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With the advent of the z990 multi-book multiprocessor family
of server offerings, significant increases in total system capacity
and scalability can be realized. Essential to an increased
processing capacity is the corresponding need for significant
increases in total I/O scalability and connectivity. With the
z990, increased I/O capacity is provided by increasing the
number of physical I/O channels that can be configured to the
system and by restructuring the physical channel subsystem
(CSS) into logically distinct channel subsystems. This
restructuring is commonly called the multiple-channel
subsystem (MCSS) facility. Each logical CSS is then assigned
to one or more logical partitions as necessary in order to
provide the total I/O connectivity necessary to accommodate
the increased processing capacity of the system. An overview of
the z990 MCSS architecture is presented with respect to how it
is structured, the channel-subsystem constraints that have been
removed, and how MCSS functions are provided to the
operating systems executing in each of the system’s logical
partitions (LPARs) in a predominantly transparent manner.
Also discussed is the channel-subsystem hardware and
firmware (embedded software) design necessary to
accommodate the MCSS architecture, as well as overviews
of the MCSS I/O configuration process and the z/OS�
programming support necessary to accommodate the MCSS
facility. Finally, enhancements to the MCSS I/O measurement
facility necessary to facilitate autonomic computing are discussed.

Introduction
In contemporary zSeries* computing systems [1] and
their predecessor systems dating back to the S/370* XA
architecture systems of the late 1970s [2], each system
footprint, called a central processing complex (CPC), was
limited to a maximum of 256 I/O channels, called channel
paths, that could be configured to the CPC. This 256-
channel-path maximum did not significantly limit the
overall growth, in terms of total system capacity, of

previous S/370 XA, S/390* [3], and z/Architecture* class
systems. However, with the advent of the z990 multibook
system [4] and its significantly increased maximum
processing capacities, the need to provide more than 256
channel paths becomes integral to achieving a balanced
system environment (processor, memory, and I/O). More
than 256 I/O channel paths are fundamental to the larger

Note: For the reader�s convenience, acronyms as used in this paper are expanded
in an appendix at the end of the paper.
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z990 offerings in order to service the increased processing
capacity of these systems. The increased I/O connectivity
allows for the consolidation of multiple smaller server
platforms without requiring redesign of the existing I/O
topologies of these smaller servers.

In addition to the requirement for increased I/O
capacity and connectivity, a basic programming
requirement existed; namely, that of providing the
increased I/O processing capacity in a manner that
minimizes the changes necessary to the zSeries operating
systems, supporting vendor products, applications, their
associated I/O-configuration control information, and user
documentation, in order to support more than 256 channel
paths.

Finally, the multiple-channel-subsystem (MCSS)
architecture, design, and support efforts focused on
expanding upon the zSeries existing multiple-image facility
(MIF) in order to 1) minimize the changes necessary to
provide greater I/O capacity, 2) build upon and increase
the MIF channel-sharing capabilities, and 3) ensure

backward compatibility with previous zSeries computing
environments. The z990 MCSS facility achieves these
fundamental requirements as discussed below.

Constraints to increased I/O capacity
In order to achieve the necessary increase in the total
I/O capacity of the z990 system, several z/Architecture
constraints had to be addressed and redefined in a manner
that minimizes their impact on providing more than 256
channels and associated I/O devices to the zSeries
operating systems, such as z/OS*, z/VM*, z/Linux, the
zSeries Transaction Processing Facility (TPF), and the
VSE/ESA* operating systems, that execute in the logical
partitions configured to the z990 system. Specifically, the
architecturally defined channel-path identification number,
called the channel-path identifier (CHPID), had to be
maintained without change. The CHPID value is defined
as an 8-bit binary number resulting in a range of unique
CHPID values from 0 to 255; therefore, a maximum of
256 channel paths were possible on previous S/370, S/390,
and z/Architecture-class systems. Since the inception of
the precursor S/370 XA channel-subsystem architecture
in the late 1970s, this 8-bit CHPID has been maintained
without change because of its pervasive use in the z/OS
and z/VM operating systems. For example, the CHPID
value is maintained in many internal programming control
blocks, is displayed in various operator messages, and is
the object of various system commands, programming
interfaces, etc., all of which would have to be redesigned
if the CHPID value was increased to more than an 8-bit
number in order to accommodate more than 256 channel
paths.

In addition to increasing the total number of channel
paths that may be configured to a z990-class system,
configuring a corresponding increase in the number
of I/O devices to a large z990 system was necessary.
In z/Architecture, each I/O device is represented by a
separate set of controls, called subchannels, which are
used by the channel subsystem to activate, monitor, and
report the progress of I/O operations for their associated
I/O device. Prior to MCSS, the z/Architecture provided a
maximum of 64K subchannels and an equal maximum
number of I/O devices. As was true with the limited
number of channel paths on previous S/390 and zSeries
systems, this 64K maximum I/O device limitation had to
be removed in a manner that caused minimal disruption
to the zSeries operating systems and their associated
application programs.

Eliminating the I/O constraints
The MCSS facility, as depicted in Figure 1, extends the
z/Architecture CSS to provide up to 65,280 channel paths.

Overview of the z990 MCSS facility.
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A corresponding increase in the total number of attaching
control units and I/O devices is also provided in a manner
that is predominantly transparent to the programs (i.e.,
the operating systems and their associated applications)
executing in each of the configured LPARs on the z990
system. This was accomplished in the following manner.

1. An additional level of channel-path-addressing indirection
is created that allows more than 256 physical channel
paths to be installed and uniquely identified without
changing the legacy 8-bit CHPID value and the
corresponding programming dependencies on the
CHPID. This new channel-path-identification value,
called the physical-channel identifier (PCHID), is a
16-bit binary number ranging from 0 to 65,279, which
uniquely identifies each physically installed channel
path. With the z990, a current maximum of 1024
external channel paths (e.g., ESCON*, FICON*, OSA)
and 48 internal channel paths (e.g., Internal Coupling
and IQDIO hyperlink) are each assigned a unique
PCHID value in the range of 0 to 2,047. With the
exception of the z990 I/O configuration program
(IOCP) and the dynamic I/O configuration
programming, both of which are used to create and
modify the z990 channel subsystem I/O configurations,
the PCHID value is transparent to the programs
operating in each LPAR. Correspondingly, both of
these I/O configuration management programs are
enhanced to provide the controls necessary to associate
the PCHID value of each channel path with its
corresponding CHPID values.

