a
presentation service, which runs on the application server.

Via a Web browser on his PDA, the visitor uploads his
presentation documents, created with common tools such
as Microsoft PowerPoint**, to the service, and the service
then converts the presentation documents into XHTML
format. Next, the service inserts VDDL tags into each of
these XHTML pages. These tags literally separate each
page into four groups (slide, navigator, outline, and
speaker notes) and define the device capability requirements
for each group rendering. Finally, the service publishes the
processed XHTML pages on the Web server. The visitor
can enjoy the same experience demonstrated in the previous
scenario, but this time he makes a presentation. Figure 12
shows the demonstration setup.

The second demonstration system is basically built on
the same hardware and software environment as the first
demonstration system, except that a mobile phone
replaces the Pocket PC PDA and an additional mail
application is provided. The mobile phone connects and
registers to the VDSG via a Bluetooth gateway. The
Bluetooth gateway also reports the VDSG position of the
mobile phone, which then helps the VDSG to establish
the vicinity relationship between the mobile phone and
other equipment in the same room. The mail application
runs on the application server and works as a mail server
demon, monitoring incoming e-mail for registered users.
When an e-mail arrives, the mail application sends a
notification to the user�s mobile phone via the Bluetooth
gateway. The application then generates an XHTML
page containing the message header, the body, and the
interaction menu. The application then inserts VDDL tags
into the XHTML page and publishes the page to the Web
server. The uniform resource locator (URL) is contained
in the message sent to the mobile phone to notify the

High-resolution picture

Detailed map

Console
and

thumbnails

An information access demonstration.

Figure 11

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

645

user that mail has arrived, The mobile phone agent
redirects the request to the the VDSG and the
XHTML page.

Interaction is the major enhancement in this
demonstration. The user can use the e-mail application
menu shown on the mobile phone screen to receive new
e-mail, retrieve an existing e-mail, or delete a message.
The user can also show the body of the e-mail on a flat-
screen television, where it can be scrolled and the user
can move through input fields by pressing the arrow keys
of his mobile phone. Finally, the user can input mail
content using the mobile phone keyboard. The input on
the mobile phone can be synchronized with the television
screen. Figure 13 shows screen captures of the mobile
phone screen in the demonstration.

Conclusion and outlook
This paper has presented an innovative framework that
allows devices available to a mobile user to collaborate,
enabling enhanced user experiences. The framework also

gives developers a new authoring platform—the virtual
device. The framework makes use of the virtual device
service gateway, which collects device information in the
user environment and associates service and application
requirements with the proper devices in order to deliver
enhanced services. The framework also defines a virtual
device programming model for the application developer
to create Web applications that benefit from federated
client device capabilities.

To date, we have conducted a series of user studies
and generated typical usage scenarios. We designed and
implemented the prototype of the server-side VDSG,
designed and implemented parts of the virtual device
programming model for Web applications, and created the
demonstrations. Other significant areas in device capability
on-demand research which require further work include
multidevice security mechanisms, a virtual device
programming model for non-Web applications, and
an embedded version of VDSG to support thin-
client devices.

Figure 13

Mobile phone screens in the mail process demonstration.

Register Notify Select Reply Input

Figure 12

Presentation demonstration.

Video
within
slide

Speaker notes
and outline

Slide

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

646

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Bluetooth
Special Interest Group, UPnP Forum, Sun Microsystems
Incorporated, Salutation Consortium, ZigBee Alliance, or
Microsoft Corporation in the United States, other countries,
or both.

References
1. W. Buxton, “Less is More (More or Less),” The Invisible

Future: The Seamless Integration of Technology into
Everyday Life, P. J. Denning, Ed., McGraw-Hill Book Co.,
Inc., New York, 2001, pp. 145–179.

