
LORE: An
infrastructure
to support
location-aware
services

Y. Chen
X. Y. Chen

F. Y. Rao
X. L. Yu

Y. Li
D. Liu

With the advance in wireless Internet and mobile computing,
location-based services (LBS)—the capability to deliver
location-aware content to subscribers on the basis of the
positioning capability of the wireless infrastructure—are
emerging as key value-added services that telecom operators
can offer. To support efficient and effective development and
deployment of innovative location-aware applications, a
flexible and resilient middleware should be built as the
enabling infrastructure. This paper presents the research and
efforts made in the IBM China Research Laboratory toward
developing an infrastructure that supports location-aware
services. This infrastructure is based on a proposed location
operating reference model (LORE), which addresses many
major aspects of building location-aware services, including
positioning, location modeling, location-dependent query
processing, tracking, and intelligent location-aware message
notification. Three key components of the infrastructure—the
location server, a moving object database, and a spatial
publish/subscribe engine—are introduced in detail. The
location server has a common location adapter framework that
supports heterogeneous positioning techniques and industry-
standard location application program interfaces (APIs).
The moving object database manages the location stream
and processes the location-based queries. The spatial
publish/subscribe engine enables intelligent location-aware
message notification. We also present some location-aware
application demonstrations that leverage the LORE
infrastructure. Part of our work has been tested in pilot
projects with leading carriers in China and has been integrated
into the IBM WebSphere� Everyplace� Suite.

Introduction
With advances in wireless Internet and mobile computing,
location-based services (LBS) are emerging as key value-
added services for telecom operators to deliver. LBS
enables them to provide personalized location-aware
content to subscribers using their wireless network
infrastructure. Besides telecom operators, more and more
service providers such as public wireless LAN providers,
enterprises, and others are developing and deploying

location-aware services for consumers and employees to
gain more revenue and productivity. These location-aware
service providers are facing both technical and social
challenges, such as positioning in various environments
using different locating mechanisms, location tracking,
the information delivery model, privacy issues, and the
development of innovative LBS applications that succeed
at delivering more business impact and value. It has been
realized that a flexible and resilient middleware should be

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

601

built as the enabling infrastructure to support the different
players, so that a service provider can efficiently,
effectively, and quickly develop and deploy LBS
applications and support innovative location-aware
applications.

The location-aware infrastructure should address the
key challenges in location-aware computing identified
in [1]. These include technology-independent location
sensing, end-to-end control of location information,
tracking and predication, and other research challenges
involving geospatial information processing and human
interaction with this information.

We address the challenges listed above in an
infrastructure supporting location-aware services. A
location operating reference model (LORE) is built to
capture the location operation semantics by multiple
layers in which a richer location operation semantic
is modeled at a higher layer. The location operation
semantics we present address many issues—for example,
how to retrieve the location data, how the location data
is modeled, how to fuse location from different location
sources, how to query the location data, how to use a
tracking mechanism to deliver intelligent location-aware
notification, and so on. In addition to the semantics, two
other important dimensions in location-aware computing—

privacy protection and management—are also covered by
the LORE model. On the basis of the LORE model, different
components of the location-aware infrastructure are built
to meet the requirements of different layers and expose
application program interfaces (APIs) to developers who
can then build other components that can plug into the
model. In the following sections, several key components
of the LORE infrastructure are introduced to show issues
of the location-aware computing we address and to explain
how the composition of components could facilitate the
development of various location-aware services.

The paper is organized as follows. In the next section,
the LORE model and the infrastructure are presented.
The three key components of the infrastructure—the
location server with common adapter framework, the
moving object database, and the spatial publish/subscribe
(pub/sub) engine—are introduced in the subsequent
sections. A location-aware messaging prototype that
leverages the infrastructure is then presented. After that,
we discuss related work, and then summarize our work
and discuss our future direction.

Location operating reference model and
infrastructure
Figure 1(a) illustrates the proposed LORE model to
capture the semantics and management issues required
when building location-aware services. The LORE model
includes four domains: operation semantic, management,
privacy and security, and location-aware agent.

Operation semantic domain
The operation semantic domain includes layered
components which are, from bottom to top: positioning,
modeling, fusion, query, tracking, and intelligent
notification. The layered components explicitly describe
the dependencies among components; i.e., the upper
component uses the functionalities exposed by lower
components to build more advanced functionalities. The
overall functionalities provide the capabilities for location-
aware applications requiring a rich location operation
semantic.

The positioning component addresses the issue of
technology-independent location sensing, i.e., how to
obtain the location information of a target object via
specific positioning mechanisms. Technical neutral
positioning requires that the positioning component
be able to interface with heterogeneous positioning
equipment and expose a uniform virtual positioning
mechanism for other components. The component has to
deal with two different modes of positioning: server-based
and client-based. In server-based mode, the location of
the target object is measured and calculated on the
server side. For example, Global System for Mobile
Communications** (GSM**) networks could determine

(a) Location operating reference model. (b) Infrastructure sup-

porting location-aware services.

Figure 1

Web services

Positioning

Modeling

Fusion

Query

Tracking

Intelligent

notification

P
ri

v
a
c
y
 a

n
d
 s

e
c
u
ri

ty

M
a
n
a
g
e
m

e
n
t

Location-

aware

services

Operation

semantic Moving

object

database

Location

server

Spatial

pub/sub

engine

LBS middleware

Y
e
ll

o
w

 p
a
g
e
s

E
m

e
rg

e
n
c
y

se
rv

ic
e
s

E
n
te

rt
a
in

m
e
n
t

N
a
v
ig

a
ti

o
n

Mobile device with mobility

location client

(a) (b)

Location-

aware

agent

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

602

the subscriber�s position by the cell in which the mobile
phone is being served. In client-based mode, the device
does self-positioning; e.g., the global positioning system
(GPS) device can determine its location. The major
difference between the two modes is the way in which the
positioning component retrieves the location information.
In server-based mode, the component pulls the location
from the server by accessing the location interface— e.g.,
the Location Interoperability Forum (LIF) [2] interface—
exposed by the server. In client-based mode, the device
always pushes the location to the positioning component,
because it is difficult for the client to have a location
interface. Two positioning modes require the positioning
component to support both push and pull models.

The modeling component describes the semantic of
location information. Because location data can come
from different positioning mechanisms, it shows great
heterogeneities in syntax, name, type, and metric system.
For example, the LIF exposes location data in eXtensible
Markup Language (XML) format, while GPS exposes
location data in compact binary format. GPS can provide
velocity information, while most GSM positioning
approaches could not provide such data. The modeling
component integrates the heterogeneous location data by
providing a uniform location model that facilitates the
development of flexible services. The location model
captures sufficient information on location, including
coordinates, time, velocity, error, and other related
information.