2. The physical CSS is restructured into multiple “logical”
channel subsystems. Each logical CSS is called a
channel-subsystem image, and each image is identified
by a unique 8-bit binary number ranging from 0 to 254,
called the channel-subsystem-image identifier (CSSID),
resulting in an architecture maximum of 256 channel-
subsystem images per central processor complex (CPC)
footprint. Additionally, each CSS image may be
configured with a maximum of 256 unique channel
paths, called a channel-path set (CPS). This results in
an architecture maximum of 64K physical channel paths
for a given CPC footprint.

Each channel-subsystem image is also structured to
provide its own z/Architecture MIF. The multiple-
image facility (previously supported by some S/390 and
all previous z/Architecture models) that is associated
with each channel-subsystem image provides for the
replication of both channel-path and subchannel
controls. This is necessary to allow each of the logical
partitions that are configured to a given channel-
subsystem image to have its own set of I/O controls in
order to dynamically access and share up to 256
physical channel paths and up to 64K physical I/O

devices that may be attached to the channel paths
configured to the channel-subsystem image.

3. The multiple-image facility is also extended in order
to allow physical channel paths to be defined and
concurrently configured to multiple channel-subsystem
images. Such shared channel paths are called
“spanned” channel paths because they allow the
channel paths and their attached I/O devices to be
dynamically and transparently shared by programs
operating in LPARs which are configured to different
channel-subsystem images; that is, they span multiple
channel-subsystem images.

Correspondingly, each configured z990 LPAR is
assigned to an appropriately defined CSS image in order
to accommodate the I/O connectivity requirements of the
operating system and associated application programs that
are executed in each of the configured LPARs, as depicted
in Figure 1.

Overview of MCSS architecture

Channel-subsystem images
Each z990 CSS image, depicted in Figure 2, consists of
a single unique set of MIF subchannel controls called
subchannel images, an associated set of MIF logical
channel-path controls called channel-path images (CPIs),
and a related set of physical channel paths and associated
controls called a CPS, containing from 1 to 256 physical
channel paths. Collectively, these I/O controls are called a
channel-subsystem image. The channel-subsystem image
extends both the MIF and associated physical-channel-
path controls in order to provide a means by which the
LPAR hypervisor1 [5] can assign subchannels and channel
paths (either nonshared or shared channel paths) to each
of the configured LPARs. The MCSS architecture provides
from 1 to 255 channel-subsystem images that may be
configured either by z990 model-dependent means or by
use of the appropriate z/Architecture dynamic I/O
configuration commands. As previously mentioned, each
channel-subsystem image is specified by a unique 8-bit
binary integer called the CSSID. Either the LPAR
hypervisor or the z990 IOCP can assign each configured
channel-subsystem image to a maximum of 15 LPARs.

Additionally, the MCSS facility extends the
z/Architecture Start Interpretive Execution (SIE) I/O-
instruction interpretation controls used by the LPAR
hypervisor to associate the correct channel-subsystem
resources with each of the logical processors associated
with each LPAR. When the program operating in an
LPAR executes an I/O instruction [e.g., a Start

1 Hypervisor: A software layer to manage multiple operating systems running in a
single central processing complex.
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Subchannel (SSCH) instruction], the SIE extensions for
the MCSS facility transmit both the CSSID and the MIF
IID to the CSS in a manner that is transparent to the
programs operating in the LPAR. In turn, the CSS uses
the transmitted CSSID and image identification (IID) to
access the correct set of channel-subsystem image I/O
controls as described later in the section entitled
“Subsystem-identification word (SID).”

MIF extensions for the MCSS facility
The MCSS facility extends the MIF as follows:

1. The MCSS architecture provides from 1 to 255 unique
MIFs and their associated I/O controls. One MIF is
implicitly created and configured to each configured
channel-subsystem image.

2. All of the pre-MCSS channel path and attached I/O-

Figure 2

MCSS channel-subsystem image.
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device dynamic sharing functions provided by the MIF
are maintained in MCSS-class systems. Additionally,
each MIF function that requires the specification of
the MIF IID is extended to require the CSSID of the
corresponding channel-subsystem image with which the
specified MIF image is associated. For example, I/O
instructions that require a MIF IID to be specified in
the instruction operand subsystem-identification word
(SID) are extended to also require the specification of
the CSSID of the associated channel-subsystem image.
As previously mentioned, both the MIF IID and
the CSSID are implicitly provided to the channel
subsystem, on behalf of the program executing in the
LPAR, by the MCSS extensions to SIE I/O-instruction
interpretation.

3. Each MIF within a channel-subsystem image provides
for a maximum of 16 images. Image IDs range from
0 to 15, with image 0 reserved for use by the LPAR
hypervisor. Consequently, each channel-subsystem
image may be configured to a maximum of 15 LPARs.

4. Each provided MIF is configured to and associated with
the physical channel paths contained in the channel-
path set associated with the channel-subsystem image.

5. Spanned channel paths are provided. Depending on
the type of channel path, the channel path and its
associated I/O devices may be configured to multiple
channel-subsystem images. Spanned channel paths
extend the MIF sharing capability to z990
configurations that require shared channel-path access
by more than 15 LPARs or shared access by LPARs

configured to different channel-subsystem images. See
also the section entitled Sharing beyond 15 logical
partitions—spanning later in this paper. Figure 3 depicts
a spanned channel path. MCSS-spanned channel paths
extend the MIF channel path and I/O device-sharing
capabilities for z990 configurations that require shared
access to one or more common physical-channel paths
by more than 15 LPARs or by LPARs assigned to
different channel-subsystem images.

