
IBM eServer z990
improvements in
firmware simulation

M. Stetter
J. von Buttlar

P. T. Chan
D. Decker
H. Elfering

P. M. Gioquindo
T. Hess

S. Koerner
A. Kohler

H. Lindner
K. Petri
M. Zee

With the IBM eServer� z900, simulation methods and tools
for verification of code that is to be embedded in the memory
of the system (firmware) were introduced. Since that time,
firmware developers have simulated their code prior to the
availability of new system hardware components, thereby
reducing the time required to bring a large computer system to
market. With the z990 system, code simulation efficiency has
been improved. The simulation coverage for host and service
firmware has been increased from approximately 60% in the
z900 to 85% in the z990 by introducing new concepts and
extensions. For the first time, the central electronic complex
(CEC) firmware simulator, CECSIM, has been enabled to run
code in a logical partition (LPAR). This was a prerequisite for
code verification of the intra-CEC connectivity, HiperSockets�.
For verification of HiperSockets, a Linux� operating system
is loaded into an LPAR. Code verification is accomplished
more easily, more effectively, and with better coverage using
Linux debugging features because of the ease of performing
functional tests with Linux. Another major improvement
was the connection of the channel code simulator for
the networking I/O adapter OSA-Express to the CECSIM
environment to provide a comprehensive verification that
covers the entire path of firmware interaction between the
CEC and the I/O channels. For the simulation of card control
code, a combined software and hardware verification approach
was introduced. The overall functionality was verified with a
system simulation model, and the base hardware accesses
were verified by attaching real hardware. In addition, the cage
controller code was integrated into the simulation environment.
As a result, the firmware interfaces between the support
element (SE) and the cage controller as well as between
the cage controller and the hardware have been tested.

Introduction
The application of simulation techniques for the
z900 system, the predecessor of the z990, significantly
reduced the time required for development of the z900
[1–3]. On the basis of an intensive analysis of the
z900 system microcode verification by simulation, an
improved firmware simulation concept was implemented
for the z990 system. This resulted in an increase in
verification coverage of the z990 system code, additional
cost savings, and a shorter system development cycle when
compared with the z900 system. The new key elements of

the z990 firmware simulation concept are described in this
paper. Besides enhancements to existing components, such
as the firmware simulator, CECSIM, completely new
firmware simulation environments have been established.
Figure 1 shows an overview of the new components.

CECSIM enhancements for the z990
The use of the firmware simulator CECSIM during the
development of the IBM eServer* z900 was very successful
[3]. It was used by about a hundred users at four IBM
locations. At the end of the project, CECSIM users

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

583

requested a number of enhancements to the simulator in
order to further increase productivity. One request was to
simulate code that runs in a logical partition (LPAR). The
logical partition concept is equivalent to running several
independent systems, each with its own system resources
and operating systems, within a single physical z990 system.
The capability to simulate code in LPARs would become
very important, since the z990 is the first zSeries* system
that runs only in LPAR mode.

During the z900 project we could simulate the LPAR
hypervisor (the control program that manages LPARs in
a zSeries CEC) in CECSIM together with the underlying
firmware. However, the simulator did not support running
code within a logical partition. Therefore, a shortcut was
implemented: Whenever the hypervisor attempted to run
a logical partition, CECSIM returned a disabled wait
program status word (PSW) in the partition to the
hypervisor. Thus, at least this code path in the hypervisor
could be simulated, but simulation was not available for
the many other conditions within a partition that required
assistance by the hypervisor.

When the z990 was developed, CECSIM was enhanced
to actually run a logical partition controlled by the LPAR
hypervisor. This capability allowed another level of
complexity to be tested with firmware simulation: First, a
variety of assembler programs were used to trigger many
code paths in the LPAR hypervisor. Second, the complete
coupling facility control code was run in simulation. Third,
a RAM disk image of Linux** on zSeries systems was
used to test HiperSockets*, which is a technology that
provides high-speed communication between LPARs
within a CEC. Each of these environments increased the
test coverage for millicode and i390 code, which are
always an integral part of the simulation environment.

The LPAR hypervisor runs a logical partition by
issuing the instruction start interpretive execution (SIE)
[4]. This instruction is implemented in millicode, which is
interpreted by CECSIM, as are many other instructions
(e.g., start subchannel). The simulator now supports the
hardware (HW) facilities used by SIE, such as the
relocation of partition storage and partition timers. When
SIE millicode is complete, all information relevant to
describing the partition is known to the simulator. In
particular, the PSW now points to the next instruction
to be executed within the partition. CECSIM itself
uses SIE to run the simulated processor, so there are
now three logical levels: CECSIM, the LPAR hypervisor,
and the LPAR. However, CECSIM sets up its own SIE
state description such that it directly runs the simulated
LPAR, as outlined in Figure 2.

When running a processor using SIE, CECSIM has to
set up interception controls to ensure that it is notified of
certain instructions or events in the simulated processor
[3]. When the simulated processor itself uses SIE to run a

Generic view of two new concepts in z990 firmware simulation: (a)

New concepts and (b) new facilities (shown in blue).

Figure 1

Verification of cage

controller firmware

Verification of cage

controller firmware

Verification of I/O

channel firmware

Verification of intra-CEC

partition communication

Firmware verification

environment CECSIM

Firmware verification

environment FRU simulator

Execution of LPAR

firmware and coupling

facility code

L

i

n

u

x

L

i

n

u

x
HiperSockets

simulation

CECSIM
L

i

n

u

x. . .