The fusion component addresses the issue of how to
derive an accurate location by fusing location reports from
multiple devices for one target object. For example, a
person has a cell phone, a notebook computer with a
wireless card, and a GPS receiver. All of these devices can
be positioned, and their location reports are sent to the
fusion component to determine the precise location. The
fusion component derives the precise location on the basis
of a predefined rule set, which may define the possibilities
of location accuracy in different contexts. There are many
interesting topics in the location fusion algorithms and
rule set to be researched. Among the research work in
this area, Myllymaki and Edlund [3] have proposed a
methodology for aggregating location data from multiple
sources associated with a moving object.

The query component provides spatio-temporal query
interfaces from which applications or end users could
obtain location information for interested objects and
issue location-related queries. The query could involve
not only current location information, but also historical
and/or future location information. A typical location
query is Please report the location of object X. Another,
more complex, spatio-temporal query involving historical
information is Please report the objects that are in zone X
at time Y. The query component depends on positioning

and/or fusion components to obtain the location data.
To support effective historical and current location
information retrieval, the query component employs a
spatial index to improve the query performance. The
spatial index could be an R-tree and its variations, grid
index, Z-order, and so on. Some location-predication
mechanism could be used by the query component to
answer the question about the future location of specific
objects.

The tracking component plays a key role in location-
based services in the sense that most LBS applications
require the tracking locations of target objects so that they
can determine the trajectory and provide information
based on the location or trajectory of the target object.
Typical applications include fleet management, taxi
dispatch, and road assistance navigation. Tracking
puts significant performance impact on the underlying
positioning component by positioning the location of
the objects continuously or in a specified time interval.

The intelligent notification component sends location-
dependent messages, including sales promotion, weather
and traffic information, nearby events, and so on. A
typical application of the intelligent notification is Please
send me promotion message while I am in zone X. The key
technology behind intelligent notification is spatial pub/sub
service. Users define, in advance, the events in which they
are interested by specifying spatio-temporal conditions.
Then, by taking user location information into consideration,
notification is delivered to them when the conditions are
met. While the intelligent notification component is
deployed to support a large number of users, the spatial
pub/sub should also provide a scalable mechanism to
enable intelligent location-aware services.

Management domain
The management domain includes the mechanisms
necessary to support managing the components in the
operation semantic domain. With the exception of
privacy and security issues, these components include
configuration management, policy management,
monitoring and logging, component availability, and so on.

Privacy and security domain
Privacy and security play an important role in building
location-aware business services, because a user�s location
is an important aspect of privacy information and should
be protected from invalid use and exposure. The privacy
and security domain provides a flexible framework to
guarantee that the use of location information is under
control in the location-aware services environment. In the
privacy framework, the user can decide who or which
service has permission to obtain location information;
furthermore, the user can define where, when, and why
(for what purpose) the information can be retrieved

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

603

or used. The security framework protects location
information by leveraging proven security mechanisms,
such as encryption, digital signature, and secure
transportation protocol.

Agent domain
Advances in mobile computing mean that mobile devices
such as cell phones and personal digital assistants (PDAs)
gain more computing, networking, and storage capability.
More scalable location-aware services and innovative
user experiences can be built by taking advantage of the
resources in such devices. The agent domain introduces
the location-aware agent that resides in the mobile device
and cooperates with servers to complete location-aware
services. For example, in the tracking service, the self-
positioning client could send the location information to
the server only when changes in the location are larger
than a predefined threshold. This can reduce network
traffic and server resource consumption. The agent
domain provides a framework to build a service-specific
location-aware agent.

Infrastructure supporting the LORE model
On the basis of the LORE model, the infrastructure that
supports location-aware services is proposed as shown
in Figure 1(b). With the support of the infrastructure,
location-aware services such as yellow pages, emergency

services, entertainment, and navigation services could
easily be created and deployed. Three prototypes of
the key components in the LBS middleware of the
infrastructure are implemented, and all components in
the LORE operation semantic domain are covered.

Location server
The location server (LS) provides the positioning,
modeling, and fusion components in the LORE operation
semantic domain. It also supports simple query and
tracking functions. The common adapter framework is
introduced to support technology-independent location
sensing, which is detailed in the next section. The location
server supports the Wireless Application protocol (WAP)
[4] location API and LIF [2] interface for retrieving and
querying location information. Also, the location server
includes a privacy mechanism to protect location
information from being used without the owner�s
permission.

Moving object database
The moving object database (MOD) manages the location
data collected from the location server and provides the
query and tracking components in the LORE operation
semantic domain. The continuous, active monitoring engine
for location-based services (CAMEL) [5] is built as a MOD
prototype that supports queries of both historical and
current location information. MOD is discussed in the
section on moving object databases.

Spatial pub/sub engine
The spatial pub/sub engine supports the intelligent
notification component in the LORE operation semantic
domain. It provides interfaces for subscribing location-
aware messages and defining system-wide or application-
specific location information for subscription. A section
below is devoted to describing the spatial pub/sub engine.

In addition to the LBS middleware, the infrastructure
also includes a mobility location client (MLC) that
supports the location-aware agent domain in the LORE
model. An MLC framework based on the Java** 2
Platform, Micro Edition (J2ME**) is implemented and
supports the JSR179 specification (Location API for
J2ME) [6]. The MLC enables the applications in mobile
devices to leverage local resources and cooperate with
remote servers to improve system performance and reduce
network traffic.

Location server
The location server provides the positioning, modeling,
and fusion components of the LORE operation semantic
domain and supports the privacy and security and
management domains in the LORE model. The
architecture of the location server is depicted in Figure 2.

Location server architecture. [The circled “P” indicates connection

pools and a mobile station identifier (MSID) combination. The circled

“F” indicates fusion algorithms.]

Figure 2

Privacy service Cache service Flow control

Reverse

geocoding service
Billing service

User/device

authentication

Service management framework

Common adapter framework

Adapter

Locating

system for

Cisco Aironet**

Adapter Adapter

Other...

F

Query Period query

Location APIs

P

Ericsson**

Mobile

Positioning

System

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

604

The location server has three layers: location APIs, the
service management framework, and the common adapter
framework. It is designed with three features in mind:
flexibility in location API, scalability in the common
adapter framework, and extensibility in service
management.

Common adapter framework
The common adapter framework (CAF) provides standard
APIs to fetch the location information of the target object
without regard to the positioning mechanisms. It defines a
common adapter interface intended to shield the details
of various positioning systems and provides one adapter
implementing this interface for each underlying positioning
system. Each vendor-specific adapter focuses on dealing
only with transport—HyperText Transfer protocol (HTTP)
or Transmission Control protocol (TCP)—and the XML
format transcoding. A new adapter can easily be developed
and plugged into the framework in a short time.