Channel-path sets (CPSs) for the MCSS facility
The MCSS architecture provides from 1 to 255 groups of
physical channel paths, called channel-path sets (CPSs).
Each channel-subsystem image is configured to a single
unique CPS. With the exception of spanned channel paths,
each physical-channel path configured to each CPS is
unique among all other physical-channel paths configured
to other channel-subsystem images.

Because as many as 255 channel-subsystem images may
be provided, the CHPID values assigned to each physical-
channel path in each of the channel-path sets may not be
unique. In order to accommodate these CHPID synonyms
for each physical-channel path, the following channel-path
identifications are provided by the MCSS architecture:

1. As observed by the programs executing in each LPAR,
each channel path configured to each LPAR is specified
by the CHPID value assigned to the physical-channel
path, just as when the MCSS facility is not provided.

Figure 3

MCSS-spanned channel path.
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For example, the reset-channel-path (RCHP)
instruction still provides a CHPID operand value [1]
as the means for the program to identify and initiate a
resetting operation for the CHPID-specified channel
path. In general, the only programming exceptions to
the continued use of the CHPID value to specify a
channel path exist within the dynamic I/O configuration
commands used to create and modify the z990 I/O
configuration definitions and within the z990 I/O
configuration program (IOCP).

2. As observed by the LPAR hypervisor and the channel
subsystem, the CHPID, CSSID, MIF IID, and PCHID
values may all be used either collectively or in part to
access and control a given channel path as a function of
the specific hypervisor, channel subsystem, or dynamic
I/O configuration operation being performed.

Subsystem-identification word (SID)
As with pre-z990 z/Architecture servers, the SID operand
is used by all z/Architecture I/O instructions that require a
subchannel specification as the means of identifying the
target subchannel associated with a specific I/O device.
For example, the Start Subchannel (SSCH) instruction
that is used to initiate an I/O operation with a specific I/O
device requires an SID operand specification as the means
for identifying the subchannel that is used to access the
associated device. With the advent of the MCSS facility,
the SID is extended to provide the CSSID of the channel-
subsystem image to which the subchannel is configured,
as shown in Figure 4. The channel-subsystem identifier
(CSSID) field specifies the binary number of the channel-
subsystem image containing the referenced subchannel.
The MIF IID field specifies the binary number of the
specific MIF image within the channel-subsystem image
containing the referenced subchannel. The subchannel
number field specifies the binary number of the specific
subchannel image within the specified MIF image and
within the specified channel-subsystem image of the target
subchannel to be accessed.

For all programs operating in the z990 LPARs (and
therefore under control of the LPAR hypervisor via SIE
as provided by the z/Architecture SIE facility), both the

CSSID value and the MIF IID value are transparent
and are not specified by the program operating in the
LPAR. With MCSS, the LPAR hypervisor and the SIE
architecture controls are extended to allow the hypervisor
to implicitly specify the CSSID and MIF IID configured
to the target LPAR. For High-frequency I/O instructions
that execute interpretively, such as SSCH, the LPAR
hypervisor places the CSSID value in the SIE logical
processor state description (SD) for each logical processor
configured to the LPAR. When the instruction is then
interpretively executed by central processor I/O instruction
firmware, the CSSID and MIF IID values are implicitly
passed to the channel subsystem without hypervisor
involvement just as if the program in the LPAR had
explicitly specified these values in the SID operand.

For infrequently executed I/O instructions [such as
the Modify Subchannel (MSCH) instruction] that are
not intended to execute interpretively, execution of the
instruction by the program operating in the LPAR causes
the LPAR hypervisor to implicitly gain control. The LPAR
hypervisor then loads the proper CSSID value (as well as
the proper MIF IID value) into an internal copy of the
SID operand and re-executes the I/O instruction on behalf
of the program operating in the LPAR in a manner that is
transparent to the program.

These LPAR hypervisor and MCSS SIE firmware
extensions are applied to all of the appropriate
z/Architecture I/O instructions as well as to the
z/Architecture coupling facility instructions used to
access coupling facility channel paths.

Figure 5 depicts a z990 system configuration showing
four logical-channel subsystems. The hardware and
firmware controls for each logical-channel subsystem are
contained in individual channel-subsystem images
described previously.

Overview of z990 channel-subsystem design
The z990 CSS comprises all of the hardware and firmware
required to implement the zSeries CSS architecture,
including all of the different types of channel paths
provided by the z990 system. The firmware in the system-
assist processors (SAPs) and I/O channel paths performs
the bulk of the I/O instructions and I/O interrupt
processing. There is also firmware in the CPs that initiates
the I/O instructions and participates in the handling of I/O
interruptions. The CSS directs the flow of information
between I/O devices and main storage. The CSS uses one
or more channel paths as the communication links in
managing the flow of this information. As part of I/O
processing, the CSS also performs channel-path selection
and channel-path management functions, such as testing
for channel-path availability, selecting an available channel
path, and initiating execution of I/O operations over the
selected channel path with the attached I/O devices. When

Subsystem-identification word.

Figure 4
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I/O operations are completed, the CSS analyzes the
resulting status and transmits it back to the program
by use of I/O interruptions and I/O status information.

To provide communication among the various elements
in the CSS and to maintain information about the I/O
configuration, a set of control blocks are allocated in the
hardware system area (HSA)—storage that is accessible
only to the embedded software (firmware). One class of
control block in HSA is the subchannel control block
(SCB). Each SCB contains much of the information used
to represent the architected subchannel. As with the
architected subchannel, one HSA subchannel for each
device is associated with an LPAR; it contains most of the
information required to communicate with the associated
I/O device. An SCB contains information such as the
channel program address, path selection controls,
architected path masks, addressing information such as
the device address and device number, and subchannel
and device status. In short, this is the major control
block used to pass information among the elements
in the CSS. Some additional control blocks are used

to manage I/O operations with the channels, while others
allow the queuing of work or interruptions.

