Processor
subsystem
Interconnect
architecture

for a large
symmetric
multiprocessing
system

P. Mak
G. E. Strait
M. A. Blake

K. W. Kark

V. K. Papazova
A. E. Seigler

G. A. Van Huben
L. Wang

G. C. Wellwood

Integral to the significant capacity growth of the IBM eServer™
2990 (the eighth-generation zSeries® CMOS-based server) from
its predecessor z900 system is the interconnect architecture,
which tightly couples 48 customer CPUs in the system. A
major attribute of this architecture is a new “hot swap” feature
which improves zSeries system availability for customers by
permitting the substitution or addition of a field-replaceable
unit (FRU) in the processor subsystem without requiring the
system to be powered down. The novel two-level interconnect
architecture contains a distributed switch which connects up to
four processor-memory nodes in book packages. The book
packages, which are also FRUs, are connected in a dual
concentric ring topology at the second-level (L2) interconnect.
This architecture also contains an integrated 32-MB L2 cache
and central switch connecting up to eight dual-core processor
chips in a star topology at the first-level interconnect inside
one of these nodes. This paper describes the bus protocol

on the second-level interconnect, the cache coherency
management throughout the storage hierarchy, and the ring
topology reconfiguration for hot swap. Also described is a
memory power management scheme to support the power
demand from the 48 CPUs and up to 256 GB of memory.

Introduction

The z990 is the latest in the zSeries* line of enterprise
servers. The 2990 shares much with its predecessors, but
also introduces significant advances. Some of the most
significant advances are made possible by a new system
package.

The z990 system comprises one to four book packages;
each book package is a pluggable unit containing up to 12
processors and up to 64 GB of memory, I/O adapters, and
a centralized switch and coherency manager known as the
system control element (SCE), through which the processors

and I/O connect. The SCE includes a second-level

cache (L2 cache) and a pipelined switch that manages
data routing and maintains strong storage coherency
across the multiprocessing system. The shared L2

cache is interposed in the storage hierarchy between a
private L1 cache dedicated to each processor and the fully
shared, fully coherent memory of the z990. The minimum
system configuration consists of one book; additional
books may be plugged into a system and configured online
without stopping the previously installed books, until the
system reaches its maximum capacity of four books.

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

P. MAK ET AL.

323

324

Main storage memory 256 GB
(provision for expansion to 512 GB)

A jk
Y A

! !

L2 cache L2 cache L2 cache L2 cache
32 MB 32 MB 32 MB 32 MB
Ll Ll Ll L1 L1 L1 Ll Ll Ll L1 L1 L1
» | |512K s12K| || |512K] | le=p] | [512K s12K | [|[s12K 512K s12K| || 512K | le=p] | [512K s12K| [|[s12K
L1 || || L L1 L1 ||| L L1 L1 ||] L L1 L1 ||| L L1
512K s12K| || 512K 512K 512K | | ||512K 512K 512K | || 512K 512K 512K || |512K

IBM zSeries 990 storage hierarchy.

Figure 1 illustrates the system storage hierarchy. Main
storage memory consists of one contiguous address space,
physically located in processor memory arrays (PMAs)
spread across the installed books. Each storage address
corresponds to one physical location in a PMA on one of
the books. Each book contains a shared 32-MB L2 cache
that is used by all of the processors and I/O on the book.
The contents of memory may be cached in one or multiple
books. The processors on each node contain their own
512-KB L1 caches, represented in the figure in groups of
two corresponding to the packaging of two processor cores
on one chip. Each book contains up to twelve processors,
though only six are shown in the figure; the ellipsis
represents additional instances. The contents of the L2
cache may also be held in one or more L1 caches on the
book. The L2 cache maintains a full subset rule for all of
the L1s; i.e., it contains a copy of the data stored in each
of the L1s on the book. The L2 cache may contain
additional data that is not in any L1 cache because of the
removal of data from the L1 cache by the least recently
used (LRU) replacement algorithm. This may happen
because of pre-fetching of additional data from memory
beyond what is requested by a processor or use of the L2
cache by I/O devices (data is not cached within z990 I/O
devices, but may be held in the L2 cache for use by I/O
devices). This L2 full subset rule is represented in the
figure by showing the L1 caches contained within the
L2 space. All changes made by processors to their
respective L1 caches are immediately duplicated to the
shared L2 cache. This cache structure continues the
evolution of prior binodal zSeries systems which utilized
dual shared L2 caches [1, 2] to up to four shared L2
caches in the z990 that define new intervention master
(IM) and multicopy (MC) states extending the previous

P. MAK ET AL.

modified, exclusive, shared, invalid (MESI) cache
management scheme.

