The eShopmonitor:
A comprehensive
data extraction
tool for monitoring
Web sites

Typical commercial Web sites publish information from
multiple back-end data sources; these data sources are also
updated very frequently. Given the size of most commercial
sites today, it becomes essential to have an automated means
of checking for correctness and consistency of data. The
eShopmonitor allows users to specify items of interest to be
tracked, monitors these items on the Web pages, and reports
on any changes observed. Our solution comprises a crawler, a
miner, a reporter, and a user component that work together to
achieve the above functionality. The miner learns to locate the
items of interest on a class of pages based on just one sample
supplied by the user, via the user interface (Ul) provided. The

N. Agrawal

R. Ananthanarayanan
R. Gupta

S. Joshi

R. Krishnapuram

S. Negi

learning algorithm is based on the XPaths of the Document

Object Model (DOM) of the page.
[

1. Introduction

Reliability, timeliness, and correctness of information

on Web sites are matters of concern to every system
administrator. In the case of commercial sites, inaccuracies
and factually incorrect information on the Web site could
lead to serious losses and legal problems, apart from
losing customer interest and goodwill. For example, an
airline website could erroneously offer air tickets for
unusually low prices, or an online store might display
products with incorrect plrices.1 Further, the data
displayed on Web pages might be derived from multiple
dynamic upstream data sources, and errors could creep in
because of some obscure error at the database end. Even
when the pages are statically generated, there could be
changes to the links of the page, leading to problems of
missing and inconsistent links. While different kinds of
checks may be enforced at the database level to ensure
consistency and correctness of data, these are not always
sufficient to trap all errors that arise on the Web pages.
For instance, missing links, incorrect links, and incorrect
or missing images are some of the problems that may arise

I Such events have actually taken place; consequently, many transactions have had
to be reversed.

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

on the site even when the database has been checked for
consistency and correctness.

In view of these problems, it would be useful for the
site owner or administrator to have a tool to monitor
important Web pages and detect anomalies of the kinds
mentioned above. To make this notion more concrete, let
us define a field or item of interest as an HTML element
whose value is of high importance to the Web site. For
example, HTML elements that contain a product name,
product price, promotion, or discount offer are all fields
of interest. Therefore, a field of interest is any HTML
element whose value should not display anomalous
behavior. Since the values of these fields of interest must
be extracted or “mined” from the Web page, we call the
anomalies concerning these fields of interest mining
anomalies. Other anomalies are called crawling anomalies,
since they can be detected by a crawler. To summarize,
we are interested in detecting the following kinds of
anomalies:

1. Mining-related anomalies; for example,
e Identify pages where some specific item of
information has changed, e.g., pages where
'ProductPrice' has changed by more than 10%.

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

N. AGRAWAL ET AL.

679

680

e Identify pages where the value of some specific item
of interest is x, e.g., pages where 'ProductAvailability'
equals 'Not In Stock'. Instead of =, other operations
such as =, <, and substring can also be used.

e Identify pages where a particular field of interest is

missing, e.g., pages where 'Productimage’ is missing.
2. Crawling-related anomalies; for example,

e Navigational anomalies; e.g., there is no click-path
between the laptop sub-site and the CD-ROM drive
sub-site.

e Missing or broken links.

e Documents returning HTTP 404 (Page not found)
or HTTP 50X (internal server errors), etc.

Anomalies can also be composed of more than one field
of interest—for example, 'ProductName' = 'Desktop' and
'ProductPrice' = $100. Generalizing this concept, an
anomaly can be considered as a query with a set of
constraints connected by logical operators. On execution,
the queries may retrieve some results, which can then be
classified as anomalies or non-anomalies by the user.

From the usage point of view, note that such a tool is
of interest to the following kinds of users:

1. The Webmaster, who wants to eliminate broken links,
internal server errors, etc.

2. The content manager, who wants to ensure that a)
correct information is displayed, b) there is no missing
information, c) there is no mismatching of information,
and d) there are no anomalous changes in any field of
interest.

3. The marketing researcher, who can use such a tool to
study a competitor’s Web site. For example, the laptop
promotions offered by a competitor over the last month
or so can be followed.

We have built the eShopmonitor to perform these tasks
in a comprehensive end-to-end manner. The solution
comprises three major components—a crawler, which
retrieves pages of interest to the user; a miner, which
allows the user to specify the fields of interest in the
different kinds of pages and subsequently extracts these
fields from the crawled pages; and a reporter, which
generates reports on the gathered information. Further,
the crawled data can be compared with snapshots of
previously crawled data in order to detect anomalies
and/or interesting changes in the fields of interest. To
allow this, the eShopmonitor stores the last 30 crawls.

The initial version of the eShopmonitor was built to
monitor the ibm.com Web site; this version has
subsequently been extended to work on other sites.

In Section 2, we discuss related work in this area, i.e.,
information extraction from Web pages. Section 3

N. AGRAWAL ET AL.

discusses the top-level architecture of the eShopmonitor
and its different components at the functionality level.

In Sections 4, 5, and 6, respectively, we discuss the
crawler, the miner, and the reporter in detail, highlighting
the technology and design for each of them. We conclude
by discussing some of the possible extensions of the
eShopmonitor and future work.

2. Related work
Information extraction from semi-structured documents
such as Web pages has concentrated primarily on the
generation of wrappers for the pages. A wrapper may be
defined as a software module that converts information on
the HTML pages to a structured representation, closer to
a relational database format, which can then be used for
further processing. Reference [1] surveys some of the core
technologies for adaptive information extraction, using
machine learning, and classifies the basic techniques into
two main categories: finite state approaches, which learn
extraction knowledge that is equivalent to finite state
automata (FSA); and relational approaches, which learn
extraction knowledge essentially in the form of first-order
Prolog-like extraction rules. It is noted that while the FSA
approaches are simpler, with faster learning algorithms,
the relational approaches are more expressive. Reference
[2] identifies a family of six wrapper classes that wrap up
to 70% of the sites surveyed, with some of the algorithms
growing exponentially in the number of attributes and
some requiring more training examples to converge than
others. Reference [3] presents a set of tools for wrapper
generation, using machine learning techniques which have
been applied to detect the changes on Web pages and
filter them using semantic concepts such as name, phone
number, and other such properties. The system also
responds to changes in the page layout and format by
repairing the wrappers. Jedi [4] is a lightweight tool for
the creation of wrappers and mediators to extract,
combine, and reconcile information from several
independent information sources. It provides a fault-
tolerant parser based on ambiguous context-free grammars
(CFGs) for the wrapper generation. Roadrunner [5] also
investigates techniques for extracting data from HTML
sites by automatically generating wrappers. By comparing
two HTML pages at a time, it attempts to learn the
structural patterns on the page by deducing the source
data set from which the pages have been generated.
References [6] and [7] are other works that discuss
techniques for data extraction from the Web. IEPAD (8]
is a system that automatically discovers extraction rules
from Web pages using a data structure called PAT trees to
discover patterns to mine on the Web and then repeatedly
mines for these patterns.