Multiple-image facility
As previously stated, the MIF architecture, upon which
the MCSS facility is structured, provides the necessary set
of controls and facilities that make it possible for multiple
LPARs to share the same physical external channels
and firmware-implemented internal channels. The MIF
architecture makes use of I/O device addressing features,
such as the ESCON* [6] and FICON* [7] native I/O
interface architecture source logical address (SLA) and
the companion destination logical address (DLA) to
accomplish this. For ESCON, these fields are each 4 bits.
For FICON native, the fields are each 8 bits. They are
located in the frames that are transferred on the I/O
interface. These fields are used by the MIF implementation
as the source and destination LPAR identifiers in the I/O
frames. These frames are used to transmit data between
the sharing LPARs and the shared I/O devices on the
same shared physical channel. The SLA and DLA keep

Figure 5

z990 system configuration showing four logical-channel subsystems.
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these frames both segregated and unique as observed by
the control unit (CU), the I/O device, and the CSS from
the frames for other sharing LPARs.

Adding a new dimension—the CSS image
To maintain compatibility with the large installed base of
control units and zSeries systems already in the field, the
existing ESCON I/O interface architecture [6] had to be
preserved in the design and implementation of MCSS.
With the 4-bit SLA/DLA limitation for ESCON, the
highest logical partition number (PN) that can be set
into the ESCON serial I/O frames is 15. Since one of
the goals for developing the z990 was to increase the
number of LPARs to more than 15, setting the PN into
the SLA/DLA was no longer possible. This limitation,
along with the goal for preserving the 8-bit CHPID
number, resulted in the decision to provide one MIF with
one companion channel-path set for each configured CSS
image.

This, literally and figuratively, added a new dimension
to the CSS. Each MIF can still support up to 15 LPARs.
However, instead of having the IID equal to the PN, each
CSS image now has a MIF with up to 15 usable IIDs in
the range from 1 to 15. With MCSS, the IID is now used
in the ESCON frames for the SLA/DLA instead of the
PN. This allows ESCON channels, within a channel-path
set for a single CSS image, to be shared. Since the
z990 supports up to four CSS images, each with 15 IIDs,
the CSS could theoretically support up to 4 � 15 LPARs,
which is more than sufficient to support the 30-LPAR
machine limit on the z990.

Sharing beyond 15 logical partitions—spanning
Prior to the introduction of the MCSS facility, the
FICON native architecture [7] had expanded the SLA
and DLA to 8 bits. To be consistent with MIF and the
way in which ESCON is handled, the rightmost 4 bits
of the SLA/DLA have been set to the IID. To expand
the sharing capability across more than 15 LPARs, the
leftmost 4 bits now contain the CSSID of the logical CSS
configured to the LPAR. This concatenation of the CSSID
and IID (CSSID.IID) enables the channel path to be
shared not only across LPARs configured to a given
CSS image, but also shared or spanned between LPARs
configured to different CSS images. The z990 supports
channel-path spanning for FICON channel adapters,
for its Fibre Channel protocol (FCP)/SCSI adapters,
networking adapters, coupling facility channel paths, and
internal firmware channel paths. Only the ESCON and
FICON bridge channel paths do not support spanning,
because they must adhere to the ESCON I/O interface
architecture at the attached switch and its associated
control units.

More I/O devices and subchannels possible with
the z990
The MCSS facility allows each CSS image and its
associated LPARs to be defined with their own unique set
of I/O devices. The I/O devices are shared by multiple
LPARs configured to a single CSS image, by spanned
channel paths configured to multiple CSS images, or by
combinations of these. On the z900 zSeries system, up to
63K devices are supported. For the z990 system, each CSS
image supports up to 63K devices. When four images are
configured, a maximum of 252K devices may be configured.
Because each shared device requires a unique subchannel
image for each sharing LPAR, each CSS image may have as
many as 945K subchannels, and a four-image configuration
may have as many as 3.7M subchannels that are concurrently
managed by the CSS firmware.

Flow of an I/O operation within MCSS firmware
In Figure 6, we see the flow of a Start Subchannel (SSCH)
instruction that is executed by a program running in
LPAR 3 to initiate an I/O operation. The SSCH is issued
to device DE01 represented by a subchannel whose SCB
number (SCBNUM) is 101. LPAR 3 is configured to
CSSID 2, IID 1. Once the LPAR hypervisor dispatches
the LPAR containing the program executing the SSCH
instruction to one of the CPs configured to LPAR 3, the
CP executing the SSCH instruction determines the address
of SCB 101 maintained in HSA by using the SCBNUM,
the CSSID, and the IID. As previously stated, the
program that executes the SSCH instruction specifies
only the SCBNUM in the architected SID operand of the
SSCH instruction, without awareness of the CSSID or IID
to which the LPAR is configured. The SSCH instruction
uses SCB lookup tables maintained in the HSA to locate
the associated CSS image SCB that represents the
architected subchannel for the target I/O device. Since the
SCBs maintained in HSA are organized and “tagged” by
CSSID, IID, and SCBNUM, access to the correct SCB is
achieved with very little overhead.

Once state controls in the SCB are set to reflect the
beginning of an SSCH instruction as was done prior to
MCSS, the CP enqueues the SCB on one of the SAP work
queues (WQ), signals the SAP to begin processing the
SSCH request, sets the appropriate condition code to
inform the program that the request has been initiated,
and proceeds to end-of-instruction, releasing the processor
to execute the next z990 instruction.

Once signaled, the SAP, operating within the CSS,
dequeues an SCB from the top of the WQ. At this point,
the SAP performs I/O path selection from among the
channel paths connecting the device that is in the same
CSS image and MIF image as the subchannel selected at
the beginning of the I/O operation. In this case, channel
paths identified by CHPIDs 07, 08, or 12 are candidates
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that match these criteria. Once a channel path is selected
on the basis of algorithms for optimizing channel and SAP
utilization, the channel is signaled with information about
the SCB associated with the target device. In this example,
PCHID 101, which is spanned to CSSID 0 and 2 and
defined as CHPID 07, is selected to perform the SSCH-
specified I/O operations. The selected channel-path
firmware uses the destination link address (Dlink@�0D),
control unit logical address (CULA�0), and unit address
(UA�03) to determine the SCBNUM from lookup tables
built during HSA initialization. The CSSID and IID (2
and 1) are also passed to the channel when it is signaled
by the SAP. The channel-path firmware accesses the SCB
in HSA to determine and update the state of the I/O

operation using CSSID 2, IID 1, and SCBNUM 101. To
communicate with device DE01, the channel sets the
CSSID.IID 2.1 into the SLA as previously described,
along with the Slink@�0C, the DLA�CULA�0, and
the Dlink@�0D in the link outbound frames sent on
the interface.