In some specified infrastructures [for example, in GSM
code division multiple access (CDMA) wireless networks],
positioning is a resource- and time-consuming process.
CAF provides performance optimization mechanisms
such as connection pools and a mobile station identifier
(MSID) combination, specified as a circled P in Figure 2.
Connection pools are designed to reuse socket connections
and restrict the maximum network traffic. An MSID
combination can bind multiple concurrent location queries
to one location query, so that the corresponding adapter
talks to the positioning equipment only once and obtains
location information for multiple MSIDs.

CAF supports multiple adapters simultaneously by
various fusion algorithms, specified as a circled F in
Figure 2. There are many kinds of policies to retrieve
location from multiple adapters. The simple way is a brute
force solution in which every request is permitted to go to
all adapters and the proper one is selected. Another way
is to order all adapters according to their probabilities
calculated from the history data. The fusion algorithm
from multiple adapters is still a research challenge.

Service management framework
The goal of the service management framework is to
address the issues in the privacy and security and
management domains of the LORE. These services
implement the common service interfaces defined by the
framework and, as the framework is currently configured,
can be called before or after the location acquisition. The
services currently supported by the framework are privacy,
user/device (U/D) authentication services, cache, flow
control, billing, and reverse geocoding. New services can
be developed and plugged into the framework on the basis
of the interface.

Since privacy control based on user and location
acquisition is from the device, the U/D pair should be
completely authenticated in order to avoid potential
disclosure of privacy information. U/D authentication
service provides U/D mapping information according to
the open U/D authentication API defined in the system.
Note that there is no concrete implementation for U/D
authentication service in the location server. The service is
implemented in a domain-specific or solution-specific way.
For example, it can be implemented on the basis of the
enterprise employee database for an enterprise location-
aware system, or it can be based on the user profile
repository for mobile operators who deploy LBS
applications.

Because the indiscriminate use of location information
for people can infringe on personal privacy, fine-grained
access control to location information is necessary. Privacy
service provides a privacy protection mechanism based
on the role-based access control model, with time and
location constraints. Users can determine who can access
what location information under which circumstances.

Because location acquisition is a time- and resource-
consuming process, cache service was introduced to
accelerate responsiveness. The goal of cache service is to
maximize the use of available location information under
the caching strategy, thus reducing the consumption of
system resources and improving performance.

Flow control service is designed to avoid location
server traffic congestion and to ensure fair play among
applications. There are two kinds of constraints:
application-independent constraint, such as the maximum
concurrence requests limit, and application-dependent
constraint, such as the maximum number of requests
allowed within a given time period and the minimum
interval among consecutive successful requests. By
supporting effective and efficient flow control, the location
server can avoid attacks resembling denial of service and
resource overspending.

Billing service is a special logging service to facilitate
billing for location services. It logs detailed request/
response data into output files from which necessary
information can be extracted by various billing engines
to generate billing reports.

Reverse geocoding defines the interface to map the raw
location data to a normalized and meaningful symbolic
address such as street, city, or zip code. Consequently,
there are two types of reverse geocoding. One is a
common process that provides domain-independent
reverse geocoding, for example, at the city or country
level, and another is an application-specific process that
provides domain-dependent reverse geocoding, such as for
an enterprise or office building. The implementation for
this service can be either self-developed or a wrapper for
third-party reverse-geocoding modules.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

605

Location APIs
The location server addresses the modeling issue by
defining a common open location model that includes
geolocation, address, timestamp, and application-specific
information. The location information based on this model
adapts to various positioning techniques and covers all
information required by applications.

Two kinds of query modes are supported: query and
subscription. In query mode, the location of a target object
can be sent to the requester immediately. In subscription
mode, the locations of target objects are sent to the
requester at specified intervals. Two sets of primitive
messages are defined for the modes, respectively: the query
service primitive messages set and the subscribe service
primitive messages set. Each set includes several primitive
messages that describe the interaction pattern between
the requestor and the requestee (location server). On
the basis of the two core services and the corresponding
primitive messages, it is easy to support different industry-
standard location APIs, such as WAP and LIF, by
mapping them to core services at the location server. For
example, WAP immediate query service and deferred
query service are respectively mapped to query service and
subscribe service.

Moving object databases
CAMEL is a high-performance engine that manages the
location stream to support query, tracking, and intelligent
notification components in the LORE operation semantic
domain. These components are typically developed to

meet the requirements of next-generation intelligent
location-aware services. CAMEL takes a MOD approach
that not only stores historical and current location
information of mobile users, but also predicts their future
locations. The historical information captured in CAMEL
can be used by a data mining tool to discover mobility
patterns. The overall architecture for CAMEL is
illustrated in Figure 3. CAMEL is composed of several
components that can be physically distributed in different
network nodes, which communicate with each other using
standard protocols and interfaces such as TCP/IP, HTTP,
and Java database connectivity (JDBC). CAMEL
components include the location listener, query engine,
location filter, trigger handler, data server, database, and
administration console. The distributed-component-based
architecture not only makes the system robust, but also
facilitates the easy deployment of CAMEL in different
environments. In this section, we briefly introduce the
components.

Database
The database (DB) component is the heart of CAMEL
and serves not only as storage for the location data,
but also as the registry and configuration repository.
The registry is used by the system to record component
running information, such as host address, port number,
and running status. When starting up, each component
registers its host address and port information in the
registry, and other dependent components use this
information to find it. The configuration repository is a
central repository for all components to store component-
specific parameters. The registry and configuration
repositories make the system more flexible and
manageable.

Location data for each moving object at checkpoint
time is stored in an object checkpoint table (OCT) in
the database. OCT records the historical information
of a moving object (oid: object identifier) and is used for
historical queries and data mining. For example, the query
What is the trajectory of object A from time t1 to t2? can be
answered by the function,

trajectory (select location from OCT where oid � A

and t1 � t � t2).

Location listener
The location listener (LL) accepts location reports from
reporters, such as the tracking server or self-positioning
devices, using a Location Publish protocol (LPP) based
on HTTP. Any authenticated reporter can send location
reports to LL via LPP. For performance reasons, a
location report protocol that uses Java object serialization
over User Datagram protocol (UDP) is also supported

CAMEL, the moving object database architecture.