The techniques discussed thus far have the advantage of
providing a high degree of automation with little or no

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

manual intervention required. However, in typical
commercial applications, higher levels of accuracy are
required in order to use the tools for information
extraction. Further, users wish to be able to point and
click at items of interest that must be extracted, in a
simple user-friendly manner. Users also wish to be able
to associate different fields of interest as the pattern of
interest to mine, regardless of the source page format or
the patterns that are automatically mined. The wrapper
generation techniques discussed thus far do not provide
this level of flexibility and the level of accuracy required
in commercial applications. Also, no visual support is
provided for the end user.

Many information-extraction techniques have been
developed that exploit the DOM? structure of the HTML
pages. XPaths (discussed later, in the section on the Bag
of XPaths model) have been used for pointing to and
highlighting items of interest on Web pages. Myllymaki [9]
describes ANDES, a software framework that uses XML
technologies such as XHTML and XSLT to extract data
from HTML pages. Webviews [10] allows users to create
customized views of pages they wish to view, using
XPaths. Reference [11] studies the robustness of item
location in Web pages when different kinds of XPaths
are used to point to these locations. Robustness under
changes to the Web page is studied for different kinds
of XPath expressions such as single-node pointing,
alternative predicate expression, and relative addressing
expression. Annotea [12] is a scheme for annotating
documents on the Web and sharing such annotations,
using XPointer, XLink, and HTTP. Xwrap [13] is an
XML-enabled wrapper construction system for semi-
automatic generation of wrapper programs. Here, the
metadata about the information content that is implicit in
the original Web pages is extracted and encoded explicitly
as XML tags in the wrapped documents. The Lixto system
[14] uses a new logic-based declarative language called
Elog for extracting the specification pattern. The authors
also provide a visual user interface (UI) for creating the
wrapper programs. However, they use proprietary
languages for wrapper generation and therefore cannot
use the normal HTML browser for their visual interface.
Most of these approaches assume that it is possible, by
some means, to group similar pages into a cluster and to
learn the structure of a prototypical page of each cluster.
In the case of XML pages, knowledge of the data type
definition (DTD) helps in identifying structurally similar
pages. However, pages on the Web do not publish their
DTDs. Although some induction algorithms exist to learn

2 The Document Object Model is a platform- and language-neutral interface

that allows programs and scripts to dynamically access and update the content,
structure, and style of documents. The document can be processed, and the results
of the processing can be incorporated into the presented page. For further details,
refer to http://www.w3.0rg/DOM].

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

the DTDs [15] from a few examples, these assume that all
of the pages on the site conform to the same DTD; the
method fails when the pages are generated from different
DTDs. Also, in most cases, the wrapper generation and
the visual pointing and highlighting have been developed
as standalone techniques that are to be tailored for
different applications. ChangeDetector [16] is an end-to-
end site-level monitoring tool that focuses on gathering
“silent” information from corporate Web sites (e.g.,
changes in a competitor’s organization structure and
changes in a product line). Our system is also an end-to-
end monitoring tool, which handles the information-
extraction problem as follows:

1. Provide graphical user interfaces (GUIs) for the user
to specify items of interest.

2. Identify structurally similar pages by comparing the
XPaths of the pages.

3. Learn which elements to extract from each type by
learning, from one sample, the XPaths for the various
items of interest in that page.

This has the advantage that the solution is readily
extendible to all sites for which the different pages are
generated from a standard set of layouts or structures, as
is the case on most commercial sites. Further, we have
provided an end-to-end system which allows different
users to request different items of information to be
monitored and which generates reports for users on the
basis of their individual requirements.

3. Architecture of the eShopmonitor
As mentioned in Section 1, the eShopmonitor is an
independent standalone system that has been built to
monitor the Web pages published on specified Web sites,
to track changes and perform consistency checks to detect
any errors, and to report on its findings. Figure 1 shows
the high-level block diagram of the system. The
eShopmonitor supports users at two levels: the
administrator and normal users. The administrator can
configure the crawler and the miner and execute the whole
system; a normal user can only specify queries and execute
them.

Central to the eShopmonitor is the data store, which
is the repository of the configuration and runtime
information for the various components. Crawler
configuration information, mined information, navigational
information, configuration for the miner, subsequent
crawled data, queries to be run, and reports generated by
the queries—all reside in the data store, which comprises
both flat files for the crawled data and a relational
database for much of the other information.

The crawler, specially built for the eShopmonitor,
can crawl both static (HTML files) and dynamic pages.

N. AGRAWAL ET AL.

682

Crawler User
Crawler . *
configuration . A
Navigational
Web information

Miner . Crawled pages —|

Mined information [—|

Query specification interface

Query conversion and execution

Miner
configuration Wrapper
interface specification
Saved queries |<—|
and reports .
Data store
Figure 1

Block diagram of the eShopmonitor.

Dynamic pages are generated by some server code such as
Active Server Pages (ASP), JavaServer Pages** (JSP**),
or servlets at the time of invocation.

The various runtime parameters of the crawler may be
configured by the administrator of the system, as explained
in detail subsequently. The crawler crawls the Web pages
being monitored at specified intervals, as mentioned in the
crawler configuration. The crawled pages are dumped into
the data store. The miner must initially be configured by
the administrator for the different fields of interest to be
mined in the different kinds of pages. This configuration
information is again contained in the data store. These
fields are subsequently mined from the crawled pages and
are placed in the data store. The reporter component
runs queries on the mined data on the basis of queries
specified by the different users and system-level queries
specified by the administrator. The queries are specified
using the query interface and are stored in the system in
the data store. In subsequent sections, we explore each of
these components in detail.

4. Crawler

While many commercial crawlers were available, we
required a crawler that could crawl both static and
dynamic pages and that could also crawl password-
protected sites where authentication was available. The
crawler used was fully developed in-house and tuned
to the specific requirements of commercial sites. On a
functional basis, the requirements for the crawler are
that the crawler should consistently be able to crawl

an entire Web site and update the data store, and that
mining should be completed and reports generated and
transmitted to the users before the hours of peak activity
on the site. The crawler must also be able to crawl

N. AGRAWAL ET AL.

dynamic pages which constitute a major part of any
commercial site such as ibm.com. The crawler handles this
by simulating form submissions by means of an automatic
procedure for filling and submitting forms. It handles
drop-down menus, radio buttons, and checkboxes;
however, it cannot handle text fields and JavaScripts**
when simulating form submission.