The single largest advance in the z990 is the increased
capacity made possible by the four-book ring-connected
system structure, as compared with the binodal structure
of the predecessor z900 and G6 [3]. Not only does this
structure allow for more processors, memory, and I/O
than before; it also, for the first time, allows additional
books, containing additional processors, cache, memory,
and I/O ports, to be hot-plugged and configured online
into an operating system, a capability previously supported
only for hot-plugging of I/O cards and for enabling
processors and memory that were already installed but not
configured online [4]. Table 1 summarizes some of the
2990 advances in comparison with prior zSeries models.
This paper describes design features that make the
2990 system possible.

Ring topology

The z990 system comprises one to four books. Each book
is a pluggable unit containing up to 12 processors with up
to 64 GB of memory (with provisions for future expansion
to 16 processors and 128 GB of memory), I/O adapters,
and a system control element (SCE) which connects these
other elements. The SCE within each book contains a
32-MB L2 cache which serves as the central coherency
point for that particular book. Both the L2 cache and

the main memory are accessible by a processor or I/O
adapter within that book or any of the other three

books in the system.

Figure 2 illustrates the contents of the z990 book
package. The heart of the book package is a multichip
ceramic module (MCM). This module contains up to eight
dual-core processor chips; it also holds the SCC and SCD
chips that include the controls (on SCC) and data (on

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Table 1 Comparison of IBM eServer* zSeries models.

Feature G6

2900 2990

System structure

Two-node (point-to-point connected) Two-node (point-to-point

Four-book' (ring connected)

connected)

Seven per node (14 total)
Processor: 667 MHz; Level 2 cache

Processors

Design target clock

speed and central switch: 333 MHz
Concurrent book No No
upgradable
L2 cache L2 directory
management
Memory DRAM Synchronous 1/4 processor (6 ns)
speed

Memory technology = SDRAM (synchronous dynamic
random-access memory)

Key cache No

Average L2 cache 1.15 MB
capacity per

processor core

Memory buses 4 X 16 bytes per node

Ten per node (20 total)

Processor: 1 GHz; Level 2 cache Processor: 1.25 GHz; Level 2
and central switch: 500 MHz

L2 directory

SDRAM

For I/O accesses only

1.6 MB 2.0 MB

4 X 16 bytes per node

Twelve per book (48 total)

cache and central switch: 625 MHz
Yes

L2 directory
Memory-coherent directory

Synchronous 1/8 processor (8 ns) Asynchronous (8 ns)

DDR SDRAM (double-data-rate
SDRAM)

For I/O and processor accesses

2 X 32 bytes per book

A book is the pluggable equivalent of the node found in earlier systems.

SCD) for the L2 cache, and ports for connecting to the
processors, main storage controller (MSC) chips, and the
ring interface with other books. The MCM also contains
a clock chip to provide clock signals to the book. In
addition, the book contains three I/O memory bus adapter
(MBA) chips that provide I/O connectivity through self-
timed interface (STI) ports, and two memory cards that
are described in greater detail in a later section.