Figure 3

Database

Location

filter

Trigger

handler

Data

server
Node

Java database

connectivity (JDBC)

Location listener Query engine

TCP, User Datagram

protocol (UDP)

HTTP,

UDP, Web service

Administration

console

CAMEL

applicationLocation

Publish

protocol

Location stream

Notification

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

606

by LL and facilitates Java-based CAMEL applications.
Upon receiving a location report, LL propagates it using
Internet protocol (IP) multicast to other registered
location receivers that have registered themselves with LL
at start-up. Potential location receivers are location filter,
trigger handler, and data server. The presence of LL
makes it easy to add new components (location receivers)
to the system and to prevent incomplete or invalid
location data from entering the system.

Query engine
The query engine (QE) is the main interface to issue
queries about moving objects. Currently, the following
types of queries are supported:

● GetLocation: Obtain the location of an object at a
specified time.

● Window query: Obtain objects that are within a specified
distance from a specified object.

● kNN: Obtain the k nearest objects relative to a specified
object.

● Trigger: Send a notification when the location of a
specified object meets a predefined condition.

● Historical query.

The query engine exposes its interface using Web
services technology, and the query supported is
represented by Web Services Description Language. QE
forwards some type of query using TCP to underlying
components, such as the trigger handler and data server.

Location filter
A high arrival rate of location reports from location
reporters introduces two difficulties: the database insertion
of location data may become a bottleneck, and there is a
possibility of redundant location data. The location filter
(LF) is designed to filter incoming location data to reduce
the location stream while ensuring its quality. The LF is
implemented as a location receiver of LL and writes the
filtered location into the OCT database table. CAMEL
implements several filter algorithms that typically reduce
the original location stream by 60 to 80% while
maintaining reasonable location accuracy.

Trigger handler
A spatial trigger is a very important kind of query in a
MOD and is the base for push-based services in LBS. In
CAMEL, trigger Tr is defined by a tuple Tr � (SP, Sink),
where SP is a spatial predicate with location variables
and Sink is the access point of the notification receiver
when the trigger is fired. Currently, four Sink types are
supported: HTTP, TCP, UDP, and Console. They print
only the notification on the standard output. When a
location arrives, the trigger handler (TH) evaluates it

against the triggers defined in the system (binding the
location to the predicate) to check whether it satisfies
any trigger predicate. If one trigger is satisfied, the
notification, along with the triggered location, is sent to
the sink defined in the trigger. The TH is implemented
as a location receiver of the LL and supports the trigger
operations create trigger and drop trigger. In the
section below on the spatial pub/sub engine, we discuss
spatial triggers in more detail, and how they can support
the spatial pub/sub engine.

Data server
As mentioned above, CAMEL supports historical, current,
and future location queries. In practice, most queries are
related to the current location of objects (for example,
kNN and window queries) and require real-time
processing. The data server (DS) is responsible for
processing only those queries that concern current
locations (the most common query in location-aware
services). To improve the performance of the query
related to current location and avoid access to a database,
a main memory snapshot of moving objects is used to
manage current locations. More specifically, the current
snapshot stores the latest locations from reporters instead
of the current locations of moving objects. The snapshot is
organized as a spatial index that accelerates the processing
of some queries, such as the window query and the kNN
query. Meanwhile, the spatial index is required to sustain
high-performance updates and lookups because of the
high arrival rate of location data. After comparing several
spatial index methods, making a tradeoff between
updating and searching, and taking the main memory
characteristic into consideration, CAMEL employs a grid
index as its snapshot indexing mechanism. The primary
reason for this is that the index scales up well under high
update rates and has a clean implementation with good
performance when searching in main memory. This is
in contrast to an R-tree, whose variations suffer from
frequent index entry splitting and merging. Kwon et al. [7]
proposed a lazy-update R-tree (LUR-tree) to reduce
updates in the R-tree. It is, however, based on a
continuous model that requires a predefined moving
pattern such as speed.

One consideration is whether CAMEL will be set
up in a region with a large area, or in several small
administration regions. An example of the latter is Beijing,
a large city composed of several districts. For scalability
and load balancing, the DS is designed with a distributed
architecture in which new components, nodes, are added
to handle the moving objects that belong to each region.
The use of nodes introduces new issues such as distributed
query processing and mobile object migration/roaming.
New mechanisms, such as the distributed query manager and
roaming managers, are also introduced in the DS.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

607

Administration console
The administration console is a text interface console used
to configure and monitor other system components. The
console reads runtime information from the database and
connects to the various components. In addition, the user
can use the console both to issue queries and as a testing
tool.

Spatial pub/sub engine
With the support of a location server and a moving object
database, location-based services to support applications
such as location-aware yellow pages, road assistance, and
tracking could be delivered. A spatial pub/sub engine
brings a rich location operation semantic and provides
new user experiences by enabling active push-based
messaging on a user�s subscription. In this section,
the spatial pub/sub engine to support the intelligent
notification component of the LORE model is described.
The architecture of the engine is illustrated in Figure 4.
The engine adopts a novel client-side event processing
approach to improve performance by eliminating
server-side computing cost. The mobile location agent,
cooperating with the location agent controller, implements
the role of the location-aware agent in the LORE model.
The key components include the spatial pub/sub manager,
the spatial matching engine, the zone definition engine,
the location agent controller, and the mobile location
agent.

Models
The models adopted by the pub/sub engine include the
spatial event model, the spatial subscription model, and
the notification model.

Spatial event model
A spatial event is described by a set of properties specified
by name and value (NV) pairs. The three mandatory
properties for a spatial event are the following:

1. The object identifier (oid) is a unique identity indicating
the owner of the location. The object is a person, a
device, or anything that can be located.

2. The timestamp is the time at which the object is
positioned.

3. The location is the geographical location specified by
a predefined spatial reference system or a textual
description of the location that could be translated
into a geographical location via geocoding.

These three properties describe the most important three
dimensions that pertain to a spatial event: who, when, and
where. Other optional properties could also be introduced
to facilitate the processing of spatial events. These could
include uncertainty, which describes the uncertainty of the
location detected, and a location provider identifier, which
provides the location information.

Besides the predefined mandatory and optional names
for properties, other properties could be attached to the
spatial event to describe domain or application-specific
information. Usually this information is intended for the
subscription application and is not processed by the
pub/sub engine.

Spatial subscription model
Spatial subscriptions are used by subscribers to express
their interests on spatial events. In the spatial pub/sub
system, a spatial subscription is defined as a tuple (SP,
ToS), where SP is a spatial predicate defined upon the
location of objects and ToS is the type of service, discussed
later. The semantic for a spatial subscription is this: A
notification (based on the notification model) is sent to a
subscriber when an incoming spatial event (based on the
spatial event model) meets SP and ToS requirements.
Currently, two kinds of SPs are supported in the spatial
pub/sub system:

1. The within predicate has the syntax (oid1, oid2, . . . ,
oidn) within (zone1, zone2, . . . , zonen). The predicate is
true if and only if one of the locations of the mobile
user (oidi) is within one of the zones (zonej). A zone
is used to associate a named label with an interested
region so that not everyone or every application has
to define the query polygons for the same thing. A
subscription using the within predicate can be used to
support services such as “Please send me an e-coupon
while I am near the ABC shopping mall.”