The parameters that define the functioning of the
crawler include the following:

1. Seed URLs—the list of URLs from which the crawler
begins its crawl.

2. Domains to crawl (and depth for each domain).

3. Location of the data store where the crawled files
are stored.

4. File extensions to be included or excluded.

. Password-protected seed URLs.

6. Crawl start time and reschedule frequency.

wn

All of these values may be set by the eShopmonitor
administrator through a Web-based interface provided

for the crawler. The various configuration parameters are
stored in an XML file which is read by the crawler at start
time. Further, the user may also stop and start the crawler
using the interface provided.

A crawl can be restricted to the pages of interest by
configuring the crawler with particular domains, depths,
and URL patterns to be included and excluded. Password-
protected sites are also crawled by simulating form
submission if the authentication information is available.
Image crawling has not been included, since, according
to our observations, an average ibm.com Web page
contains six to eight images; crawling that many images
synchronously with the Web pages degrades the overall
running time and performance significantly. However,
when needed, it may be included quite easily.

The crawler is multi-threaded and written in Java™**.

In order to avoid crawling restricted pages on a server,
the eShopmonitor crawler adheres strictly to the robot
exclusion protocol. Once a page is crawled, it is passed on
to the miner for further mining. Meta-information about
the page such as URL, HTTP status code, out-links, size
of page, and depth are stored in the data store, as
described later.

5. Miner

The main function of the miner is to mine the crawled
pages, extracting items of interest from them. Assuming
that the Web pages conform to the DOM standards, all
dynamic Web pages generated by the same servlet (or any
server-side code) have a similar DOM structure. Different
groups of pages on the Web sites map to similar DOM
structures, and such pages are said to belong to a
template. A template could be an already prepared master

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

HTML page format that is used as a basis for composing
new Web pages, or it could be server-side code which
generates an HTML page in response to a user request, by
dynamically connecting to some back-end database. The
content of the pages may be dynamically generated, and
the presentation is as specified by the template, resulting
in a collection of pages that share a common look, feel,
and structure.

In all pages generated from the same template, content
such as the product name and the product price is present
at locations which follow a pattern. An example is the
search results presented by Google**. Whether a search
returns two pages or ten, the locations of the title and
summary of the returned Web pages follow a pattern.

In each template, a user may be interested in different
items. We refer to each logically related set of items
of interest as a bundle, and we allow several bundles
to be associated with a template. For example, in a
'ProductDisplay' template, there can be a '(ProductName,
ProductPrice)' bundle as well as a '(PromoDescription,
DiscountPercent)' bundle. Note that, in a given Web
page, there can be multiple instances of a given
bundle.

For each template, the administrator must also define
the bundles associated with the template and the fields of
interest for each bundle, using the interfaces provided.
Further, the administrator must also specify, for each
template, a sample URL corresponding to that template.
The interface also allows the addition of new templates
and the deletion of existing templates. When the bundles
have been defined for a template, on subsequent mining
operations, the miner extracts the specified items of
interest from all of the pages belonging to the template.
This data is then passed to the store manager, which is the
component that stores the data in the appropriate format.
On http://www.ibm.com/products/us there are about 20
templates which generate 10-15K commercial pages of
interest.

The miner has a multithreaded architecture. It has been
designed to run independently and may also be invoked
via a programmatic interface. It has a mechanism by which
it can transfer the mined information to other programs or
components (in our case, the data store). It processes
ibm.com pages at an average rate of approximately 40
documents per second on a 2-GHz machine.

Bag of XPaths model

Previous systems such as XWrap and Lixto have defined
their own language to write or generate template
specifications. We have used the standardized XPaths as
our wrapper language. We have found that XPath has
sufficient expressive power to capture all types of
generalization required to extract data reliably.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

<a>

<c>strl</c>
<d>
<e>str2</e>
<e>str3</e>
<e>str4</e>
</d>

(@)

(a) An XML document and (b) its tree representation.

An XPath is a path expression that locates nodes in a
DOM tree. We use only some of its features for our
system; we explain our simplified version here. We
consider each XPath as a sequence of terms separated
by a slash (/). The syntax for each term is as follows:

nodetest[predicate]. (1)

Here nodetest is a label defining a set of nodes (which we
call a node-set) in which each node is a child node of the
current node that has nodetest as its label. A predicate,
which filters the node-set specified by the nodetest further
into a smaller node-set, is always placed inside a pair of
square brackets; [position() = index] and [position() < 7]
are examples of predicates. We abbreviate predicates of
the form [position() = index] as [index].

We call a predicate an equality predicate if it is of
the form [position() = index]. We call other predicates
generalized predicates. We call an XPath an equality XPath
if all of the terms in the XPath contain only equality
predicates. If some of the terms in an XPath contain
generalized predicates, we call it a generalized XPath.
Figure 2 shows an XML document and the corresponding
DOM tree. In this figure, the XPath for node 3 is
/a[1]/b[1]/c[1]. For node 7, the XPath is /a[1]/b[1]/d[1]/e[3].
Both of these XPaths are equality XPaths. On the other
hand, the XPath of the form /a[1]/b[1]/d[1]/e[(position() —
1) mod 2 = 0] is an example of a generalized XPath which
evaluates to the node-set containing node 5 and node 7.
Note that the last term of the XPath contains a
generalized predicate.

Wrapper generation

A user is likely to be interested not only in properties or
values of specific items in isolation but also in their

N. AGRAWAL ET AL.

684

:'
@ cropcomP Thinkpad A31 Within 2 vasks¥*
“BundleA 2852234 $1,499.00+
) PRODUCTNAME , STRINC sssoome. |l
uarantee ICustomize

for 36 mos.

O parmo , sTRING

| E| Addto cart SuccessLease® for
O price , PRICE 8dd small Businessee
D AvALABLTY , STRNG [<"
' \ess
CUSTOMIZE , IMAGE (ThinkPad A31 In stock
siness 2652140 $1,499.00+

[%] Customize £58.00 fevio,

for 36 mos.

Customize

SuccessLease® for
dd Small Business¥#*

!