Simulation environment

for OSA-Express

I/O model

Cage

controller

simulation

Command interface

FRU simulator

Cage controller

(a)

(b)

Support element

CECSIM support to run a simulated logical partition (LPAR).

Figure 2

CECSIM LPAR hypervisor Logical partition

Runs LPAR

hypervisor

Encounters SIE

Encounters

interception

SIE entry handled

 by interpreting

 z990 millicode;

Runs logical partition

Reflected to CECSIM

 and interpreted by

 z990 millicode

1. Resume logical partition

2. Perform SIE exit and

 resume LPAR hypervisor

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

584

logical partition, information from the hypervisor state
description must be merged with the CECSIM state
description. For instance, the interception controls of the
processor state description are merged into the CECSIM
state description. This ensures that CECSIM receives
control if either it or the simulated processor requests
this interception. If the interception is requested by the
processor, the event is handled by interpreting the millicode
that switches the processor from the LPAR back to the
LPAR hypervisor.

HiperSockets testing with Linux
Before the z900 system generation, the benefits of the
LPAR concept could not be exploited until the early
“bringup” hardware (system prototype) was available.
Now, operating systems can be loaded into partitions in
the CECSIM environment, and developers are thereby
able to use operating system functionality to verify their
code. During z990 system development, this approach was
applied for the verification of HiperSockets firmware,
which is described in this section. 1 The general concept
may be reused for the simulation of other kinds of firmware.

In the following paragraphs, we describe how Linux was
“booted” on CECSIM as a simulated system and the
tests performed to demonstrate the capabilities of the
CECSIM/Linux approach; the HiperSockets project for
z990 is used as a concrete example.

Figure 3 shows the configuration of the CECSIM/Linux
system. CECSIM is controlled by the support element
(SE), which is used on zSeries servers for system
configuration and control (for additional details about the
role of the SE in various code-simulation environments,
see [1]).

The HiperSockets firmware that is to be tested is
transferred from the SE to CECSIM during the system
“power-on reset” step. Afterward, the Linux kernel, the
root-file system, and a parameter file are transferred to
each system partition, and the Linux “boot up” processes
are initiated.

The Linux program mounts the root-file system from
z990 memory and redirects its console input/output to
the operating system message console on the SE. The
activation and configuration of the HiperSockets firmware
to be tested are done with Linux. Figure 4 shows an
example of a configured HiperSockets setup for zSeries
as it appears to the operator: There are n logical zSeries
partitions, LPAR1 . . . LPARn, each of them running
Linux as the operating system with HiperSockets
interfaces labeled hsi[n]:[m] with assigned Internet
protocol (IP) addresses. The logical view of the setup

is identical to the one on a real system if the same
configuration procedures are applied in both cases.

Firmware testing can now be done efficiently using
standard Linux commands and programming techniques.
The following examples demonstrate the ease of
performing functional tests under Linux:

● Power-on reset (firmware load) tests.
● Basic initialization, i.e., channel emulator/control unit

emulator.
● Basic initialization with multiple channel subsystems

(MCSS) [7].
● Shared/dedicated HiperSockets channels.

● Linux initial program load (IPL): Linux booting tests.
● HiperSockets firmware interaction with Linux booting.

● From the command line: ifconfig hsi0:0 10.1.1.1 up or
ifconfig hsi0:0 down
● Tests multipath channel (MPC) handshake.
● Tests the system of control tables.

1 zSeries HiperSockets is a technology that provides high-speed transfer control
protocol/Internet protocol (TCP/IP) connectivity between virtual servers running
within different LPARs of a zSeries server. It obviates the need for any physical
cabling or external networking connections between these virtual servers [5, 6].

Figure 3

CECSIM/Linux system configuration (VM, root-file system, TCP/IP).

HiperSockets

.....

Linux � root-file system

CECSIM/VM

Firmware to be tested

Support element

Linux

User interface

(identical to real system)

Simulated system

(partitioned)

Console
TCP/IP

Figure 4

Logical view of a CECSIM/Linux system.

LPAR1/Linux

hsi0:0

IP 10.1.1.1

hsi0:1

IP 10.1.1.2

LPAR2/Linux

hsi1:0

IP 10.1.1.3

hsi1:1

IP 10.1.1.4

LPARn/Linux

Logical partitions

HiperSockets (emulated LAN)

hsi[n]:[m] HiperSockets interfaces with associated IP addresses

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

585

● With a simple shell script program, the “up” and
“down” commands such as those in the preceding
example can be “chained” to exercise multiple control
table changes.

● A simple ping command such as ping – c 100 –I hsi:0
10.1.1.4 tests data transfer and its control by configuration
tables held in the background, including MCSS tests.

● ping – b –I hsi0 10.1.1.255 tests broadcast data transfer,
ping –I hsi0 224.0.0.1 tests multicast data transfer, and
ping –f – b –I hsi0 –s 4096 10.1.1.255 is a broadcast
transfer of large packets (4096 bytes).

● More tests can be created by programming to the
standard socket interface.

● Interaction tests: While one logical partition is sending
out data packets for transmission, another partition is
adding or deleting devices. This tests the locking
mechanisms that are implemented to avoid race
conditions.

● Dynamic configuration changes: E.g., rebooting Linux
while other partitions are still transmitting data.

● Error recovery: Critical entries in control tables are
intentionally changed to invalid, invoking system
recovery.
● Testing HiperSockets first error data capture (FEDC)

[8]; i.e., gathering the HiperSockets data in case of an
error.