2. The distance predicate has the syntax (oid) distance
(D, oid1, oid2, . . . , oidn). The predicate is true if and only

Spatial pub/sub engine architecture.

Figure 4

Spatial pub/sub

manager

Spatial

matching

engine

Location

agent

controller

MOD trigger

handler

Mobile

location

agent

Mobile

location

agent

XML

XML

Java Messaging Service

API
ZDE

API

Privacy

APIZone

definition

engine

(ZDE)

Privacy

manager

Zone

repository

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

608

if the distance between oid and oidi (1 � i � n) is less
than D. A subscription using a distance trigger can
support services such as a “mobile buddy list,”
which alerts a user when anyone on his predefined
buddy list is nearby.

These two SPs can help meet many location-aware
application requirements, and we are investigating other
SPs for constructing more complex location-aware
applications. Traditional pub/sub systems are based on the
publish–match–notify operational cycle. Therefore, a
spatial event is always sent to subscribers when a spatial
subscription is satisfied by the event. In the context of
location-aware applications, however, the event filter
mechanism could sometimes confuse the user. For
example, a user defines a within subscription, “(oid1)
within (zone1)”, where zone1 is the predefined area of a
shopping mall. While the user (oid1) is entering the zone
(zone1), he receives a promotion message. The within
subscription is always evaluated to be true when the user
stays in the shopping mall, so he continuously receives the
promotion message. Obviously, in this case, only one
promotion message makes sense to both the user and
the promotion provider. A one-time semantic of the
subscription specified by the ToS is introduced to
guarantee that the user receives only one promotion
message. While the ToS is set to once, the one-time
semantic of the subscription is applied by the spatial
matching engine.

Notification model
Notification takes the same NV pairs format as the event
model. It includes two parts:

1. The original event part copied from the event
information.

2. The subscription-specific part derived from the process
of matching subscriptions with events.

Client-side event processing approach
Owing to the intrinsic constraints of a mobile network, the
bandwidth of wireless communication is limited. How to
use the available bandwidth in an economic and efficient
way is a challenge for the system designer. When spatial
event matching is handled in the central pub/sub server,
intelligent devices should continuously publish their own
location to the server. This consumes bandwidth and
restricts the concurrency of the server. A novel client-
side event processing approach is presented to solve this
problem. This approach takes full advantage of resource
capabilities such as computing, storage, and positioning in
intelligent mobile devices. Its workflow is as follows:

1. The spatial pub/sub server dispatches within
subscriptions to a related intelligent device.

2. The intelligent device obtains its location from the
embedded positioning module and performs spatial
matching, instead of reporting the location to the
pub/sub server.

3. If the spatial subscription is satisfied—for example, if
a user is entering a predefined zone—a notification is
sent to the pub/sub server. Otherwise, the location is
discarded.

By leveraging the computing resources of intelligent
devices, the proposed novel event processing approach
not only relieves server-side workload, but reduces
communication times and saves wireless communication
bandwidth, thus enabling the system to support more
concurrent mobile users with less cost. Detailed
performance results can be found in [8].

Components
As shown in Figure 4, the spatial pub/sub engine is highly
modular, with clearly defined interfaces. The spatial
pub/sub manager manages the subscription/publishing of an
event and exposes the Java Messaging Service (JMS) [9]
interface. Message selectors from JMS are extended to
support a spatial subscription whose syntax is based on
the subscription model. The spatial matching engine
takes charge of filtering spatial events. To achieve high
performance in spatial matching, the engine uses a spatial
index technique to accelerate the matching process. For
the within predicate, an R-tree is employed to index
predefined zones on the basis of their minimum bounding
rectangle and to transform the subscription evaluation to
R-tree searching. Each zone maintains a hash table to
record the list of interested users. When a mobile user�s
location is within a zone and the mobile user is in the
hash table of the zone, a notification is sent out. When the
distance evaluation involves more than one mobile user,
the location cache is provided to store the latest location
data for those users, and an object trigger graph
mechanism is employed to handle the case. The spatial
match engine reuses the trigger handler module from
the CAMEL project [5]. The detailed algorithms and a
performance comparison can be found in [5]. The results
show that the matching engine has good performance and
scalability.

The location agent controller and mobile location agent
work together to implement the proposed client-side
event-processing approach and relieve the workload of
the spatial matching engine. The controller manages all
mobile location agents running on intelligent devices. It
provides an authentication mechanism for these agents,
sends related within subscriptions to them, receives the
matching spatial events from them, and forwards those

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

609

events to the spatial pub/sub manager. The interface
between the controller and the agent is based on XML.
The mobile location agent focuses on obtaining its
location information from an embedded positioning
module, such as GPS, and handling within predicates sent
by the controller. It evaluates spatial predicates on the
basis of the latest mobile device location. When a spatial
predicate is evaluated to be true, the matching spatial
event is sent to the controller. When the mobile user
involves distance predicates, the location agent controller
periodically queries the mobile location agent for the
mobile user�s location. When the controller receives the
location information back from the agent, it passes it
to the spatial matching engine.

The zone definition engine (ZDE) is used by the system
administrator and/or end user to define well-known zones
of interest (ZOIs) or user-specific ZOIs. A ZOI can be a
polygon (including rectangle) or a circle. A ZOI associates
a named label with a commonly referenced location such
as a shopping mall, so that each individual user does not
have to define a query rectangle for the same thing. For
example, in Beijing, a place such as Xidan (a large
shopping area with a number of giant malls) can be
predefined in the system as a polygon on the basis of its
geographic coordination (latitude, longitude). Similarly,
users can each predefine their homes according to their
geographic locations. Predefined ZOIs can be assigned a
symbolic name in the system, such as SYSTEM.Xidan and

Mike.HOME, where the prefix SYSTEM indicates a system-
defined ZOI, and others, preceded by a name, are ZOIs
defined by users. The zone definition engine exposes ZDE
APIs for client applications and for the spatial pub/sub
manager to manipulate zones.

The privacy manager provides a privacy API to handle
privacy issues and allows users to control who and what
applications can access their location. The discussion of
privacy protection is beyond the range of this paper, but
is discussed in [10, 11].