: : Addto cart
2 possible choices. Current] :Bdd oo

to cart

K1 —| ;Ilj L4l ;lﬂ
@ Error on page. ,_ ,_

Screen shot for miner configuration. Reprinted with permission
from [17]; © 2004 IEEE.

associations with other items. An example of such a query
is “List all pages where 'ProductName' = 'ThinkPad A
Series' and 'ProductPrice' < 1500.” As stated earlier, a
logically related set of items in a page is a bundle, and a
page may contain more than one bundle—for example, a
page containing prices and descriptions for ten products.
Teaching the miner what to extract from each page is
done in two steps:

1. The administrator specifies a sample page for the
template to be mined.

2. The system presents the user with an interface
consisting of two frames displayed side by side, with
the sample page displayed on the right and an interface
for defining the bundles, the elements of each bundle,
and their names and types in the left-hand frame [see
Figure 3 (shown later) for an example]. The association
between the element name in the left frame and the
item to be mined in the right frame is performed by
requiring the user to select two consecutive examples of
the item to be extracted. If there is only one instance
of the item to be mined, the user clicks on the same
instance twice; in this case, XPath is not generalized,
but an absolute/equality XPath is generated. Internally,
the miner then generalizes these locations as XPaths
of these data locations, and thus learns the location
pattern of items of the same type for that template. For
example, if the user clicks on two items of the same
type with XPaths /html[1]/body[1]/table[1]/tr[2]/td[1]
and /htmi[1]/body[1]/table[1])/tr[5])/td[1], the XPath
[htmli[1]/body[1]/table[1]/tr[(position() — 2) mod 3 =
0]/td[1] represents the generalization which, when
evaluated on the pages of the same template as the
example page, will return all items present in the page
following this pattern. Other properties of the bundle
elements, such as the name and type, are also specified

N. AGRAWAL ET AL.

through this interface. In practice, this generalization
covers most of the items present in commercial sites,
and we have observed high levels of accuracy in the
data extracted.

One issue in template specification is the presence of
optional items on a page. Some pieces of information
might not always be present on all pages derived from
the same template. For example, multiple pages listing
personal computers might be generated from the same
template. However, only some of the pages might have
a markup indicating a special sale on some models. In
such cases of optional items, another kind of XPath
generalization, based on the count of sibling and child
nodes, has been used. For example, consider the absolute
XPath /html[1]/body[1]/b[1]/a[1] that corresponds to a
field of interest. Assume that an optional 'For Sale'

tag has been added as an anchor tag (<a>) before
this field. In that case, the generalized XPath used is
[html[1)/body[1]/b[1]/ a[(count(..Ja) > 1) and (position()
= 2) or (count(..Ja = 1) and (position() = 1)]. This
XPath evaluates to the first anchor if the optional tag
is absent and the second XPath if the optional tag is
present.

Note that through these two generalized XPaths [viz.
position()—x mod y = 0 and count(..)], we can capture
nested for-loops and if-then-else statements in the server-
side code that generated these pages. Together, these
constructs are sufficiently rich to express a wide variety of
templates, a fact which is confirmed by our experiments
on various e-commerce sites (See Section 7).

As a specification example, consider Figure 3, which
shows the user interface. The highlighted fields are ones
that have been added to the configuration for extraction
after every mining operation.

The interface also handles the cases in which more than
one generalized XPath is possible. In that situation, the
user is presented with a choice list of those generalized
XPaths and can choose the most correct one.

This template specification exercise has to be done only
once while installing the system, and the entire exercise
for six different templates on ibm.com takes about 15 to
20 minutes. The administrator has to reconfigure the
system only when the templates undergo a drastic change.
The eShopmonitor has the capability to alert the
administrator to such a scenario. Small changes to the
template are automatically handled by the eShopmonitor
and require no human intervention. Details are presented
in the section on handling changes to the template.

Data extraction

We perform various tasks before extracting the required
information:

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

1. Clean the HTML pages: We have noted that not all
HTML pages are well formed, like XML. Further, the
HTML is not always well written; many pages have
missing closing tags, incorrect nesting of tags, and other
issues. While many browsers are sufficiently rugged to
display the pages properly, we need to clean up the
HTML pages before identifying the XPaths for the
elements, since our processing assumes that the
document is an XML document. We have used JTidy’
to clean the HTML pages, balance tags, and tag the
data in XML. A DOM is obtained after this step.

2. Identify the page/template type: Crawled pages are
either static or dynamic. For a dynamic page, the
template which generated the page is detected from the
URL-template mapping (see the discussion below.)

3. Extract the items of interest: For each template, the
data store contains the set of XPaths to be mined,
which map to the user’s fields of interest. Hence, for
each dynamic page, the miner extracts the fields of
interest.

4. Process different data types with the Type Handler:
Evaluation of a given XPath on the documents returns
a DOM node. It is then processed by the appropriate
type handler to extract fields from the items (discussed
later). The Type Handler system currently supports
types such as numeric, string, long string, price
(contains attributes value and currency), image, and meta.

The data-extraction procedure is outlined in the mining
algorithm shown in Figure 4.

Template-URL mapping/template clustering

To be able to extract the items of interest from the pages,
it is necessary to know the template from which the page
is derived. For ibm.com, the information contained in the
URL of the page, along with the necessary database tables
which contain the template-URL mapping, allows us to
identify a page template by reading its URL. However,
the template—URL mapping information might not be
generally available. Therefore, a classifier is required

to map pages to templates on the basis of a similarity
measure between semi-structured documents. We have
developed an algorithm (discussed in a separate work
[18]) to measure the structural similarity of semi-
structured documents. The algorithm works very
accurately on a variety of Web sites (IBM, Dell, Amazon,
etc.). Henceforth, we can assume that the URL-to-
template mapping is given to us.

Handling changes to the template

One issue that is of great concern for wrappers is their
maintainability. The structure of a Web page may change

3 http://sourceforge.net/projectsjtidy/.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Input : Set of crawled pages P, templates 7'
Output : Mined information in the database
Algorithm :
VTeT{
Errors[T] = 0;
}
VdeP {
d = CleanHTML(d);
T = Template(d);
if (T = NULL) skip to next document;
/* T = NULL means it is a static page */
C = TemplateConfig(T);
bundle_id = 0;
Vbundles b € C{
B = ExtractBundlelnstances(b, d);
if (B = NULL) Errors[T] + +;
Vinstances b, € B{
Velements e € b{
node = Elementinstance (b;, e);
if (node = NULL) Errors[T] + +;
else {
x = TypeHandle(node; e);
if (x = NULL) Errors[T] + +;
else Save(x, e, d, bundle_id),
}
}
bundle_id + +;
}
}
}
VTeT{
if (Errors [T > threshold)
RaiseException(“Template Changed "),

Data extraction procedure.

at times, and the wrapper for it may require certain
modifications for its desired extraction process. In this
subsection, we outline a method by which we can
construct new XPaths on the new template (based on
the old XPaths of the old template) that will extract the
desired fields of interest in the modified template. Here
we assume that the structural changes to the template are
only slight. If drastic changes to the template occur, the
mining algorithm will raise an exception caused by too
many misses or type-handling errors (see Figure 4).
Roughly, the approach is as follows. We search for
the fields of interest (whose values are known in the old
template) in the new template by means of wild-card
XPaths. By this means we obtain the locations of the fields
in the new template and their corresponding XPaths.
Since the XPaths are assumed to have changed only
slightly for a field, we assign an XPath “closest” to its
old XPath. Formally speaking, let T, and T, be the
DOM trees of a page corresponding respectively to its 685

N. AGRAWAL ET AL.

686

Table 1 PRODUCTPRICE table.