● Testing the full FEDC path, including FEDC data
analysis tools.

● Special functional features such as multicast routing and
Virtual Local Area Network (VLAN).

● HiperSockets firmware interaction with surrounding
firmware:
● Configure on/off.
● Re-IPL of Linux.

● Shut down Linux.

Since Linux standard functions and components can be
used, these tests are easy to program and do not require
a special test environment or test-case syntax; thanks to
CECSIM, they can be performed before a real system
is available. After testing with Linux on CECSIM, only
subtle errors such as critical timing conditions or errors
in the interaction with other operating systems (z/VM*,
z/OS*) remained to be solved by tests on the real system
(estimated to be 20% of the overall problem count), since
most of the basic kinds of errors had previously been
eliminated. The advantages for faster system qualification
and enhanced quality are evident.

OSA-Express simulation
Open Systems Adapter-Express (OSA-Express, [9]) is one
type of zSeries I/O channel that provides a network
interface to the system. The firmware is executed in an
embedded environment running on a RISC-based

processor. It utilizes a real-time operating system (OS
Open) to support various services such as queuing,
threading, and timers. OS Open provides a scalable
runtime and development environment for embedded
systems running on PowerPC* processors.

Prior to the development of the OSA-Express firmware
simulator OSASIM (described below), testing firmware
changes to OSA-Express was complex and cumbersome
because of the nature of its environment. Testing required
access to system hardware for which expense was high and
availability was limited. The development of the simulator
allowed for ease of testing and removed the hardware
dependency. It provided a controlled environment for
debugging purposes and verification of code paths. During
z990 system development, one of the improvements made
to the CECSIM firmware verification tool was attaching
OSASIM to CECSIM. The integration of CECSIM and
OSASIM allows for full execution of code components in
a seamless environment. This was the first time a functional
I/O microcode was ever used as part of system functional
microcode verification in CECSIM.

The OSASIM is written in C and runs on an AIX*
platform with a RISC-based processor. The decision to
develop the simulator in this environment was based
on portability of the code. Since OSA and OSASIM
processors are both RISC-based, source-code changes are
not required. The implementation of the simulator utilizes
the AIX services as opposed to the OS Open services. In
this environment, when using a source-level debugger,
debugging becomes easier than on the physical hardware.

The OSASIM can be run in a standalone or integrated
mode. Standalone mode allows tests specific to the OSA-
Express component. The developers control test
conditions via one or more input files utilized by the
simulator. This allows stabilization of the component
before it is used for testing with other firmware
components. Integrated mode attaches OSASIM and
CECSIM using a pair of TCP/IP sockets to test
interactions between the firmware components.

OSASIM creates a virtual common I/O platform with
network adapter [10] using several software models that
emulate all hardware components found on the physical
card (STI links, STI–PCI 2 bridge ASIC, PCI network
adapter, memory). Each modeling component runs its
own thread independently.

Various test cases were written to verify the network
functions of the OSA-Express code. For basic verification,
a test program that runs in CECSIM generates a network
frame to the OSASIM and expects it to be sent back. A
more versatile method of verifying OSA-Express code uses
the NetSim Test Vehicle (see the section on network
adapter modeling and the NetSim test vehicle).

2 PCI: Peripheral component interconnect.

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

586

Multifunction PCI–STI bridge chip hardware model
The bridge chip hardware is modeled as one of many
threads that are created during the initialization of
OSASIM. It supports both the standalone and CECSIM
environments. In the OSASIM environment it was
necessary to emulate only the STI function of the bridge
chip. The actual hardware has three major functional
entities: the PCI interface, the memory management unit
(MMU) high-speed memory access, and the STI logic that
provides high-speed data movement to and from zSeries
memory. Since the firmware code does not directly access
the MMU and PCI interfaces, there was no need to add
these functions to the hardware model.

The STI function emulation has three major areas: the
channel communications area (CCA), register operations,
and data mover queues (DMQs). The CCA is used as a
command-passing interface between OSASIM and CECSIM.
The CCA hardware emulation consists of a 64-bit CCA
register to pass commands and a 32-bit CCA status
register that contains both a busy bit and write status
bits. In conjunction with the CCA hardware, there is a
32-bit channel interrupt register that contains a bit
(called a tap channel bit) indicating that a new CCA
has been written. When this bit is enabled, the firmware
under test is prompted to read the CCA register and
act upon the command.

The DMQ and register operation functions are used to
move data and control information between OSASIM and
CECSIM, including data sent to and received from the
test programs that may be running in CECSIM. The
hardware registers for these functions are allocated in
AIX memory during the initialization of OSASIM.

After initialization, the model polls for an indication of
a new CCA in the channel interrupt register, any register
operations to be done, and any outstanding DMQs that
have to be processed. Depending on the function to be
performed, the bridge chip model either sends or receives
an STI packet from the TCP/IP interface when running
with CECSIM, or from a test-case input file when running
standalone. The STI packet is decoded, the appropriate
memory-mapped hardware registers (e.g., CCA) are
updated, data is moved to or from the specified address
space of the firmware, and responses are sent back to
either CECSIM or the standalone test case.