The SCE within each book contains two ring ports,
each of which comprises one incoming and one
outgoing interface, allowing the book to be connected to
corresponding ports in up to two other books via a dual
concentric ring. Each ring port consists of an incoming
and an outgoing address/command/response bus, and
incoming and outgoing data buses. This is illustrated in
Figure 3(a), which shows a system populated with four
books. The books are numbered from 0 to 3 in the order
in which they are installed, from the smallest to the
largest configuration. In this figure, showing a fully
configured system, book 0 is directly connected via
unidirectional buses to two other books (2 and 3). Books
2 and 3 are in turn connected to Book 1, completing two
separate rings running in opposite directions, as illustrated
by the arrows. The ring that flows in the clockwise
direction is referred to as Ring 0, while the ring that flows
in the counterclockwise direction is referred to as Ring 1.
The SCEs exchange address, command, and response
information and data over these ring interfaces.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Since each book connects directly to up to two other
books without having to go through an external switch
element, the book becomes the only pluggable component
with switching silicon devices. A passive backplane with
only embedded copper wiring for the ring buses is far less
prone to fail than a backplane with active switching silicon
devices.

As shown in Figures 3(b) and 3(c), a system consisting
of fewer than four books can also have its books
connected via a dual concentric ring topology using the
same backplane designed for four-book systems. This is
done by replacing the missing book(s) with passive jumper
card(s) to electrically bridge the two sets of embedded
wires on the backplane in order to maintain the flow of
data through Ring 0 and Ring 1.

One of the advantages of this topology over other
ring-based or switch-based topologies is improved data
intervention latency in cases in which a processor fetch
operation is targeting data located in the L2 cache or
memory of another book. The required coherency
interrogation command and address are broadcast from
the home, or local, book of the processor on both rings
simultaneously in order to expedite the L2 cache coherency
interrogation required on each of the other, or remote,
books. As each book performs the interrogation of its
own L2 directory, it compares each locally generated
response with an incoming response that it received on the
same ring bus as the interrogation command and address.

P. MAK ET AL.

325

326

Book
Memory PMA 0 PMA 1 PMA 2 PMA 3 Memory *
card ’ Rank 0 ‘ ’ Rank 0 ‘ ’ Rank 0 ‘ ’ Rank 0 ‘ card
Store- | Rank1 ||| Rankl | | Rank1 |||] Rank1 ||| Store-
protect protect
key ’ Rank 2 ‘ ’ Rank 2 ‘ ’ Rank 2 ‘ ’ Rank 2 ‘ key
’ Rank ‘ ’ Rank 3 ‘ ’ Rank 3 ‘ ’ Rank 3 ‘ ’ Rank 3 ‘ ’ Rank ‘
: e e !
YYYYY 12222 MCM
MSC MSC
Clock
T e “
sce SCD
controller 8-MB .
cache/chip
< O/;Q‘.i‘\\\\ NN
e —
Dual Dual Dual Dual Dual Dual Dual Dual
C(l)llfie c;ri c<1)lri cctlri c;ri: c;lri c<l)lri c;lrz MBA MBA MBA
STIs
Figure 2

Book structure of the z990. (Rank: a segment of memory.)

The results of the comparison are used to determine what
response to forward on the outgoing ring bus. Note that
this response comparison and generation are performed
twice by each book, once per ring. The response
forwarded by a book on the first ring on which it receives
the interrogation command contains only status from
coherency interrogations on books that have already
received the coherency interrogation command on this
ring. This is referred to as an early or first response. The
response forwarded by the book on the second ring on
which it receives the interrogation command contains
status regarding coherency interrogations performed by all
books in the system and is referred to as a final or second
response. The returning fetch data is transmitted over only
one of the rings, which is selected on the basis of the
relative positions of the source and destination books so
that the shortest path is chosen. In the case of data being
returned from a remote L2 cache, the data is returned as

P. MAK ET AL.

quickly as possible as part of a special intermediate data
response. For the remote L2 data access case, the access
latency for this topology from coherency interrogation
launch to data return is an average of 2.67 book-to-book
crossings, or “book hops.” In addition to helping speed up
data returns, having two sets of data buses also improves
overall data bandwidth.

The other significant advantage of the dual-ring
topology is the relative ease with which it supports
concurrent book repair (e.g., the ability to replace a
defective book in the system while the other books
continue to process normal workloads) and concurrent
update (e.g., the ability to add a new book to the system
to upgrade its total capacity while the other books
continue to process normal workloads with degraded
system resources).