Demo prototype—Eagle
Eagle—a proof-of-concept system based on LBS
middleware—was built at the IBM China Research
Laboratory (CRL) to demonstrate how the LBS
middleware could be used to build innovative location-
aware applications. The architecture of the system is
depicted in Figure 5. The subscription is submitted from
the pub/sub portal by the CRL host for a guest, Mike. In
the portal, some ZOIs can be defined for a specific mobile
user. The ZOIs could be the airport, the CRL building,
and the reception and conference rooms in the building.
The subscription is handled by the pub/sub engine in the
LBS middleware. If Mike enters a ZOI, the application
is notified with related information (the zone entered,
location of user, etc.). Mike�s positions are reported to
the location server at a predefined interval or whenever
his location changes.

In the system, three types of locating methods are used:

● GPS is used as the outdoor locating mechanism, and a
piece of Java code running on a Compaq iPAQ** PDA
periodically reports the location to the location server in
the format of (user ID, longitude, latitude, timestamp).

● In the CRL building, the location is reported when a
user enters a new cell, managed by access points of the
wireless LAN.

● While being discovered by some stationary Bluetooth**
devices scattered in the building, the device reports their
locations to the location server. These Bluetooth devices
are placed in the reception area, conference rooms,
classrooms, etc.

Upon receiving the location report from mobile devices,
the location server publishes the location to the spatial
pub/sub engine, which compares it with a list of existing
subscriptions. If there is a match, the portal receives the
notification (for example, Mike is now at the airport) and
retrieves related contents from the content server. The
content could be a static text message, such as a welcome
or an introduction, or it could be a message with dynamic
content retrieved from a Web service when the user�s
location was input. Such content might be a GIS map
service or a routing service. The content is forwarded

Figure 5

Eagle system architecture.

Intranet

wireless LAN

Bluetooth**

Internet

General Packet

Radio Service

Pub/sub

portal

Messaging

server

Messaging

gateway

M
e
ss

a
g
in

g

C
o
n
te

n
t

se
rv

e
r

Content

Location report

Messaging

ContentGPS

positioning

Positioning

S
u
b
sc

ri
p
ti

o
n

N
o
ti

fi
c
a
ti

o
n

LS MOD
Pub/

sub

LBS middleware

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

610

to a messaging server using a Web service interface. The
message is delivered to the J2ME messaging client in the
PDA through the messaging gateway, which distributes
the message to the general packet radio service (GPRS)
network or wireless LAN. The messaging client presents
the user with the location-dependent content. If applicable,
information in the content can be accessed via a URL.
Figure 6 illustrates the publish interface for the IBM
China Research Laboratory buildings and a map of
Beijing delivered by the system to an iPAQ.

Related work
Considerable effort is being made and considerable
resources are being devoted to location-aware computing,
both in academia and industry. To our knowledge,
however, no comprehensive framework for building
location-aware services like the LORE model has been
proposed. Several separate efforts relate to partial
components or domains within the LORE model. They
are discussed below.

Much of the research has focused on developing a
services architecture for location-based applications.
Building on active badge location technology, researchers
at Olivetti proposed and developed the architecture for a
distributed location service [12]. The Olivetti system is
tied to the specific positioning technology.

Leonhardt presents a global general location service to
support location awareness in open distributed systems
[13]. He emphasizes the importance of integrating
various location techniques and depicts a hierarchical,
semisymbolic location model and uses policy-based access
control to protect location privacy. Although his effort

influences our location model, it is short of abundant
auxiliary services to simplify LBS development.

The work of Pfeifer and Popescu-Zeletin [14] has many
aspects in common with our work on the location server.
They introduce a modular location-aware service and an
application platform. The platform provides modular,
unified access to various services, which are commonly
used by multiple applications. Its prototype, however, is
based on CORBA**, and less effort has been directed at
privacy control. Privacy is considered to be the critical
issue in LBS.

Narayanan presents the idea of logical location contexts
which provide enhanced privacy in location-aware mobile
computing [10]. His work has helped us to build an
advanced privacy control mechanism.

MOD research addresses the issues of storing and
processing continuously moving objects. These issues can
arise in a wide range of applications, including traffic
control and monitoring, transportation and supply chain
management, digital battlefields, and mobile e-commerce
[15]. The pioneer work in MOD was done by Wolfson at
the University of Illinois at Chicago. In the DOMINO
prototype [16, 17], the moving object spatio-temporal
(MOST) data model [18] was proposed, as was the Future
Temporal Logic query language for modeling and querying
of moving objects. CAMEL shares the same goal of
managing the locations of moving objects and managing
the historical locations of moving objects for further use
in data mining.

The challenge in MOD is to support dynamic,
continuously evolving data and moving queries. As a
spatio-temporal database, MOD manages data with spatial

Figure 6

The publish interface and a map of Beijing in iPAQ.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

611

and temporal dimensions. To improve query performance,
indexing of moving objects is needed. Several methods of
indexing moving objects [19 –23] based on R-trees have
been put forward in the literature. Some work has
also been done to evaluate different indexing methods.
Myllymaki and Kaufman [24] investigated the performance
and scalability of three main-memory-based spatial
indexing methods under dynamic update and query loads.
Two data models were investigated on indexing moving
objects:

1. Continuous model. In the continuous model, moving
objects are modeled as points that start moving from
a specific location with a constant velocity vector. A
MOST data model is used. Some indexing methods—
such as time-parameterized R-tree (TPR-tree) [21] and
indexing scheme [25]—were developed on the basis of
this model.

2. Discrete model. In this model, only the locations of a
moving object are stored in a database as (location,
timestamp) tuples. Pfoser et al. [20] further developed
the model to describe trajectory segments and, to index
the historical trajectory of moving objects, proposed
two access methods based on the model: spatial-
temporal R-tree (STR-tree) and trajectory-bundle tree
(TB-tree).

The continuous model implicitly requires that moving
objects report both their location and velocity to the
location management system. This model is feasible in
areas such as vehicle tracking and digital battlefields,
where advanced devices equipped with GPS receivers
can report the required data to the system. However, in
location-based services which serve mobile users, a large
portion of potential customers have only cell phones,
which have no self-positioning capability and require
assistance from the wireless network to determine their
locations. Thus, in real life, it is difficult to directly
determine the velocities of most mobile users. For this
reason, CAMEL employs a discrete location model instead
of a continuous model, and it receives only location
information with timestamps from a tracking server or
from the device itself. The inherent differences between
the two models suggest different ways to process queries
and to index locations.