Both the register operation and DMQ emulation code
are driven by firmware. With the hardware registers being
mapped to an AIX address space, the firmware under test
performs the same function as if it was running on the
actual hardware. The emulation code polls the memory-
mapped hardware register that enables these functions,
translates the software structure passed in by the firmware,
breaks up the request into the STI packet format, and sets
the appropriate status fields pertinent to the operation. In

the case of a DMQ operation, a back-end function in the
firmware processes the data being fetched, or sends up
ending status in the case of a read command on data that
is stored to and by the test case. The DMQ emulation
code has support for two DMQ engines. In our OSA
firmware code, DMQ engine 0 typically is used to fetch
data, and DMQ engine 1 is used to store data into zSeries
memory.

STI link emulation
OSASIM and CECSIM are connected via TCP/IP. The
two simulation environments run on different operating
systems (OSASIM on AIX, CECSIM on VM/CMS) and
could not be integrated into a single application. The use
of a network-based protocol was especially useful during
bringup of this environment.

The protocol used on the TCP/IP link is basically a
simplified version of the protocol used on the actual STI
links; this way, the protocol was well-documented and
known to both development teams right from the start. On
the TCP/IP link, a five-word header was added to each
STI message. This header contains the following material:

● A key to detect transmission errors.
● The message size (number of bytes).
● Information about the type and source of STI

information contained in the message.
● The address of the OSA-Express card to which the

message is directed.

The OSASIM–CECSIM connection uses two sockets.
One is used for processor-initiated STI traffic (usually
read and write operations on registers of the bridge chip).
Such transfers are triggered by synchronous calls from
CECSIM. The other socket is used for I/O-initiated STI
traffic (read and write main storage, present interrupts,
read timer information from the CEC). A separate thread
in CECSIM “listens” on this socket to handle these
asynchronous I/O requests.

To run the whole simulation, one or more OSASIM
instances are started first. After initialization they listen
for connections on agreed-upon TCP/IP ports. Then
CECSIM is started and connects to the OSASIM servers
as specified in a configuration file. The first message sent
to OSASIM contains information which defines the IP
address and port number of the second socket to open
(for I/O requests). This connection is then initiated by
OSASIM.

This scheme allows the use of two sockets with a
requirement for only a single port number to agree upon
on the AIX system and no fixed port number at all on
the VM system. This latter point was important, since
all users of the VM system share the same range of

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

587

port numbers, and this scheme avoided the administrative
effort of assigning port number ranges to each user.

For the CECSIM connection, the OSASIM bridge chip
model was extended by some TCP/IP interface code, STI
packet format support, simulation of some bridge chip
facilities used by CEC firmware only (“maintenance
registers”), and code to replace the boot loader used in
a real system to transfer the OSA-Express firmware into
the memory of the OSA-Express card. This boot loader
is missing in OSASIM, of course. However, in order to
satisfy CEC firmware during the initial microcode load
process, OSASIM has to mimic its behavior before the
real OSA-Express firmware takes over communication
with CEC firmware.

Network adapter modeling and the NetSim test
vehicle
In the basic OSASIM environment [Figure 5(a)], a test
program written in high-level assembly language drives
I/O programs through CECSIM to the OSASIM. Various
types of I/O programs with arbitrary numbers of bytes
are transferred to OSASIM. This is one step forward
compared with the standalone simulator. However, the
local area network (LAN) driver cannot be fully exercised
because there is no outbound connection with which the
LAN driver can communicate. It takes the outbound
packet and routes it back as an inbound packet.

In order to verify the LAN driver as well as the
core OSA firmware, an additional copy of OSASIM was
introduced into this simulation environment [Figure 5(b)].
While one copy of the OSASIM sends out packets to the
simulated network environment through a TCP/IP socket
connection, the other end of the socket connection is the
other copy of OSASIM waiting to receive the packet from
the network. Once packets are received, data is sent up to
the driver for data comparison and verification. With this
setup, the main line paths are verified from i390 code
down to the OSA firmware LAN driver.

To simulate the networking environment (packets
coming from neighbor networks, the link between
networks going up and down, etc.), the network simulator
(NETSIM) was created along with the simulator support
facility (SIMSF) and added to the OSASIM/CECSIM
environment [Figure 5(c)].

A NETSIM model is connected to each OSASIM model
via a TCP/IP socket connection. The SIMSF model is
also attached to the NETSIM model via another TCP/IP
connection. SIMSF collects statistics from the NETSIM
as well as making adjustments to the settings of the
simulator. The NETSIM model can generate many
test variations, including IP frames with and without
acknowledgment, multicast frames, and broadcast frames
in various frame sizes. In addition, address-resolution
protocol caching, IP Version 6, and link up/down
conditions are simulated by the NETSIM vehicle.

NETSIM generates datagrams and sends them to the
test program through OSASIM copy number 1. The test
program passes the data received to OSASIM copy
number 2 and further on to NETSIM. While NETSIM
executes test cases and sends frames up to OSASIM,
SIMSF comes in and alters the configuration, causing
NETSIM to behave differently. This simulates a
continuously changing network environment.

In summary, the attachment of OSASIM to CECSIM
has proven to be effective for I/O firmware development.
The simulation approach enables the development process
to proceed at a more rapid pace aided by the ease of
setting up test scenarios. As a result, initial bringup time
is reduced, and code delivered to system test is more

Figure 5

(a) Basic OSASIM configuration. (b) Enhanced OSASIM with

CECSIM. (c) Enhanced OSASIM with NetSim vehicle.