When the control unit sends inbound link frames to
the channel, it sets the parameters SLA�CULA�0,
Slink@�0D, DLA�2.1, and Dlink@�0C. The channel-
path firmware uses the DLA from the control unit to
determine the CSSID.IID in addition to other information
in the inbound frames to determine the SCB associated
with the I/O operation. The channel path can then set the
state of the I/O operation into the correct SCB. Once the

Figure 6

Flow of an I/O operation with MCSS.
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SCB is updated in HSA, the channel-path firmware signals
the SAP and passes the related CSSID, IID, and SCBNUM
to the SAP.

Once the SAP services the interrupt from the channel,
it uses the CSSID, IID, and SCBNUM to locate the
correct SCB. The CSS then verifies and updates the status
of the I/O operation in the SCB and enqueues the SCB
on an I/O interruption queue (IQ) for the particular
interruption zone and subclass as indicated in the SCB.
One of the CPs interrupts the program operating in the
LPAR associated with the interruption zone when the
program is enabled for that particular interrupt subclass.
In this case, the program in LPAR 3 is interrupted.

The actual I/O processing within the CSS beyond the
management of which SCB to pick from and which set of
channel paths to choose is minimally affected with MCSS.
This is a considerable advantage in that we have built
MCSS on top of a proven, robust zSeries design.

Software support for the MCSS facility

I/O configuration definition methodology
There are two basic methodologies by which a server can
obtain configuration information about the I/O resources
that it can manage. The server operating system can
either use a definition methodology, in which the I/O
resources are explicitly defined, or it can use a discovery
methodology to locate the resources that are either
integrated into the host computer or attached via some
type of transport technology (e.g., Fibre Channel). Many
systems employ a hybrid approach in which the physical
resources are discovered and certain policy information
for usage is defined and applied to the discovered
resources. For example, user-friendly names may be
assigned such that they are predictable and repeatable,
or when a choice of different device drivers is available,
the installation may have to specify the one to use.

Defining the I/O configuration
zSeries systems with ESCON [6], FICON [7], or other
I/O technologies employ a “definition methodology” for
describing the I/O configuration to the processor and the
operating system. This process allows the administrator to
control and customize various features. User-friendly
names can be associated with I/O resources for the
purpose of access control, resource-based job scheduling,
resource monitoring, and event reporting. Security policies
can be enforced by limiting the resources accessible by the
machine, the LPAR, and the operating system. Bandwidth
can be managed by designating which host I/O adapters
(channel paths) may be used to access which control units
and I/O devices.

Configuration-definition methodology background
IBM zSeries servers and the control programs that
operate on them require definitions of the system I/O
configuration and interconnection topology in order to
effectively and dynamically manage the execution of
application-initiated I/O operations. Since the advent of
the IBM 308X processor family in the early 1980s, the
hardware system I/O configuration-definition process has
been performed through the use of the I/O Configuration
Program (IOCP). The corresponding software I/O
configuration-definition process has evolved over the
last 25 years. For the IBM multiple virtual storage (MVS)
operating system, the I/O configuration-definition
process required that the systems programmer use
System/370* assembler macros to define the I/O resources
for the software. These macros generated object code that
was link-edited with the base control program of the
operating system for subsequent loading into storage when
the system was IPLed. This process, known as system
generation (SYSGEN), became unacceptable over a
period of time for a number of reasons. For example,
whenever an I/O configuration change was required, the
SYSGEN process had to be repeated. Correspondingly,
large I/O configuration definitions took hours of
processing power to build all of the object code needed to
represent the I/O configuration and to link-edit this code
with the operating system code. Any changes to the device
support code and associated data structures required this
entire cumbersome SYSGEN process to be repeated.

In the mid-1980s, the MVS operating system provided
a new function, called the MVS Configuration Program
(MVSCP), in order to define and segregate the software
I/O configuration process from the base MVS control
program code. This process separated the I/O
configuration data structures and device support code into
separate load modules. With the advent of the MVSCP,
I/O device definitions were still described via S/370
XA assembler macros; however, these macros simply
generated tables that were processed by device-specific
exits that were called and executed from within the
MVSCP. The output of the MVSCP program was a
separate load module that provided separation of the
operating system code from the data structures that
represented the I/O configuration. This restructuring
allowed customers to create multiple different MVS I/O
configuration definitions and to select any one of these
definitions during the IPL process. These configuration-
definition enhancements eliminated the requirement to
rebuild the entire operating system and reduced the
configuration-creation process from hours to seconds.
However, changes to the I/O configuration could still not
be made dynamically while workloads were executing. All
I/O configuration changes still required a power-on-reset
(POR) of the entire system and thus affected all active work.
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Although, for MVS, the hardware configuration-
definition process was separate from the software
configuration-definition process, both processes originally
made use of a common input source of configuration
statements. Accommodations were made in both the
MVSCP and the IOCP programs to allow the inclusion of
configuration information required by both. However, over
time, this common hardware/software input source became
more and more difficult to maintain. For example, the
introduction of LPARing in the late 1980s and the
functionality it introduced, such as the use of duplicate
device numbers across LPARs, created the potential for
configuration mismatches between the corresponding
hardware and software configuration definitions. Further,
such errors and mismatches were often not detected until
there was an attempt to initiate an I/O operation to an
incorrectly specified device, which might then fail.
Recovery from such failures often required both the
MVSCP and IOCP to be executed, a subsequent POR
of the hardware, and an initial program load (IPL) of
the operating system.