2. The Official Bluetooth Web site; see http://
www.bluetooth.com/.

3. UPnP Forum; see http://www.upnp.org/.
4.
5. The Salutation Consortium; see http://www.salutation.org/.
6. B. Myers, “The Pebbles Project: Using PCs and Hand-

Held Computers Together; Demonstration Extended
Abstract,” Proceedings of the ACM Conference on
Computer–Human Interaction (CHI 2000): Human Factors
in Computing Systems, April 2000, pp. 14 –15.

7. P. R. Cohen, M. Johnston, D. McGee, D. Smith, S.
Oviatt, J. Pittman, L. Chen, and J. Clow, “QuickSet:
Multimodal Interaction for Simulation Set-up and
Control,” Proceedings of the 5th Applied Natural Language
Processing Meeting, 1997, pp. 31– 40.

8. B. Johanson, S. Ponnekanti, C. Sengupta, and A. Fox,
“Multibrowsing: Moving Web Content Across Multiple
Displays,” Proceedings of the 3rd International Conference
on Ubiquitous Computing, 2001, pp. 346 –353.

9. M. Beigl, A. Schmidt, M. Lauff, and H.-W. Gellersen,
“The UbicompBrowser,” Proceedings of the 4th European
Research Consortium for Informatics and Mathematics
(ERCIM) Workshop on User Interfaces for All, 1998.

10. T.-L. Pham, G. Schneider, and S. Goose, “A Situated
Computing Framework for Mobile and Ubiquitous
Multimedia Access Using Small Screen and Composite
Devices,” Proceedings of the 8th ACM International
Conference on Multimedia, 2000, pp. 323–331.

11. G. Schneider, S. Djennane, T.-L. Pham, and S. Goose,
“Multimodal Multi-Device UIs for Ubiquitous Access to
Multimedia Gateways,” Proceedings of the 17th
International Joint Conference on Artificial Intelligence:
Workshop on Artificial Intelligence in Mobile Systems
(AIMS), 2001, pp. 61– 64.

12. S. Robertson, C. Wharton, C. Ashworth, and M. Franzke,
“Dual Device User Interface Design: PDAs and
Interactive Television,” Proceedings of the Conference on
Human Factors in Computing Systems, 1996, pp. 79 – 86.

13. S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T.
Winograd, “ICrafter: A Service Framework for Ubiquitous
Computing Environments,” Proceedings of the Third
International Conference on Ubiquitous Computing, 2001,
pp. 56 –75.

14. AIM RFID Web site; see www.aimglobal.org/technologies/rfid/.
15. GPS World Web site; see http://www.gpsworld.com/gpsworld/.
16. The Zigbee Alliance; see http://www.zigbee.org/.
17. A. Ward, A. Jones, and A. Hopper, “A New Location

Technique for the Active Office,” IEEE Pers. Commun. 4,
No. 5, 42– 47 (October 1997).

18. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer,
“EasyLiving: Technologies for Intelligent Environments,”
Proceedings of the 2nd International Symposium on
Handheld and Ubiquitous Computing, 2000, pp. 12–29.

19. Composite Capability/Preference Profiles (CC/PP); see
http://www.w3.org/Mobile/CCPP/.

20. Ars Technica Newsdesk; see http://arstechnica.com/archive/
news/1062698930.html.

21. Wi-Fi Planet; see http://www.WI-FIplanet.com/news/
article.php/1566601/.

22. IBM China Research Laboratory, 2/F, Haohai Building,
No. 7, 5th Street, Shangdi, Haidian District, Beijing
100085, People�s Republic of China; location-based
service project; see http://www.research.ibm.com/beijing/
updates/lbs.html.

23. Document Object Model (DOM); see http://www.w3.org/DOM/.

Received October 16, 2003; accepted for publication

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 R. Y. FU ET AL.

647

Jini Community; see http://www.jini.org/.