OSA firmware

LAN model wrapping

packets sent from host

TCP/IP sockets

emulating STI interface

(a)

OSA firmware on

AIX workstation 1

LAN model

OSA firmware on

AIX workstation 2

LAN model

(b)

TCP/IP socket

connection

CECSIM

NETSIM test vehicle

OSASIM support facility

OSA firmware on

AIX workstation 1

LAN model

CECSIM

Test cases

Test cases

CECSIM

OSA firmware on

AIX workstation 2

LAN model

(c)

TCP/IP socket

server connection

TCP/IP socket connection

TCP/IP socket

client connection

TCP/IP socket connections

emulating STI interface

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

588

stable. During the z990 project, a similar simulation
environment for PCI crypto cards had already been
realized on the basis of the OSASIM code. The
implementation of the CECSIM infrastructure is
independent of OSA-specific items; therefore, it may also
be used for the connection of standalone test facilities of
other channels.

Simulation of control code using office hardware
The coverage of the firmware simulation has been increased
significantly by inventing verification mechanisms for the
system control firmware, which have been included in the
z990 firmware verification process for the first time. System
control code is referred to as in-band system management
whenever it is implemented within the scope of an
operating system. The innovations of in-band control code
verification are described in the previous sections of this
paper. This section focuses on the verification improvements
of the out-of-band firmware, i.e., control code that uses
functions beyond the scope of the operating system.

System environment
System control firmware is deeply embedded in the system
structure. This makes it difficult to design firmware test
cases running in the system environment that make results
visible but do not affect the system operation. This also
applies to the out-of-band (OOB) firmware. The processor
executing this OOB code is a controller card called the
flexible support processor (FSP); it is located in each
CEC, I/O, and power cage, as indicated in [11].

This property of the system firmware makes the testing
and debugging extremely difficult and time-consuming if
done in a real system environment, since the system often
requires special test equipment to monitor the firmware
output. For the predecessor system z900, this was the only
way to verify FSP code. However, for the z990 system a
new concept has been invented which integrates an FSP
firmware verification into the system simulation to achieve
90% simulation coverage. This section describes the
simulation approach for the system configuration (cage
configuration object model, or CCOM), which includes
I/O and power configuration. The new verification
environment for the CEC initialization and communication
code is described in the section on cage controller
simulation.

One main focus was to be as consistent as possible with
the overall z990 system simulation efforts. This is essential
in testing the correctness of the interfaces and protocols
between the different firmware parts. However, timing
issues must be tested under the same conditions as
those existing in the real system. For the z990 system, an
interbalanced approach between a software simulation and
a hardware simulation was chosen, and a special hardware
was built to simulate the timing conditions exactly as they

would be seen in the real system. This environment, called
office hardware or field-replaceable unit (FRU) simulator,
was used for additional out-of-band firmware testing. This
allowed us to participate in the overall system simulation
while achieving extensive coverage of time-critical
functions.

In the system control firmware, hardware access is via a
device abstraction layer (DAL), as described in [11]. This
defined interface is used to access real hardware via
device drivers, and also in the firmware simulation
environments to access simulation code.

Software simulation
Like the CEC simulation (described in the section on cage
controller simulation), the configuration code employs a
well-defined DAL interface. This interface allows easy
replacement of the device driver code, which is needed to
access real hardware with a simulation model [Figure 6(a)].
Since the CEC simulation and the configuration code
use different devices and thus different DALs, the
two simulation environments are independent and may

Figure 6

(a) Software simulation setup. (b) Simulation setup with office

hardware.

Call/event

interface Status

update

(a)

CCOM

Call/event

interface

Call/event

interface

CCOM simulation CEC simulation

DAL

Call/event

interface

Call/event

interfaceStatus

update

(b)

Request broker

CCOM
CEC initialization and

communication

Call/event

interface

Call/event

interface

DAL interface

Device driver

FGA HW

FRU simulation

CEC simulation

DAL

Call/event

interface

Request broker

CEC initialization and

communication

Office HW box

FSP

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

589

(though they need not) run together. Furthermore, for
each device type the DAL code (simulation vs. real
hardware access) may be selected independently or
mixed. The first extreme option is an independent code
simulation model which uses shortcuts for hardware
accesses whenever commands are sent to the DAL. The
other extreme configuration is a comprehensive model
in which the entire simulation environment executes
hardware accesses in FRU simulators. This FRU simulator
[Figure 6(b)] is equipped with a specially designed piece
of hardware which, as an assembly, is called office
hardware and is described in more detail in the next
section.

Office hardware
To be able to verify the cage controller code on a
PowerPC platform which uses the devices, the device
drivers, and the operating system OS Open as the real
system does, an office hardware environment was defined.
We used a system that comprises one or more FRU
simulator boxes and a box containing one or more FSP

cards [Figure 6(b)]. The plugged FSP cards are
responsible for power, CEC, and I/O control. The
following system configurations are possible:

● One power cage (with FSP master/slave), one CEC cage
(master only), and one I/O (master only) cage.

● One power cage (with FSP master/slave) and two CEC
nodes (master only) without an I/O cage.

● One power cage (with FSP master/slave) and one CEC
or I/O cage (master and slave).

The primary components of an FRU simulator are the
FRU gate array (FGA) slave, providing the card access,
and a SEEPROM, as on a real system. The SEEPROM
content (also referred to as vital product data, or VPD)
defines which type of card (e.g., OSC, ETR, STI, ESCON,
and ISC-3) should be generated by the cage controller
object model. This allows the same FRU simulator
hardware to be used for different card types by modifying
the SEEPROM data. The FGA slave which is connected
to the FGA master on the FSP card provides several
standard interfaces such as UART, JTAG, I2C, general-
purpose input/output (GPIO), and the proprietary service
bus adapter interface. All of these interfaces are necessary
for the out-of-band control of a real system.