Gryphon [26] and Siena [27] are content-based pub/sub
systems. Gryphon provides an efficient and scalable
filtering algorithm to handle event matching. Siena
provides an expressive subscription language for
subscribers to select events of interest. Both of them
support primitive data types, while our spatial pub/sub
system can handle complicated spatial data types. Podnar
et al. [28] presented an architecture to deliver content
to mobile users on the basis of the pub/sub paradigm.

Their pub/sub system can work together with location
management to deliver location-aware messages to mobile
users. However, the spatial pub/sub system proposed in
this paper focuses on spatial-related information matching
and performance improvement.

An event-specification language that can be used to
express spatial events was presented by Bauer and
Rothermel in [29]. Their semantics of basic spatial events
is the same as ours, but they paid more attention to event
definition and event composition, while we made a greater
effort on spatial subscription and spatial event matching.

Work has been done at the University of Cambridge to
investigate services based on registration of interest in
user locations and proximities and notifying clients when
changes occur [30]. That system architecture, called
CALAIS, is based on distributed events technology and a
dynamically modifiable R-tree index. Fed with a stream
of location events, it was used to monitor locations and
proximities. CALAIS is suitable for the support of
context-aware applications operating within a typical
indoor office domain, while our spatial pub/sub system is
more suitable for the outdoor environment because it
leverages intelligent devices to provide high-performance
spatial event processing. A scalable location-aware system,
Rover, developed at the University of Maryland by Banerjee
et al. [31], provides a function similar to that of our Eagle
demo. Rover focuses on achieving system scalability to
very large client sets by introducing an action-model-
concurrent software architecture, and our Eagle demo
targets high-performance spatial pub/sub mechanisms.

Conclusion and future work
This paper presents the LORE model, including domains
of location operation semantic, privacy and security,
management, and a location-aware agent. Based on
the LORE model, an infrastructure, LBS middleware,
was built to support the rich sets of location-aware
applications. Three key components of LBS middleware—
the location server, the moving object database, and the
spatial pub/sub engine—implement the domain components
of the LORE model, enable innovative location-aware
applications, and make possible new user experiences.
A proof-of-concept system, Eagle, is demonstrated
to show how a location-aware service can be built
on such an infrastructure.

Some open issues in the LORE model still have to
be addressed and integrated into the LBS middleware.
Support for the fusion component must be investigated in
order to achieve more accurate location information from
multiple location sources. The privacy model and privacy
provisioning mechanism should be developed to protect
users� privacy while they enjoy new services, especially
services based on intelligent notification. The LBS
middleware requires enhanced and integrated management

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

612

tools to facilitate the deployment and management
of location-aware services and to align with other
information technology applications in enterprise or
computing environments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademarks or registered trademark of the GSM
Association, Sun Microsystems, Inc., Telefonaktiebolaget LM
Ericsson, Cisco Systems, Inc., Bluetooth Special Interest
Group, Hewlett-Packard Development Company, L.P., or
Object Management Group, Inc. in the United States, other
countries, or both.

References
1. C. A. Patterson, R. R. Muntz, and C. M. Pancake,

“Challenges in Location-Aware Computing,” IEEE
Pervasive Computing 1, No. 2, 80 – 89 (April–June 2003).

2. Location Inter-Operability Forum (LIF); see http://
www.locationforum.org/.

3. J. Myllymaki and S. Edlund, “Location Aggregation from
Multiple Sources,” Proceedings of the 3rd International
Conference on Mobile Data Management (MDM), January
2002, pp. 131–138.

4. WAP Location Protocol; see http://www.wapforum.org/.
5. Y. Chen, F. Rao, X. Yu, and D. Liu, “CAMEL: A Moving

Object Database Approach for Intelligent Location Aware
Services,” Proceedings of the International Conference on
Mobile Data Management, January 2003, pp. 331–334.

6. Community Development of Java Specifications; see http://

7. D. Kwon, S. Lee, and S. Lee, “Indexing the Current
Positions of Moving Objects Using the Lazy Update
R-Tree,” Proceedings of the 3rd IEEE International
Conference on Mobile Data Management, January 2002, pp.
113–120.

8. X. Chen, Y. Chen, and F. Rao, “An Efficient Spatial
Publish Subscribe System for Intelligent Location-Based
Services,” Proceedings of the 2nd International Workshop
on Distributed Event-Based Systems (DEBS �03), June
2003; see http://www.eecg.toronto.edu/debs03/papers/
chen_etal_debs03.pdf.

9. Java Messaging Service; see http://java.sun.com/products/
jms/.

10. A. K. Narayanan, “Realms and States: A Framework for
Location Aware Mobile Computing,” Proceedings of the
1st International Workshop on Mobile Commerce, July
2001, pp. 48 –54.

11. E. Snekkenes, “Concepts for Personal Location Privacy
Policies,” Proceedings of the ACM Conference on Electronic
Commerce (EC �01), October 2001, pp. 48 –57; see http://
www2.hig.no/�einars/einar_publications/papers/
ACM_EC01_13_09_2001.pdf.

12. A. Harter and A. Hopper, “A Distributed Location
System for the Active Office,” IEEE Network 8, No. 1,
62–70 (January/February 1994).

13. U. Leonhardt, “Supporting Location-Awareness in Open
Distributed Systems,” Ph.D. thesis, Imperial College of
Science, Technology, and Medicine, University of London,
England, 1998.

14. T. Pfeifer and R. Popescu-Zeletin, “A Modular Location-
Aware Service and Application Platform,” Proceedings of
the 4th IEEE Symposium on Computers and
Communications, July 1999, pp. 137–148.

15. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang,
“Moving Objects Databases: Issues and Solutions,”
Proceedings of the 10th International Conference on

Scientific and Statistical Database Management, April 1998,
pp. 111–122.

16. O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha,
“Updating and Querying Databases that Track Mobile
Units,” Distributed & Parallel Databases 7, No. 3, 257–287
(1999).

17. O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S.
Chamberlain, “DOMINO: Database for Moving Objects
Tracking,” Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 1999, pp. 547–
549.

18. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao,
“Modeling and Querying Moving Objects,” Proceedings
of the 13th IEEE International Conference on Data
Engineering, April 1997, pp. 422– 432.

19. P. K. Agarwal, L. Arge, and J. Erickson, “Indexing
Moving Points,” Proceedings of the 19th Annual ACM
SIGMOD–SIGACT–SIGART Symposium on Principles
of Database Systems, May 2000, pp. 175–186.

20. D. Pfoser, Y. Theodoridis, and C. S. Jensen, “Novel
Approaches in Query Processing for Moving Object
Trajectories,” Proceedings of the 26th International
Conference on Very Large Data Bases, September 2000,
pp. 395– 406.

21. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez, “Indexing the Positions of Continuously Moving
Objects,” Proceedings of the ACM SIGMOD/PODS
Conference, May 2000, pp. 331–342.

22. G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, and
M. Hadjieleftherious, “Indexing Animated Objects Using
Spatiotemporal Access Methods,” TimeCenter Technical
Report TR-54, January 25, 2001; see http://www.cs.auc.dk/
research/DP/tdb/TimeCenter/TimeCenterPublications/TR-
54.pdf.

23. S. Saltenis and C. S. Jensen, “Indexing of Moving Objects
for Location-Based Services,” Proceedings of the IEEE
International Conference on Data Engineering, February
2002, pp. 463– 472.

24. J. Myllymaki and J. Kaufman, “High-Performance Spatial
Indexing for Location-Based Services,” Proceedings of the
12th International World Wide Web Conference, May 2003,
pp. 112–117; see http://www2003.org/cdrom/papers/refereed/
p612/p612-myllymaki.html.

25. G. Kollios, D. Gunopulos, and V. J. Tsotras, “On
Indexing Mobile Objects,” Proceedings of the 18th ACM
Symposium on Principles of Database Systems, May 1999,
pp. 261–272.

26. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,
and T. D. Chandra, “Matching Events in a Content-Based
Subscription System,” Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC �99), May
1999, pp. 53– 61.

27. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,
“Achieving Scalability and Expressiveness in an Internet-
Scale Event Notification Service,” Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing
(PODC �2000), July 2000, pp. 219 –227.

28. I. Podnar, M. Hauswirth, and M. Jazayeri, “Mobile Push:
Delivering Content to Mobile Users,” Proceedings of the
22nd International Conference on Distributed Computing
System Workshops (ICDCSW �02), July 2002, pp. 563–570.

29. M. Bauer and K. Rothermel, “Towards the Observation of
Spatial Events in Distributed Location-Aware Systems,”
Proceedings of the 22nd International Conference on
Distributed Computing System Workshops (ICDCSW �02),
July 2002, pp. 581–582.

30. G. Nelson, “Context-Aware and Location Systems,” Ph.D.
thesis, Clare College, University of Cambridge Computer
Laboratory, January 1998; see www.sigmobile.org/phd/1998/
theses/nelson.pdf.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

613

jcp.org/en/jsr/detail?id�179.

31. S. Banerjee, S. Agarwal, K. Kamel, A. Kochut, C.
Kommareddy, T. Nadeem, P. Thakkar, B. Trinh, A. M.
Youssef, M. Youssef, R. L. Larsen, A. U. Shankar, and
A. K. Agrawala, “Rover: Scalable Location-Aware
Computing,” IEEE Computer 35, No. 10, 46 –53 (October
2002).

Received October 17, 2003; accepted for publication

Ying Chen IBM Research Division, IBM China Research
Laboratory, 4/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(yingch@cn.ibm.com). Dr. Chen received B.S. and Ph.D.
degrees in computer science from Southeast University,
China, in 1994 and 1999, respectively. He subsequently joined
the IBM China Research Laboratory and is currently a
Research Staff Member and manager. He led location-based
services and spatial information processing projects and
contributed to IBM products. He published more than 20
technical papers and filed several patents. Dr. Chen�s research
interests include Grid computing, data management, and
service-oriented architecture. He currently leads the operating
environment research team and works on Web services, Grid
computing, and their application in the telecommunications
industry.

Xiao Yan Chen IBM Research Division, IBM China
Research Laboratory, 4/F, Haohai Building, No. 7, 5th Street,
Shangdi, Haidian District, Beijing 100085, People�s Republic of
China (xiaoyanc@cn.ibm.com). Ms. Chen is a Research Staff
Member in the On-Demand Technologies Department. She
received B.S. and M.S. degrees from Peking University in
1988 and 1991, respectively, joining IBM in 1999. She
contributed to the design and development of location-based
services middleware for the IBM WebSphere Everyplace
Suite. Ms. Chen has published several papers in pervasive
computing and holds three patents. She is currently
responsible for value net management environment to
enhance the Operating Supporting System/Business
Supporting System.

Fang Yan Rao IBM Research Division, IBM China Research
Laboratory, 4/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(raofy@cn.ibm.com). Ms. Rao is a Research Staff Member.
She received a B.S. degree in computer science from Xi�an
Jiaotong University in 1993, and an M.S. degree in network
and distributed computing from Xi�an Jiaotong University
in 2000. She subsequently joined the IBM China Research
Laboratory, where she has worked in the location-based
services and spatial data processing areas. She is currently
working on technologies related to Grid and Web services.
Ms. Rao has received IBM Invention Achievement Awards
for her work, including spatial index optimization.

Xiu Lan Yu IBM Research Division, IBM China Research
Laboratory, 4/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(yuxl@cn.ibm.com). Dr. Yu received B.S., M.E., and Ph.D.
degrees from the Harbin Institute of Technology in 1994,
1996, and 1999, respectively. She was a postdoctoral fellow in
Chinese Academic Sciences, joining IBM in 2001. While at
IBM she has contributed to the research of location-based
services, with a focus on component design, simulation, and
modeling, as well as scalability. Dr. Yu is currently responsible
for research on the service operating environment.

Ying Li IBM Research Division, IBM China Research
Laboratory, 4/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(lying@cn.ibm.com). Dr. Li received B.S., M.E., and Ph.D.

Y. CHEN ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

614

January 29, 2004; Internet publication September 17, 2004

degrees from the Northwest Polytechnic University in 1996,
1998, and 2001, respectively. She has been a Research Staff
Member since joining IBM in 2001. While at IBM she has
contributed to the research and development of location-
based services, spatial business intelligence, and Web/Grid
services technologies. She has authored ten technical papers
and holds one patent on Web services. Dr. Li is currently
responsible for researching resilient Web/Grid services
provisioning and management for infrastructure for IBM
on-demand e-business.

Dong Liu IBM Research Division, IBM China Research
Laboratory, 4/F, Haohai Building, No. 7, 5th Street, Shangdi,
Haidian District, Beijing 100085, People�s Republic of China
(liudong@cn.ibm.com). Dr. Liu received B.S., M.S., and Ph.D.
degrees from Peking University in 1990, 1993, and 1996,
respectively. He has been a Research Staff Member and
manager since joining IBM in 1996. His research interests
include database, pervasive computing, and business process
modeling. He has contributed to the spatial index tuner,
location-based services, and Session Initiation protocol which
are now part of IBM DB2 and WebSphere. He has authored
more than 20 technical papers and filed several patents. Dr.
Liu currently leads the Business Integration Department and
works on business process modeling and optimization.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 Y. CHEN ET AL.

615