Name Type
URLHASH CHAR(32)

BUNDLEID INT
PRICEVALUE DOUBLE
CURRENCY CHAR(3)

old and new templates. Let pil ; denote an equality XPath
in T for a node with value v/

o1 e We construct a new
XPath p, = // = /v, and evaluate on T . Let the
set X ={x' ,---, xfew} denote the k nodes that are

new’

returned when p__ is evaluated on T . We create

new new”

an equality XPath p’

new,

We then choose the p/ as a new XPath for the node
corresponding to the value v, that has the least edit

distance with the old XPath p/ , i.c.,

for each x! where 1 =i = k.

NewXPath(v,,) = argmin; EditDist(p, ., p\,,)- (2)

old

The intuition for doing so is that since there are typically
only slight changes in the structure of the templates, the
new XPaths corresponding to the old XPaths are very
similar and therefore have the minimum edit distance.

Type handling

An item may require more than one field for complete
specification. For instance, price is specified by an amount
and a currency. The type-handling package within the
miner appropriately parses the items and extracts the
attributes from the items. The eShopmonitor supports two
kinds of types, simple and composite. Simple types are int,
double, string, and long string. When an item is specified
by more than one attribute, it is called a composite item.
An example is the image tag which has “src” and “alt” as
two attributes. These items are extracted as one string,
and it is the responsibility of the appropriate type handler
to parse and extract various attributes from the items.

Currently the eShopmonitor has a number of type-
handlers such as PRICE, LEASEPRICE, IMAGETAGS,
METATAGS, and a GENERIC type which has two fields,
a numeric and its unit. Generic type covers all data items
such as 1 GHz and 256 MB. A new type can be easily
introduced into the system as a plug-in.

For handling some composite types such as PRICE,
additional information is required. For example, PRICE
contains a CURRENCY attribute whose value can be
USD (U.S. dollars) CAD (Canadian dollars), etc. To
obtain the actual value, the PRICE type-handler uses
hints from the URL (whether it is from a domain such
as www.ibm.com/us/), hints from the language (a French-
Canadian page is likely to show Canadian dollars), and the

N. AGRAWAL ET AL.

writing style of the prices (e.g., 1500,00$ is a Canadian
price and $1,500.00 is an American price).

Data store

Database schema

At the top level of the store design are unique identifiers
for each crawl (referred to subsequently as the crawlid)
and for each URL crawled (which is stored as a hash of
the URL and henceforth referred to as urlhash). Further,
each bundle instance is also uniquely identified by a
bundle ID, referred to as bundleid.

As described in greater detail in Section 6, a query may
specify one or more conditions. A condition is a single
constraint such as “where PRODUCTNAME contains
'ThinkPad'.” These base conditions may be joined by
the operators ANDWHERE, AND, and OR. The operator
ANDWHERE between two conditions specifies that
the items should be selected from the same bundle. In
contrast, the operator AND specifies that the items could
be selected from anywhere in the same page. Further, it is
possible to add or delete a new item during the course of
use. To support this feature, each item has its own table,
listing the URL, the bundle ID, and the value of the item
(the last of which is determined also by the type of the
item.) For example, for the item PRODUCTPRICE of
type PRICE, we have a table called PRODUCTPRICE
appended by the crawlid, and columns as shown in
Table 1.

Store manager

After extraction and processing based on the type, the
items are stored in a relational database. As earlier, the
miner passes the mined data to the store manager. The
store manager then processes the bundles and translates
them into the appropriate SQL statements for insertion
into the relevant tables. It caches the data and then
dumps it into the database when the cache is full. Since
this component is thread-safe, the miner threads call it
in asynchronous mode.

6. Reporter

When the crawling and mining are completed, the
reporter executes queries on freshly extracted data.
All user-specified queries are executed, and a single
consolidated report is then sent to the user.

Reporter subsystems
The reporter component comprises the following
subsystems:

1. A query-specification interface for specifying various

kinds of queries: Currently the eShopmonitor has
support for four different kinds of queries, which are

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

explained later in this section. Using the query-
specification interface, a user can save his query or run
it online. Saved queries are executed later in batch
mode, and a consolidated report is sent to the user.

2. Query conversion modules: Since the crawled and
mined information is stored in DB2* tables, any query
on the system must be translated into SQL. The query-
conversion modules convert the queries, as specified
by the user through the interfaces, into SQL.

Note that instead of defining our own query-
conversion modules, on-line analytical processing
(OLAP) and data warehousing tools could have been
used. However, one major concern during system
design was to make the query-specification interfaces
very easy to use and to the point. This necessitated
the design of an intermediate language and query-
conversion modules that converted queries from this
intermediate language to SQL. Note, however, that
multidimensional queries (as in OLAP) are fully
supported by this intermediate language (see the
section on change and content query formulation).

3. Query-execution modules: Since the different query
types are quite varied in nature, the eShopmonitor has
a set of execution modules, one for each query type.
The query execution controls the execution of the
query and also determines the display of the query
results.

4. Query verifier: Since the primary aim of the
eShopmonitor is to detect discrepancies, it is natural
to verify any anomaly reported by the eShopmonitor.
For this purpose, every query result is linked to its
corresponding query verifier module. The relevant
result can be verified by using that module. For
example, for a price change query, the verifier shows
the old and new versions of the page and highlights
the price change.

Query types

Various types of queries are supported in the
eShopmonitor. These queries use the element names
of the various bundles that have been specified

while configuring the miner. In addition, navigational
information and some parameters for each URL such
as its signature and status code are also stored. These
parameters can be queried, and special queries such as
those on meta tags are also supported. In general, all
queries return a list of URLs that match the criteria
specified in the query. Broadly speaking, a query is of
one of the following types:

Content queries: As the name suggests, these queries
allow the user to pose queries on the content of
the pages, e.g., “List all pages where the PRICE
is less than $500” and “List all pages where the

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

PRODUCT_DESCRIPTION contains “Now much
cheaper.” Such queries refer to only one crawled
version.