February 4, 2004; Internet publication September 7, 2004

Rong Yao (Frank) Fu IBM Research Division, IBM China
Research Laboratory, 2/F, Haohai Building, No. 7, 5th Street,
Shangdi, Haidian District, Beijing 100085, People�s Republic
of China (furongy@cn.ibm.com). Mr. Fu is a Staff Research
and Development Engineer in the Future Client and User
Paradigm Research Department. He received B.S. and M.S.
degrees in computer science from Northwest Polytechnic
University in 1995 and 1998, respectively. Subsequently, he
joined IBM, where he has worked on ubiquitous computing.
Mr. Fu received an IBM Research Division Award in 2000
and IBM Invention Achievement Awards in 2001 and 2002.
He has filed or published 13 patents.

Hui Su IBM Research Division, IBM China Research
Laboratory, 2/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(suhui@cn.ibm.com). Dr. Su received B.S. and Ph.D. degrees
from the Institute of Information at Tsinghua University in
1992 and 1996, respectively. He has been a Senior Research
Member and manager of the Future Client and User
Paradigm Research Department since 1996. He became a
member of the Association for Computing Machinery in 2001.
Dr. Su�s research interests include interaction technologies
between humans and computers, user experience, the impact
on the ubiquitous computing infrastructure and programming
model, and knowledge-worker experience. He has filed or
published 18 patents.

James C. Fletcher IBM Ubiquitous Computing Division,
P.O. Box 12195, Research Triangle Park, North Carolina 27709
(fletchj@us.ibm.com). Mr. Fletcher is a Senior Technical
Staff Member and chief architect in the IBM Ubiquitous
Computing Division. He received a B.S. degree in computer
science from North Carolina State University in 1976. He
later joined IBM and spent much of his career focused
on computer networking prior to joining the Ubiquitous
Computing Division, where he focuses on enterprise solutions.
He has received numerous IBM Outstanding Technical
Achievement Awards during his career. Mr. Fletcher has
authored more than 40 technical journal articles and
coauthored three books. He holds numerous patents in the
areas of networking and ubiquitous computing.

Wei Li IBM Research Division, IBM China Research
Laboratory, 2/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(weil@cn.ibm.com). Mr. Li is a Research Staff Member in the
Future Client and User Paradigm Research Department. He
received an M.S. degree in computer science from Tsinghua
University in 1998. He subsequently joined the IBM China
Research Laboratory, where his work has focused on
ubiquitous computing. Mr. Li has published more than
ten patents in the area of ubiquitous computing.

Xiao Xi Liu IBM Research Division, IBM China Research
Laboratory, 2/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(liuxx@cn.ibm.com). Mr. Liu is a Research Staff Member in
the Future Client and User Paradigm Research Department.
He received B.S. and M.S. degrees in electronic engineering
from Northwestern Polytechnical University in 1998 and 2000,
respectively. Mr. Liu subsequently joined the IBM China
Research Laboratory, where he has worked on ubiquitous
computing and relevant research.

Shi Wan Zhao IBM Research Division, IBM China Research
Laboratory, 2/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(zhaosw@cn.ibm.com). Mr. Zhao is a Research Staff
Member in the Future Client and User Paradigm Research
Department. He received B.S. and M.S. degrees in
computer science from Tsinghua University in 1998 and 2000,
respectively. Mr. Zhao subsequently joined the IBM China
Research Laboratory, where he has worked on multimodal
interaction and ubiquitous computing.

Chang Yan Chi IBM Research Division, IBM China
Research Laboratory, 2/F, Haohai Building, No. 7, 5th Street,
Shangdi, Haidian District, Beijing 100085, People�s Republic
of China (chicy@cn.ibm.com). Ms. Chi is a Staff Research
and Development Engineer in the Future Client and User
Paradigm Research Department. She received a B.S. degree
in electronic science and technology from the Harbin Institute
of Technology in 1990, and an M.S. degree in electronic
engineering from the Harbin Engineering University in 1993.
In 1998 Ms. Chi joined the IBM China Research Laboratory,
where she works on multimodal interaction and ubiquitous
computing.

R. Y. FU ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

648