Figure 7

Office hardware overview.

Panel card

FGA slave evaluation card

FRU simulator_n
n � 3...37

Panel card

FGA slave evaluation card

FRU simulator_2

 (FRU_0, 1 are on

QLxx cards)

Cage controller card

Base card (same as below)

Cage controller card

Base card

ac/dc, 230 V/5.0 V

5.0 V, two wires SSI-0, two coaxial wires

2� Ethernet SSI-1, two coaxial wires

...

Figure 8

Comparison of real system and office hardware.

System hardware (BUV)

S
E

A
p
p
li

c
a
ti

o
n
s

a
n
d

m
a
n
u
a
l

o
p
e
ra

ti
o
n
s

C
o
m

m
a
n
d
s

C
a
g
e
 c

o
n
tr

o
ll

e
r

SSI

SSI

SSI

Configuration

SEEPROM

Sense

and

control

lines

zSeries

functional

hardware

FRU

Office hardware (FRU simulator)

C
o
m

m
a
n
d
 i

n
te

rf
a
c
e

C
o
m

m
a
n
d
s

C
a
g
e
 c

o
n
tr

o
ll

e
r

SSI

SSI

SSI

Configuration

SEEPROM

FGA

slave D
IO

Sense

and

control

lines

FRU simulator

Out

InHigh

InLow

GND

Vcc
Green

Red
I2C

FGA

slave D
IO

I2C

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

590

Figure 7 is an overview of the office hardware
environment, in which chip control signals are verified
under real-time conditions, voltage violations can be
detected, interrupt mechanisms are verified, and cable
traffic is sensed. Figure 8 shows a generic view of the
differences between a real system and the office
hardware.

Cage controller simulation
In another major improvement in the z990 firmware
verification, the cage controller code was simulated for
the first time. Approximately 75% of this firmware
was verified with the simulation approach. The cage
controllers, which are embedded in the CEC cage,
initialize and maintain system operations. Each cage in
a zSeries system contains one pair of cage controllers, of
which one is defined as a master, the other as a slave. The
slave works as a backup that is ready to take over all tasks
when the master fails (for details, see [11]). The cage
controller has interfaces to other firmware components
[Figure 9(a) shows a very generic view of the z990 cage
controller architecture]:

● The cage controller uses a system support interface
(SSI) to communicate with the CEC.

● The TCP/IP connection with the support element is
used for the reporting and controlling of system
operations.

To be able to verify the cage controller code prior to
the availability of the hardware, it was decided to build
connections to the existing simulation environments ET4
[2] and CECSIM [Figure 9(b)]. To use the cage controller
code in the existing simulation environments, some
adaptations have been necessary. Both CECSIM and ET4
have TCP/IP interfaces but do not offer SSI support as
used for the communication between the cage controller
code and the CEC on a real system. Therefore, a special
simulation SSI driver has been implemented which
translates SSI commands. This driver provides the
same application interface as the real SSI device
driver (e.g., initializations, command execution,
interrupt handling).

On a real z990 system, the cage controller code runs
on a PowerPC controller with the OS Open operating
system. Since it is very difficult and complex to establish a
communication between OS Open and CECSIM or ET4,
it was decided to port the cage controller code from
OS Open to an Intel**-based Linux. In addition, some
hardware accesses were replaced with simulation-specific
code. With this approach, each developer is able to verify
cage controller code on his Intel-based workstation by
connecting to the simulation environment.

On the real hardware, the services on the cage
controller run on fixed ports; each cage controller is
identified via a unique IP address. This concept of fixed
ports is not applicable for the simulation environment,
since in the simulation environment there is only one IP
address associated with the ThinkPad* on which the cage
controller code is executed. In order to handle more than
one instance of the cage controller code, the port number
is used as an identifier for the cage controller. This is
needed to simulate systems with more than one node,
since each node has its own cage controller, and to allow
different users to access the same ThinkPad. Port numbers
are therefore defined for each user and simulated node.

For the cage controller firmware simulation, minor
adaptations on the support element and in the simulation
environment were required. New configuration files were
needed to make the support element work together
with the cage controller simulation. Hypervisor (ET4
verification) and CECSIM must translate the commands
that come in via TCP/IP to a format that the simulator
is able to understand.

The benefits of the new cage controller firmware
simulation are multilateral:

Figure 9

(a) Basic cage controller configuration in a real z990 system. (b)

Cage controller simulation configurations with CECSIM and

ET4.

Data

interrupts

Data

interrupts

CEC

S

l

a

v

e

SSI

within cage

TCP/IP
SSI

device

driver

SSI Master

Cage

controller

Support

element

Interrupt

masking

in slave

Data

interrupts

Data

interrupts

CECSIM
TCP/IP

via network

TCP/IP
Sim.

SSI

driver

SSI Master

Interrupt

handling

Cage

controller

Support

element

Data

interrupts

Data

interrupts
ET4

TCP/IP

via network

TCP/IP
Sim.

SSI

driver

SSI Master

Interrupt

handling

Cage

controller

Support

element

(a)

(b)

SSI–TCP/IP mapping and vice versa

Hyper-

visor

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

591

● The GCC (GNU compiler collection) compiler which is
used in the simulation environment has a significantly
lower fault tolerance and a better warning concept than
the standard AIX* compiler, XLC, which was used for
OS Open. The GCC cannot be used for code generation
in a real system because it does not support OS Open.