Change queries: These queries look for changes in page
content across two different crawls, e.g., “List all pages
where PRICE changed by $400 or more.” These queries
compare the contents of a page across two crawled
versions. To arrive at meaningful results, it is ensured
that some defining entity such as PARTNO is also
compared while inter-version comparisons are being
performed. For example, there might be two prices on a
page, $400 and $410, corresponding respectively to part
numbers A and B. While comparing another version of
the same page, we avoid comparing the prices of A and
B (using part numbers). Currently, the defining entity is
set to PARTNO, and all change queries report the
PARTNO along with the results.

Navigational path queries: These queries are used to
compute the best path between two given URLs.

Here, the “best” path is the one that has the fewest
intermediate links. If several paths are best, the first
path is returned. For computational reasons, the
eShopmonitor restricts the maximum path length

to 5. If no such path is found, the URLs are listed

as disconnected.

These kinds of queries can be used to verify whether
or not two sub-sites are connected via a short path of
anchor links. For example, if the ThinkPad* and Optical
Drive sub-sites are related, the administrator would
prefer short paths between them. For this purpose,
navigational path queries can be used.

Navigational link queries: These queries are
parameterized with three attributes—a URL (U), an in-
depth (I), and an out-depth (O). The query shows all
paths that have a length I and end at U, and paths that
begin at U and have a length O. The former class of
paths is called the in-tree of U and the latter is called
the out-tree, hence these queries are also called
navigational tree queries. For computational reasons,
there is an upper limit on I and O.

Fixed queries: These queries do not fall into any specific
category and do not follow any particular rules. There
is no converter to translate these queries. However, an
administrator with the knowledge of the internal design
(and hence the SQL) can add fixed queries through an
interface provided by the eShopmonitor. Many fixed
queries exist as default queries in the system, e.g., “List
all missing URLs” or “List all HTTP 404 URLs.”

Notes: 1) For ease of use, change and content queries are
allowed to be mixed. 2) META tag queries are classified
as content queries.

N. AGRAWAL ET AL.

687

688

Query Specification

Take current version from : @ Last crawl OR ¢ [2002-12-17 (Crawl Id 603)
Take previous version from : & Second last crawl OR ¢ |2002-12-17 (Crawl Id 603) ~

Show me all pages where :

PRICE i Hide +| -
[VALUE ~|[has changed = +
AND | [VALUE ~|is more than ~|[s00 |2
~||CURRENCY ~||is equal to ~||CAD il
AND
[ANDWHERE ~| [PRODUCTNAME =] Hide +| -]
[vALUE ~|[contains ~|[ThinkPad +

Save Execute without saving |

Specification of the query “Show me all pages where the price has
changed and where the price is more than CAD 500 and where
product name contains ThinkPad.”

Change and content query formulation

Each change and content query is made up of conditions
that are joined by the connectors AND, OR, and
ANDWHERE. Each condition refers to exactly one
mined attribute. The general syntax of a condition is
Element.attribute operator value. For example, PRICE is a
composite element and has two attributes—CURRENCY
and VALUE. Therefore, we have conditions such as
“PRICE.CURRENCY = USD.” Since VALUE is a
default attribute present in almost all elements (except
IMG and META), we sometimes use expressions such as
“PRICE < 100” instead of “PRICE.VALUE < 100.” If
C1 and C2 are two such conditions, the semantics of C1
[connector] C2 is given by the following:

Connector = AND: A page where C1 and C2 hold
(anywhere on the page) is a valid result.

Connector = OR: A valid result page should have
elements that satisfy either C1 or C2 or both.
Connector = ANDWHERE: C1 and C2 should hold
inside the same bundle (refer to Section 5 for the
concept of a bundle). For example, if C1 =
'PRODUCTNAME = ThinkPad' and C2 =
'PRICE.VALUE < $1000', C1 ANDWHERE C2 will
return pages that display less expensive ThinkPads. Had
we used C1 AND C2, we would have obtained
erroneous pages, such as pages that display ThinkPads
and also $10 cables.

All conditions use exactly one operator such as is less
than and contains. One special operator, is anything, is a
wild card which matches everything. It can be used to
display additional attributes in the query results without
adding any extra conditions. Figure 5 illustrates
specification of the query “Show me all pages where

N. AGRAWAL ET AL.

(PRICE.VALUE > 500 AND PRICE.VALUE has
changed AND PRICE.CURRENCY = 'CAD")
ANDWHERE (PRODUCTNAME contains 'ThinkPad').”

Query conversion

Change and content queries are converted into SQL

as follows. Let us consider a query of the form C1
[connector] C2, where C1 and C2 are clauses. Each clause
refers to exactly one field of interest, which is represented
by a table in the data store; hence, in the final SQL, it
contributes a clause. For example, PRICE.VALUE < $400
corresponds to “Select * from price_<crawl version> where
value < 400.”

If there are multiple conditions, one SQL clause is
made for each of them. If the connector is AND or OR,
the clauses are connected using the SQL keywords
INTERSECT and UNION, respectively.

For example, “PRICE.VALUE < $400” AND
“NAME = Printer” corresponds to “(select * from
price_<crawl version> where value < 400) intersect
(select * from name_<crawl version> where value =
'Printer').”

If the connector is ANDWHERE, instead of using
intersects or unions, we do an SQL inner join of the
respective tables. The join condition is that the bundle
IDs should match.

For example, “PRICE.VALUE < $400” ANDWHERE
“NAME = Printer” corresponds to “select * from
price_(crawl version>, name_<crawl version> where
value < 400 and value = 'Printer' and price.bundleid =
name.bundleid.” This scheme can easily be extended to
multiple conditions.

Navigational queries are converted first into a breadth-
first search routine on the crawl graph; then the
parameters of that routine are plugged into a
corresponding SQL.

Query execution and verification

The query is executed by running its SQL against the
database. The query results obtained are displayed in the
form of a table. Typically, each result contains a list field.
It means that all of the displayed URLs satisfy the
specified conditions.

For verification purposes, each URL, when clicked,
leads to a verifier. It is meant to cross-check the query
results. The most important verifier is that for change
queries. Change query verifiers display the old and the
changed versions of the clicked URL. The text deleted in
the old page is highlighted in red and the text inserted in
the new page is highlighted in yellow so that any changes
can be quickly identified.

Figure 6 shows a sample output for a change query; in
this case, the query is “Show me all pages where the price
has changed and where the price is more than $500.” The

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

URLSs in the second column are the pages where the price
has changed and the price is more than $500. By clicking
on any of these URL links, the actual page contents, both
old and new, are displayed, as shown in Figure 7, which is
the verifier for the change query. This figure is a screen
shot of the results of the change query, with the latest
version being displayed in the top frame and the earlier
version being displayed in the bottom frame.