In 1990, an improvement to MVS called the Hardware
Configuration Definition (HCD) [8] function was
introduced. Its objective was to consolidate the hardware
and software I/O configuration definition (IOCD) process
into a single interactive end-user interface, and to address
the problem of late detection of inconsistencies between
the hardware and software configuration definitions.
HCD provides an interactive panel-driven capability that
supports both the hardware and software I/O configuration-
definition functions, as shown in Figure 7. HCD validates
all input against both hardware and software “rules” (unit
information modules, or UIMs, are device-dependent
exits that validate the user input) and detects any
inconsistencies and errors. This allows an interactive
user to make immediate corrections. Even with HCD,
however, changes to the current hardware and software
I/O configuration definitions still required a POR and
a subsequent IPL.

Dynamic Reconfiguration Management (DRM),
introduced with System/390* [9], built on the HCD
functionality. With DRM, an HCD-created I/O definition
file (IODF) could be used to change the I/O configuration
definition without requiring the system outages previously
associated with the configuration process (i.e., without
a POR or IPL). At control program initialization,
architected interfaces between the control program and
the hardware allow the control program to determine
whether its representation of the I/O configuration is
consistent with the hardware I/O configuration definition
initialized and active within the channel subsystem of the
server. Once consistency has been verified, the current
I/O configuration definition can be updated with a new

definition by the use of an HCD interactive panel, or by
an MVS operator command, which invokes the DRM
function. The control program determines the changes
required to the existing definition (i.e., additions,
deletions, and modifications) and makes the necessary
changes to the software and, through architected
interfaces, to the hardware-channel subsystem. Changes
are synchronized with existing I/O activity to minimize
and/or eliminate disruption. Additionally, the resultant
hardware definition can be optionally written to a
hardware I/O configuration data set (IOCDS) for use
during subsequent system PORs.

The control program provides services that allow
installation application programs and vendor products
to be notified of a planned or completed configuration
change. Such services are vital to applications that are
sensitive to the I/O configuration (e.g., system automation
for OS/390* I/O operations, or SAFOS IOOPs).

The DRM function became a single control point for
defining the I/O configuration for the entire server and its
associated LPARs. DRM, invoked in an LPAR running
z/OS or z/VM, changes the hardware definition of I/O
resources across all affected LPARs. It permits a single
point of control for DRM related to hardware I/O
definitions. In order to ensure that deleted resources do
not affect currently executing applications within other
LPARs, functions were provided to easily allow the

Output I/O definition file is used by IPL to build the software 

configuration. The IODF is also used to create the processor con-

figuration. (UIM: unit information model.)
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installation to coordinate the planned I/O configuration
change across all affected LPARs before making the
change.

Information systems perform a critical function within
business enterprises. For many businesses, operation
twenty-four hours a day, seven days a week (24 � 7) is a
requirement. Time zone differences across international
operations are often an important factor. Outages and the

duration of outages can easily be correlated to loss of
productivity and/or to lost revenue. The DRM function
allowed customers to make significant improvements in
continuous availability by eliminating planned outages
for I/O configuration changes.

Elements of a zSeries I/O configuration
The zSeries I/O configuration consists of the following
elements:

1. Processor – Each processor definition has an implicit
channel subsystem definition with an architected limit
of 256 channels. The specific processor type determines
the limits and capabilities of the channel subsystem,
such as the number of total channels that can be
supported and the features that are supported (e.g.,
HiperSockets* [10]).

2. Logical partitions – Each processor can be divided into
up to fifteen local LPARs. Certain physical channels
can be actively shared by the different partitions at the
same time, increasing the effective utilization of the
shared resources.

3. Channel paths – These are either the physical hardware
adapters used to communicate with external peripheral
devices or logical entities used for communication
between LPARs for networking or clustering. Since
the physical ESCON and FICON channels can be used
for multiple purposes (i.e., ESCON CTC vs. ESCON
channel, or FICON native channel vs. FICON bridge
channel vs. FCP), customization information is needed
to define the behavior that is required.

4. Control units – Control unit definitions were originally
required in order for the channel subsystem to
understand the scope of devices attached to the control
units for the purpose of managing busy/no-longer-busy
status indications. With ESCON and FICON, the
control unit definitions are necessary for the purpose
of managing addressing and the establishment of
logical paths [6, 7].

5. Devices – The I/O device is the target of the
z/Architecture I/O commands.

6. Switches – Switches have been introduced into the
defined I/O configuration in order to integrate the path-
management and reconfiguration functions of the
sharing hosts with the switch-management functions
required to manage the I/O fabric.

Figures 8 and 9 show the HCD user interface for
managing the I/O configuration definition.

z990 configuration definition extensions
The definition methodology and system management for
host configurations has been extended for the z990 with
a set of tools consistent with the pre-existing zSeries

HCD functions provide the ability to add, delete, modify, and 

copy the definition of a logical-channel subsystem.

Figure 8
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The definition of processors is extended with MCSS to include 

the definition of one or more logical-channel subsystems. Each of 

the logical-channel subsystems can have up to fifteen LPARs and 

256 CHPIDs.

Figure 9
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configuration tools and concepts. This allows customers to
exploit the new MCSS features of the z990 with minimal
additional work and to maintain continuous availability by
extending the dynamic I/O reconfiguration management
[9] function of zSeries to include the MCSS features of
the z990.

HCD support for MCSS consists of the following
functions:

1. HCD provides the ability to define multiple-logical-
channel subsystems for a processor. For simplicity of
migration, this includes the ability to copy a physical-
channel-subsystem definition from another processor
definition into a logical-channel-subsystem definition
and the ability to copy a logical-channel-subsystem
definition into another logical-channel subsystem. Each
logical-channel subsystem includes up to fifteen logical
LPARs. Certain channel types, such as FICON and
HiperSockets, are sharable across logical-channel
subsystems. Channels defined this way are denoted
as spanned.

2. HCD participates with the channel mapping tool
(CMT) to automatically assign the best physical
channel for a given control unit configuration. The
CMT is a function that assigns a PCHID to each
CHPID definition in the processor configuration.

3. HCD automatically reassigns the definition of FICON
CTC control units when migrating a configuration into
an MCSS configuration. This is needed because each
FICON CTC control unit definition must include the
channel subsystem in which it resides. Those processor
definitions in the same IODF using FICON CTC must
have the definitions updated if the target control unit
becomes part of an MCSS definition.