● In the simulation environment there is sufficient hard
disk space to save debugging data on the attached
support element. On the controller there are only very
limited resources to save this data during runtime.

● The use of a source code debugger adds extra comfort
for the developers for debugging their code.

● Bringup time on real systems is very expensive and
limited. With the combination of the office SE, which is
a standalone support element used for code verification,
and the CECSIM environment, every developer is able
to create his own simulation environment, because
neither of these environments relies on special
hardware.

Concluding remarks
With the new simulation concepts, the duration of the first
system integration phase was reduced significantly. For
the z900 system it took eight weeks from the power-on
of the system until the first test operating system (system
assurance kernel, or SAK) was running. In conjunction
with a powerful emulation engine [12] for the z990 system,
this milestone was reached after three weeks, although
the estimated duration was twelve weeks because of
its significantly higher complexity compared with the
preceding z900 system. In addition, most of the concepts
described in this paper have been implemented in such a
way that they can be reused, applied, or extended for the
verification of other firmware parts of future systems.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or
Intel Corporation.

References
1. S. Koerner, M. Kuenzel, and E. C. McCain, “IBM eServer

z900 System Microcode Verification by Simulation: The
Virtual Power-On Process,” IBM J. Res. & Dev. 46, No.
4/5, 587–595 (July/September 2002).

2. J. Kayser, S. Koerner, and K.-D. Schubert, “Hyper-
Acceleration and HW/SW Co-Verification as an Essential
Part of IBM eServer z900 Verification,” IBM J. Res. &
Dev. 46, No. 4/5, 597– 605 (July/September 2002).

3. J. von Buttlar, H. Böhm, R. Ernst, A. Horsch, A. Kohler,
H. Schein, M. Stetter, and K. Theurich, “z/CECSIM: An
Efficient and Comprehensive Microcode Simulator for the
IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5, 607–
615 (July/September 2002).

4. IBM Corporation, IBM 370-XA Interpretive Execution
(SA22-7095); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

5. B. White, J. Nesbit, and I. Neville, “IBM eServer zSeries
Connectivity Handbook,” IBM Redbooks (SG24-5444);
see http://www.redbooks.ibm.com/pdfs/sg245444.pdf,
pp. 133-141 (2003).

6. B. White, R. Ayvar, and V. Uskokovic, “zSeries
HiperSockets,” IBM Redbooks (SG24-6816); see http://
www.redbooks.ibm.com/redbooks/pdfs/sg246816.pdf (2002).

7. L. W. Wyman, H. M. Yudenfriend, J. S. Trotter, and K. J.
Oakes, “Multiple Logical Channel Subsystems: Increasing
zSeries I/O Scalability and Connectivity,” IBM J. Res. &
Dev. 48, No. 3/4, 489 –505 (May/July 2004, this issue).

8. S. Koerner, R. Bawidamann, W. Fischer, U. Helmich, D.
Klodt, B. K. Tolan, and P. Wojciak, “The z990 First Error
Data Capture Concept,” IBM J. Res. & Dev. 48, No. 3/4,
557–567 (May/July 2004, this issue).

9. B. White, V. Braga, and J. van Dellen, “OSA-Express
Implementation Guide,” IBM Redbooks (SG24-5948-02);
see http://www.redbooks.ibm.com/redbooks/pdfs/
sg245948.pdf (2003).

10. D. J. Stigliani, T. E. Bubb, D. F. Casper, J. H. Chin, S. G.
Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick, and
C. H. Whitehead, “IBM eServer z900 I/O Subsystem,”
IBM J. Res. & Dev. 46, No. 4/5, 421– 445 (July/September
2002).

11. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J.
Saalmueller, and F. Scholz, “System Control Structure of
the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
523–535 (July/September 2002).

12. K.-D. Schubert, E. C. McCain, H. Pape, K. Rebmann,
P. M. West, and R. Winkelmann, “Accelerating System
Integration by Enhancing Hardware, Firmware, and Co-
Simulation,” IBM J. Res. & Dev. 48, No. 3/4, 569 –581
(May/July 2004, this issue).

Received September 15, 2003; accepted for publication

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

592

April 20, 2004; Internet publication May 27, 2004

Michael Stetter IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (stetter@de.ibm.com). Mr. Stetter
graduated from the University of Ulm, Germany, in 1997
with a diploma degree in mathematics and economics. In
January 1998 he joined the IBM development laboratories in
Boeblingen, Germany. He worked on a variety of firmware
simulation assignments to design and implement CECSIM
extensions and simulation tools. Mr. Stetter was CECSIM
team leader and firmware simulation representative for the
z990 program. After working as firmware Project Manager
for the next zSeries system generation, Mr. Stetter currently
manages the Support Element Infrastructure Department.

Joachim von Buttlar IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (joachim_von_buttlar@de.ibm.com).
Mr. von Buttlar is an Advisory Engineer in the zSeries I/O
Microcode Development group. He received an M.S. degree
in computer science (Dipl.-Inform.) from the Technical
University of Berlin in 1983. In 1984, he joined the IBM
development laboratories in Boeblingen, Germany, to work
on microcode development for the IBM 3092, 9221, and
9672 systems. From 1990 to 1991 he worked as Liaison
Engineer on international assignment in Endicott, New
York. In 1997 he initiated the CECSIM project, developed its
concepts, and implemented the simulator kernel. He has been
the technical leader of this project during the development of
the z900 and z990 systems. Mr. von Buttlar received an IBM
Corporate Award in 2002.