Report generation
Each user can save the specified queries. These queries
are executed at the end of the crawl-mine-report cycle of
the eShopmonitor. Query results from each of the saved
queries are collected and saved in an HTML report file.
For performance purposes, each query that can potentially
be shared among many users is executed only once, and its
results are cached for subsequent users. A summary of all
of the queries is generated and mailed to the user, along
with a link to the detailed consolidated report file.

Thus, the user receives a daily digest of the reports in
which he is interested, and he can easily view and verify
the individual results.

Report configurator

This module provides the user with an interface by which
he can add or delete reports that may be scheduled. The
eShopmonitor supports two types of reports:

1. Fixed reports: The underlying queries for such reports
are predefined. Examples of fixed reports include
e Lists of URLs whose contents have changed since

the previous crawl.

e Lists of URLs in which any field of interest (i.e.,
product price, product, and description) information
has changed.

e Lists of broken links.

2. Parameter-based reports: The queries for these reports
require a set of parameters, which is provided by the
user. Parameter-based reports are of three different types:
» Navigational reports: Examples are

(a) All pages which point to the given page x.

(b) All pages which are pointed to by the given page x.

(c) All pages which are reachable in y steps from the
given page x.

In the above three examples, the values of x and y are

provided by the user through the report configurator

user interface.

e Content-based reports: Examples are
(a) All pages where price is less than $x.

(b) All pages where product name is X and price is
less than $y.

e Change-based reports: Examples are
(a) All pages where price has changed by more than

$x since yesterday.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

eShopMonitor : Report Page

Query : Show me all pages where (PRICE has changed) ANDWHERE
(PRICE is more than 500)

Current version from : 865 Previous version from : 864

S.No. URL PARTNO NEW _PRICE OLD_PRICE

United States |
ThinkPad T30

United States |
IBM Infoprint®
1140 Laser
Printer

1 2366410 1749.0 2099.0

4540DN1QC 2073.0 2270.0

Summary : 2 results, 2 distinct URLs.

Listing of results for a change query, “Show me all pages where
the price has changed and where the price is more than $500.”
Reprinted with permission from [17]; © 2004 IEEE.

Home Products & services Support & downloads

ThinkPad T30

IBM Web Price
$2,099.00 -

Home Products & services Support & downloads

ThinkPad T30

IBM Web Price
$2,099.00 -

Screen shot of the display of the two URLSs for a change query.
Reprinted with permission from [17]; © 2004 IEEE.

(b) All pages where product description for X has
changed since last week.

Online query interface

This module provides a mechanism for generating on-
demand reports. Note that the reports are generated using
the last crawled data, and no data fetching is needed to

N. AGRAWAL ET AL.

689

690

Table 2 Mining statistics across various e-commerce sites.

Dataset Pages Templates Bundles Non-empty fields Empty fields NULL fields (%)
IBM 3,532 6 13,102 51,693 3,415 6
Dell 3,747 6 12,996 41,214 7,564 15
Amazon 205 2 651 2,044 268 12

generate these reports. This interface is meant primarily
for users to test out newly added queries immediately.

In addition to the components described above, the
eShopmonitor also has a user component with which the
administrator may define the various users of the system,
assign passwords, and define level of access, in terms
of the user type. Individual users may also view user
information and modify user information by means of
the user interface provided.

The entire system has been built on a Linux** platform,
and all of the functionality is viewable using IE 5.5 or
above. The data store is built on DB2 UDB 7.2. This
system has been completed and pilot-tested at the
ibm.com site.

7. Evaluation

We evaluated the eShopmonitor on three sets of pages
crawled from the three large online commercial shops.
First we clustered the documents on the basis of structural
similarity using the algorithm in [18]. We manually
selected a set of clusters and specified the wrappers using
the miner configuration interface. Details of the data set
and results are given in Table 2.

A field of interest in a page is considered to be NULL
if either tag is not present or if it does not match the
expected type. For example, if a string occurs instead of a
PRICE, we save it as NULL. Table 2 gives the number of
NULL and non-NULL fields found on the pages.

A field of type PRICE is present in every template in
IBM commercial pages. The eShopmonitor is able to parse
a high percentage (96.7%) of the string evaluated by the
XPaths for PRICE (12,659 of 13,102). This points to the
fact that most of the bundles identified were indeed
correct.

8. Conclusion and future work

In this paper, we have presented the architecture and
design of the eShopmonitor, an independent tool for
monitoring data of interest at commercial sites. It is an
end-to-end solution comprising a highly configurable
crawler, a miner that learns items of interest with just one
example for each type of page, and a very comprehensive
reporting system. It uses the underlying DOM structure of
the tidied HTML pages, both to identify types of pages
and extract fields of interest, with a novel use of XPaths.

N. AGRAWAL ET AL.

Another novel feature is the user interface for configuring
the miner, which allows the user to select items of interest
by simply specifying a sample page and clicking on the
data items of interest on that page. Though it was initially
designed for ibm.com, extensions have been added to
enable it to monitor other sites as well. Currently work is
in progress to automate discovery of bundles in a page, or
discover interesting items to mine in a page, which may
then be presented to the user for confirmation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc., Google, Inc., or Linus Torvalds.

References

1. N. Kushmerick and B. Thomas, “Adaptive Information
Extraction: Core Technologies for Information Agents,”
in Intelligent Information Agents R&D in Europe: An
AgentLink Perspective, Springer-Verlag, New York, 2002.

2. N. Kushmerick, “Wrapper Induction: Efficiency and
Expressiveness,” Artificial Intelligence 118, No. 1/2, 15-68
(2000).

3. C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea,
“Accurately and Reliably Extracting Data from the Web:
A Machine Learning Approach,” IEEE Data Eng. Bull. 23,
No. 4, 33-41 (2000).

4. G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold,
“Jedi: Extracting and Synthesizing Information from the
Web,” Proceedings of the 3rd International Conference on
Cooperative Information Systems (CooplS), 1998, pp. 32—
43.

5. V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner:
Towards Automatic Data Extraction from Large Web
Sites,” Proceedings of the 27th Very Large Database
(VLDB) Conference, Rome, Italy, 2001, pp. 109-118.

6. J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and R.
Aranha, “Extracting Semistructured Information from the
Web,” Proceedings of the Workshop on Management of
Semistructured Data, 1997, pp. 18-25.