4. HCD automatically detects the definition of channel
types that are not supported when copying a channel
subsystem definition. These unsupported CHPID types
are not included in the new configuration.

Autonomic computing
Over the years, zSeries architecture has been enhanced
with a number of features that have allowed customers
to efficiently manage their systems and exploit the
availability, scaling, and workload-management capabilities
of z/OS [11, 12] to efficiently run multiple workloads at
the same time. For I/O, these zSeries features include the
extended channel-path-measurement facility (CPMF), for
gathering performance data on channel-path resources
[13], the channel monitoring mode, which allows the
creation of channel measurement blocks (CMBs) that
gather I/O resource usage and contention statistics to
individual device granularity [1], plus a number of other
zSeries machine facilities that allow resource monitoring
products such as the IBM resource monitoring facility

(RMF) product to provide detailed reporting on other I/O
statistics and resource contention for capacity planning
and problem analysis. These I/O facilities also provide the
customer with the ability to do accurate accounting and
billing of applications for the consumption of I/O
resources.

The z/OS workload manager (WLM) component
is constantly evolving to exploit the zSeries I/O
instrumentation data. It is the objective of z/OS to create
systems that are self-tuning and require fewer specialized
skills in order to plan and configure, and to maximize the
efficient utilization of all of the I/O resources to provide
the maximum business value to the customer.

With WLM, the z/OS operating system provides the
capability to prioritize I/O requests. The objective of
this support was to introduce sysplex-wide, goal-oriented
management of I/O priorities, driven by WLM knowledge
of goals for work and the business importance of those
goals [14]. The I/O priority for each request is divorced
from the dispatching priority associated with the
requesting dispatchable unit of work in order to allow
independent algorithmic adjustments. This requires that

1. I/O priorities be dynamically determined on the basis
of the business value of each I/O to the customer.

2. I/O priorities be maintained at a WLM service class
period level and be synchronized across the systems in
a Parallel Sysplex*.

3. The I/O priority associated with each I/O request be
passed to the disk storage systems (for example, the
enterprise storage server, or “Shark”) for efficient
management of the resources it controls outboard.

4. Monitoring and reporting extensions be provided to
externalize relevant performance data.

In OS/390 Version 2 Release 7, while operating in
WLM goal mode, the systems programmer can choose to
let WLM dynamically manage the parallel access volume
(PAV) aliases. Dynamic management of PAVs means that
WLM determines which workloads in the sysplex are not
meeting their goals because of IOS queue time delays.
With this information, WLM optimizes which PAV-based
UCB devices should have PAV-alias devices added to
them in order to increase the I/O parallelism and
eliminate IOS queuing delays [15].

Having WLM manage the PAV-alias assignments
provides a number of benefits. The systems programmer
does not have to perform detailed analysis of where to
place data sets and where to assign aliases. Workloads are
constantly changing, and the systems programmer can at
best only statically configure for an average access pattern
for the control unit. However, the average access pattern
and I/O rate are almost always suboptimal. With WLM
dynamic alias tuning, data does not have to be moved
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around to avoid hot spots. This improves application
availability and reduces management costs. All that the
systems programmer need do is to assign enough PAV
aliases in the control unit to meet the overall aggregate
workload requirements. WLM can adjust the PAV alias
requirements as the workload changes.

WLM dynamic alias tuning helps to reduce hardware
costs because dynamically moving PAV aliases around
decreases the average response time to the control unit.
This has an effect equivalent to increasing the cache size
of the control unit, without the added hardware cost. In
other words, this has the same effect as spreading the
data across several devices, without taking the time and
resources to move the data, finding a means to accurately
predict how to spread the data for best response time, or
obtaining enough devices to distribute the I/O.

Allowing OS/390 to manage the PAVs facilitates larger
volume sizes. Multiple I/O requests arriving for the same
logical volume do not necessarily block one another from
executing. Having larger volume sizes has the added
benefit of reducing virtual storage constraints below the
16-MB storage line. Instead of running with three 3390-3
DASD volumes, each with a UCB below the line, the
installation can choose to define a single 3390-9 volume
with the PAV base still below the 16-MB line and the
PAV-alias devices in 31-bit storage. The PAV aliases are
invisible to the applications but continue to provide the
I/O parallelism achieved by three separate devices.

Finally, with WLM dynamic alias tuning, the installation
does not have to dedicate as many unit addresses
(subchannels) in the LSS for use as PAV aliases. Thus,
more data can be addressed in a single LSS by using more
of the available unit addresses to define PAV-based
devices. The smaller number of PAV aliases can be
adjusted as required by the workload.

I/O measurements
The zSeries I/O measurements constitute a critical
function that allows the z/OS WLM component to monitor
the I/O delays in order to determine whether or not I/O
contention is causing work to miss its goals. A number
of enhancements were made to MCSS to improve the
facilities that provide measurements in order to increase
the ability to provide autonomic computing capabilities.

Prior to MCSS, the original S/370 XA I/O architecture
[2] defined measurement blocks to allow the operating
system to gather detailed measurements about the
execution of I/O requests. This architecture had several
deficiencies. First, it required that all of the measurement
blocks be located in contiguous real memory. A typical
customer configuration required thousands of devices, and
each measurement block was 32 bytes in length. It was
not practical for the operating system to allocate huge
amounts of contiguous real storage after program
initialization. Thus, the customer had to pre-allocate all
of the measurement blocks that could possibly be wanted
over the life of the IPL. This would waste system
resources until the time at which the blocks were needed.
If the customer did not plan correctly, new devices that
were dynamically added to the system could not have
measurements gathered.

Second, the measurement architecture was optimized
for monitoring programs to sample the measurement
blocks directly at fixed intervals in order to report average
utilization and delays. If the program had to determine
all of the measurements for each specific I/O request, it
would have to take a snapshot of the measurement blocks
before and after each I/O request to determine the
contributions of each operation. Since DASD devices
typically have many datasets and I/O activity for many
service classes, WLM requires an efficient way to gather
the measurements for each individual I/O operation so
that it can be aggregated back to the service class.