Ping T. (Danny) Chan IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(ping@us.ibm.com). Mr. Chan is an Advisory Engineer
working in the OSA Development group. He graduated with
a B.E.E.E. degree from City College of New York in 1984
and joined IBM at Poughkeepsie, New York, that same
year. He has held various technical positions in the eServer
diagnostics and I/O areas. Mr. Chan has received several
IBM Outstanding Technical Achievement Awards for his
contributions in OSA development.

Dietmar Decker IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (ddecker@de.ibm.com). Mr.
Decker received a diploma in electrical engineering from the
Universitaet Karlsruhe (TH). In 1994 he joined the IBM
development laboratories in Boeblingen. He currently works
on HiperSockets microcode and InfiniBand Linux device
driver development.

Herwig Elfering IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (hge@de.ibm.com). Mr. Elfering
is an Advisory Engineer currently working as a team leader
on the zSeries service processor application code for cage
configuration and control. He received an M.S. degree (Dipl.-
Ing.) in electrical engineering from the faculty for Digital
Information Processing of the University of Paderborn,
Germany, in 1994. He joined the IBM development

laboratories in Boeblingen that same year in the Power
Control Department, where he worked in different areas of
S/390 power and system control applications for the G2 to
G6 systems. Since 1997 Mr. Elfering has worked on the design
and implementation of the new zSeries power and system
control network, focusing on configuration, high reliability,
availability, and serviceability of the IBM eServer.

Paul M. Gioquindo IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(gioquind@us.ibm.com). Mr. Gioquindo is an Advisory
Engineer in the Networking Communications Development
Department. He received his A.S. degree in electronics from
the PennCo Technical School, subsequently joining IBM at
Poughkeepsie, New York. He has held various technical
positions in the eServer manufacturing, assurance, engineering
test, and networking areas. Mr. Gioquindo has received
several IBM Outstanding Technical Achievement Awards
for his contributions in S/390 Parallel Sysplex bringup, OSA
hardware bringup, and OSA development. He is a coauthor
of three patents.

Thomas Hess IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (hessth@de.ibm.com). Mr. Hess
is a Software Development Engineer currently working on
zSeries system sensing and control. He received a certified
engineer degree from the Technical School for Data
Electronics in Pforzheim, Germany, in 1990. That same year
Mr. Hess joined IBM in Boeblingen, Germany, where he was
responsible for the manufacturing logistic system. In 1993
Mr. Hess worked on hardware and software development for
several customer projects. In 1998 he began designing and
developing software for the zSeries service processor. He is
currently working on a new object-oriented design which
allows rule-based access to the system control hardware.

Stefan Koerner IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (koerners@de.ibm.com).
Mr. Koerner is a Senior Technical Staff Member in the
IBM eServer z990 Hardware Development Group in the
Boeblingen laboratories. He joined IBM in Boeblingen in
1981 after receiving an M.S. degree in electrical engineering
from the Technical University of Furtwangen. He has held a
number of positions in logic design, firmware development,
and verification. He holds three patents and received an IBM
Outstanding Innovation Award in 2001. Mr. Koerner is
currently the technical leader for firmware verification in
the IBM Systems and Technology Group.

Andreas Kohler IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (akohler@de.ibm.com). Dr. Kohler
received M.S. and Ph.D. degrees in physics from the
University of Stuttgart, Germany, in 1993 and 1999,
respectively. In 1999 he joined the IBM development
laboratories in Boeblingen, Germany. His current
responsibilities in zSeries I/O microcode development
include test tools, simulation, and error-recovery code.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 M. STETTER ET AL.

593

Heinrich Lindner IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (hlindner@de.ibm.com). Mr.
Lindner received Dipl.-Ing. and Dr.-Ing. degrees in physics
from the Technical University Berlin. In 1967 he joined IBM
and was involved in semiconductor technology development
(primarily memory devices) until 1982. He subsequently
worked in processor development on five generations of S/370,
S/390, and zSeries processors, starting with the first single-chip
microprocessor in CMOS technology; other fields of work
were memory development, new I/O concepts, and logic
simulation. Since 1998, he has been an engineer in zSeries
firmware development.

Karlo Petri IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (xxpetri@de.ibm.com). Mr. Petri is
a Staff Engineer currently working on zSeries flexible support
processor applications. He studied computer science at the
Berufsakademie Mannheim and graduated in 1996, receiving
a Diplom-Ingenieur (B.A.) degree. He joined the IBM
development laboratories in Boeblingen that same year,
working on the support element for three years. Since
1999, he has worked on the cage controller for zSeries and
contributed to making the cage controller software part of
the system simulation. Mr. Petri is currently working on the
transition of the cage controller software from OS Open to
Linux.

Mooheng Zee IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(mzee@us.ibm.com). Mr. Zee received a B.S. degree in
electrical engineering from Polytechnic University in 1988,
joining IBM that same year in Poughkeepsie, New York. He
started in the ESCON channel diagnostic group, then moved
to the networking I/O team to develop the ATM networking
products for the eServer. During ten years in networking
development, Mr. Zee has received several IBM Outstanding
Technical Achievement Awards and filed two patents. He
is currently involved in the development and continued
enhancement of the networking channel functions and
OSA code simulation.

M. STETTER ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

594