7. B. Adelberg, “NoDoSE—A Tool for Semiautomatically
Extracting Structured and Semistructured Data from Text
Documents,” Proceedings of the ACM SIGMOD Conference
on Management of Data, 1998, pp. 283-294.

8. C.-H. Chang and S.-C. Lui, “IEPAD: Information
Extraction Based on Pattern Discovery,” Proceedings of
the 10th International Conference on the World Wide Web,
ACM, 1-58113-348-0/01/0005, 2001.

9. J. Myllymaki, “Effective Web Data Extraction with
Standard XML Technologies,” Proceedings of the 10th
International Conference on the World Wide Web, ACM,
1-58113-348-0/01/0005, 2001.

10. J. Freire, B. Kumar, and D. Lieuwen, “Webviews:
Accessing Personalized Web Content and Services,”

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Proceedings of the 10th International Conference on the
World Wide Web, ACM, 1-58113-348-0/01/0005, 2001.

11. M. Abe and M. Hori, “Robust Pointing by XPath
Language: Authoring Support and Empirical Evaluation,”
Proceedings of the IEEE Symposium on Applications and
the Internet, 2003, pp. 156-165.

12. J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux, and
R. R. Swick, “Annotea: An Open RDF Infrastructure
for Shared Web Annotations,” Proceedings of the 10th
International Conference on the World Wide Web, ACM,
1-58113-348-0/01/0005, 2001.

13. L. Liu, C. Pu, and W. Han, “Xwrap: An XML-Enabled
Wrapper Construction System for Web Information
Sources,” Proceedings of the 16th International Conference
on Data Engineering (ICDE), 2000, pp. 611-621.

14. R. Baumgartner, S. Flesca, and G. Gottlob, “Visual Web
Information Extraction with Lixto,” Proceedings of the
27th Very Large Database (VLDB) Conference, Rome,
Italy, 2001, pp. 119-128.

15. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim, “XTRACT: A System for Extracting Document
Type Descriptors from XML Documents,” Proceedings
of the ACM SIGMOD Conference, 2000, pp. 165-176.

16. V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce,
R. Stokton, and C. Whitmer, “Changedetector™: A Site-
Level Monitoring Tool for the WWW,” Proceedings of the
11th International Conference on the World Wide Web,
ACM, 2002, pp. 570-579.

17. N. Agrawal, R. Ananthanarayanan, R. Gupta, S. Joshi,
R. Krishnapuram, and S. Negi, “eShopmonitor: A Web
Content Monitoring Tool,” Proceedings of the 20th
International Conference on Data Engineering (ICDE),
2004, in press.

18. S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi, “A
Bag of Paths Model for Measuring Structural Similarity in
Web Documents,” Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), 2003, pp. 577-582.

Received September 15, 2003; accepted for publication
December 30, 2003; Internet publication August 31, 2004

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

Neeraj Agrawal IBM Research Division, IBM India
Research Laboratory, Block I, Indian Institute of Technology
(IIT), Hauz Khas, New Delhi 110016 (nagrawal @in.ibm.com).
Mr. Agrawal received his bachelor’s degree in computer
science and engineering in 2002, joining the IBM India
Research Laboratory that same year. He is currently pursuing
a master’s degree in computer science and engineering at the
Indian Institute of Technology, Delhi. His interests are in
information extraction, text mining, content monitoring, and
Web mining.

Rema Ananthanarayanan IBM Research Division,

IBM India Research Laboratory, Block I, Indian Institute

of Technology (IIT), Hauz Khas, New Delhi 110016
(arema@in.ibm.com). Ms. Ananthanarayanan joined the IBM
India Research Laboratory as a Research Staff Member in
1998 and became a member of the Knowledge Management
group in 2002. She is currently working in the areas of
automated information extraction and Web mining. Before
assuming her current responsibilities, she worked in the
areas of auctions, negotiations, and machine learning. Ms.
Ananthanarayanan received a master’s degree in computer
science and engineering from the Indian Institute of
Technology, Chennai, in 1994.

Rahul Gupta IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (rahulgupta@in.ibm.com). Mr. Gupta
received a bachelor’s degree in computer science and
engineering in 2001, joining the IBM India Research
Laboratory that same year. He is currently a member of the
Knowledge Management group and is pursuing a Ph.D.
degree in computer science and engineering at the Indian
Institute of Technology, Delhi. His prior work involved media
mining, similarity search, and relevance feedback. Mr. Gupta’s
current interests include Web mining, information extraction,
site analysis, Web modeling, random graphs, and machine
learning.

Sachindra Joshi IBM Research Division, IBM India
Research Laboratory, Block I, Indian Institute of Technology
(IIT), Hauz Khas, New Delhi 110016 (jsachind@in.ibm.com).
Mr. Joshi is a Research Staff Member in the Knowledge
Management group. He joined the IBM India Research
Laboratory in 2000 after receiving a master’s degree in
computer science and engineering from the Indian Institute of
Technology, Bombay. Since 2000 he has been working in the
areas of Web mining, machine learning, and text mining. Mr.
Joshi’s recent work involves automatic data extraction from
semi-structured documents and Web site categorization.

Raghu Krishnapuram IBM Research Division, IBM India
Research Laboratory, Block I, Indian Institute of Technology
(IIT), Hauz Khas, New Delhi 110016 (kraghura@in.ibm.com).
Dr. Krishnapuram received his Ph.D. degree in electrical

and computer engineering from Carnegie Mellon University
in 1987. From 1987 to 1997, he was on the faculty of the
Department of Computer Engineering and Computer
Science at the University of Missouri, Columbia. In 1997, Dr.
Krishnapuram joined the Department of Mathematical and
Computer Sciences at the Colorado School of Mines (CSM),
Golden, Colorado, as a Full Professor. Since 2000 he has been

N. AGRAWAL ET AL.

691

692

with the IBM India Research Laboratory, where he
currently manages the Knowledge Management group. Dr.
Krishnapuram’s past research encompasses many aspects

of fuzzy set theory, neural networks, pattern recognition,
computer vision, and image processing. He has published
more than 150 papers in journals and conferences in these
areas. He is an associate editor of the IEEE Transactions on
Fuzzy Systems and a coauthor (with J. Bezdek, J. Keller, and
N. Pal) of the book Fuzzy Models and Algorithms for Pattern
Recognition and Image Processing.

Sumit Negi IBM Global Services, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (sumitneg@in.ibm.com). Mr. Negi

received a bachelor’s degree in electronics and communication

engineering in 2001. He joined IBM that same year and
became a member of the Knowledge Management group
at IRL in 2002. His interests lie in Web mining, focused
crawling, and information extraction.

N. AGRAWAL ET AL.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