New technologies placed new requirements on the
measurements. As the I/O capabilities increased, some of
the 16-bit counters were no longer sufficient to prevent
wrapping twice in a typical measurement interval. Timer
granularity down to 128 microseconds was no longer
sufficient to maintain precise totals. New transport
architectures such as FICON required additional
information to better provide for capacity planning
and problem determination.

z/OS support for extended channel-measurement blocks.

Figure 10
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To address these problems, two new features were
added to the z/Architecture for measurements: the
extended channel-measurement blocks (ECMBs) and the
extended measurement word (EMW).

Extended channel-measurement blocks
Figure 10 shows the operating system data structures in
support of the ECMBs. The ECMBs are created in a data
space in contiguous virtual storage. The software control
block for the device (UCB) contains an index into the
contiguous virtual storage for identifying the device. Real
storage is allocated to back the virtual storage as it is
needed. Using a data space to hold ECMBs, instead of
using common fixed storage as with the original CMB
support, provides important constraint relief for common
fixed storage.

The extended channel-measurement blocks double the
size of the space available for device measurements from
32 to 64 bytes, allowing room for new functions and
measures. However, the most significant advantage of the
new architecture is to provide for a full doubleword
pointer in the subchannel to its corresponding
measurement block. This 64-bit pointer is set to contain
the real address of the measurement block for the device
allocated by the operating system. With a full doubleword
pointer, the operating system no longer has to guarantee
that the measurement blocks reside in contiguous real
storage. Instead, z/OS allocates them in a common area
data space. This means that the measurement blocks can
reside in contiguous virtual storage and are backed by 4K
real pages as needed. Placing the measurement blocks in
a data space instead of common storage frees up to two
megabytes of common storage.

Figure 11 shows the format of each ECMB entry.
ECMBs are 64 bytes in length. They expand the 16-bit
counters for counting I/O operations from S/370 XA I/O
architecture into 32-bit counters. Two new fields are
added in support of multiple-channel subsystems, a 32-
bit aggregate time for device busy and a 32-bit time for
aggregating the total command response time for FICON
operations. The subchannel is modified to eliminate the
device-model-dependent times and instead provide a 64-
bit pointer to the measurement block in real storage.

Extended measurement word (EMW)
In z/Architecture, I/O interrupts are reported to the
operating system via an interruption response block (IRB)
(Figure 12). The IRB contains the status for each I/O
operation. When the I/O operation is complete, the IRB
contains the contribution of that operation to the ECMBs
shown above. This eliminates the overhead for having
to store the ECMB measurements from the last I/O
operation(s) and to compute the incremental difference

with the ECMB measurements of the currently completed
I/O operation(s). This calculation would be even more
significant with the ECMBs described above as opposed to
the CMBs because of the significant additional overhead
to locate ECMB blocks in memory.

The extended measurement word (EMW) of the interruption 

response block (IRB) provides the measurement data for the I/O 

operation that has completed.

Figure 12
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Conclusions
The z990 MCSS facility increases I/O scalability
and compatibility of the zSeries I/O topology and
infrastructure necessary for continued growth of
the zSeries server platform in the high-end server
marketplace. While the nature of the MCSS facility
described in this paper is, of necessity, specific to
z/Architecture-based systems and their existing I/O
technology, the concepts of addressing indirection,
associated replication of control information, and
virtualization transparency used to achieve the necessary
I/O scaling and sharing of the various channel, adapter,
and I/O device components that comprise the z990 I/O
system can be applied to any I/O model regardless of
whether such a model is implemented in hardware,
firmware, software, or combinations of these system
components.

Appendix: Acronyms as used in this paper

CAD Computer-Aided Design
CP Central Processor
CPC Central Processing Complex
CPI Channel-Path Image
CPS Channel-Path Set
CHPID Channel-Path Identifier
CMB Channel Measurement Block
CMCT Channel Measurement Control Table
CMT Channel Management Tool
CPMT Channel-Path Measurement Tool
CSS Channel Subsystem
CSSID Channel-Subsystem Identifier
CTC Channel-to-Channel
CULA Control Unit Logical Address
DASD Direct Access Storage Device
DLA Destination Logical Address
DLINK Destination Link Address
DRM Dynamic Reconfiguration Management
ECMB Extended Channel Measurement Block
EMW Extended Measurement Word
ESCON Enterprise Serial Connection
FCP Fibre Channel Protocol
FICON Fiber Channel Connection
MIF Multiple-Image Facility
HCD Hardware Configuration Definition
HSA Hardware System Area
IID Multiple-Image Facility Identifier
IOCDS I/O Configuration Definition Data Set
IOCP I/O Configuration Program
IODF I/O Definition File
IOS I/O Supervisor
IPL Initial Program Load
IQ Interruption Queue
LPAR Logical Partition

LSS Local Storage Subsystem
MBA Memory Bus Adapter
MBI Measurement Block Index
MCSS Multiple-Logical-Channel Subsystems
MM Monitoring Mode
MVS Multiple Virtual Storage
MVSCP Multiple Virtual Storage Configuration

Program
OS/390 Operating System for S/390 Architecture

Systems
PAV Parallel Access Volume
PCHID Physical Channel Path Identifier
PN Partition Number
RMF Resource Monitoring Facility
POR Power-On Reset
RCHP Reset Channel Path Instruction
RSCH Resume Subchannel Instruction
SAFOS System Automation For OS/390
SAP System Assist Processor
SCB Subchannel Control Block
SCBNUM Subchannel Control Block Number
SCHIB Subchannel Information Block
SE Service Element
SID Subsystem-Identification Word
SIE Start Interpretive Execution
SLA Source Logical Address
SLINK Source Link Address
SSCH Start Subchannel
SYSGEN System Generation
S/370 XA System/370 Extended Architecture
TPF Transaction Processing Facility
TSCH Test Subchannel
UA Unit Address
UCB Unit Control Block
UIM Unit Information Module
WLM Work Load Manager
WQ Work Queue
VSE/ESA Virtual System Extensions for the

Extended Systems Architecture Operating
System

z/OS zSeries Operating System
z/VM zSeries Virtual Machine Operating System

* Trademark or registered trademark of International
Business Machines Corporation.
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