To perform concurrent book upgrade, the two rings that
are fully intact, or closed, by means of a jumper card or

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Book | Book Book | Book
o /17 U\ 2 o /1° SN\ 2
A A A A
0 1 0 1
\ 4 A 4 A \ 4
Book > Book Jumper »~ Book
3 1 card 1
(a) (®)
Book Jumper
0 I card
A A
0 1 Book
\ y 0
Jumper »” Book
card 1
(© (d)

2990 system ring configurations: (a) Four books; (b) three books;
(c) two books; (d) one book.

cards, as in Figures 3(b) and 3(c), are temporarily
“opened” while a jumper card is being replaced, and then
reclosed upon completion of a book substitution. While a
jumper card is being replaced, the two open ring ends are
dynamically bridged across those books with the severed
connection; this forms one folded unidirectional ring to
provide the pathways required for interbook communication.
This upgrade sequence is illustrated in Figure 4. In the
case of Figure 4, which initially contains two jumper cards
as in Figure 3(c), the remaining jumper card continues

to carry traffic between the two active nodes while the
other jumper card is being replaced.

Coherency and ring protocol

The ring topology embodies a novel bus protocol and
storage coherency management system which allows

a common design to support a multitude of system
configurations ranging from two to four books (one-
book configurations are also supported, with no ring
connections used). All ring operations begin with a
simultaneous request launch on both rings of the fabric in
closed-ring configurations. The end result is a pair of ring
responses returned to the requesting book containing the
combined coherency information for the entire system.
As ring messages are propagated asynchronously through
each remote book back to the requesting book, request
and response information is shipped in a single packet,

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Book | Jumper
0 N\ card
»
A A
A\ \ 4
Jumper > > Book
card 1
Remove
Book Jumper
0 card
A
\ 4
dl
Jumper > l Book
card 1
Install
Book Book
0 2
Y
\ 4
d
Jumper > l Book
card 1
Book < Book
0 ~ 2
»
A A
\ 4 A
dl
l
Jumper » Book
card 1

Concurrent book upgrade.

minimizing ring bus utilization. An intermediate response
may possibly precede the pair of final responses returned.
If sent, this intermediate response serves to expedite the
return of remote L2 cache data to the requesting book as
quickly as possible. The transfer of data via ring buses
takes place concurrently as multiple command/response
ring transactions are executed.

P. MAK ET AL.

327

328

Table 2 L2 cache ownership states in the z990 system.

Invalid

MC 1, IM = 0, Read-Only to one CP'

MC 1, IM = 1, Read-Only to one CP, changed
MC 1, IM = 1, Read-Only to one CP, unchanged
MC 1, IM = 0, Read-Only to all CPs

MC 1, IM = 1, Read-Only to all CPs, changed
MC 1, IM = 1, Read-Only to all CPs, unchanged
MC 0, IM = 1, Read-Only to one CP, changed
MC 0, IM = 1, Read-Only to one CP, unchanged
MC 0, IM = 1, Read-Only to all CPs, changed
MC 0, IM = 1, Read-Only to all CPs, unchanged
MC 0, IM = 1, Exclusive to one CP, changed
MC 0, IM = 1, Exclusive to one CP, unchanged
MC 0, IM = 1, Unowned by CPs, changed

MC 0, IM = 1, Unowned by CPs, unchanged

TCP: central processor.

The IBM eServer z990 ring-protocol and cache-
management schemes work in concert to allow contending
remote operations to circulate as ring bus transactions.
The 2990 cache-management scheme adds essential
extensions to the modified, exclusive, shared, invalid
(MESI) cache ownership states employed in previous
S/390* generations. These extensions exist in the form
of intervention master (IM) and multicopy (MC) states.

When the IM bit is active for a particular address on
a book, it indicates that this book was the most recent to
receive ownership of that address and write the data into
its cache. By definition, there can be no more than one
book with IM = 1 for a given address. Furthermore, if the
cache ownership state for a given address indicates that
the data is changed, it follows that the IM bit for that
address must be active, because changed data is allowed to
be held in cache on only one book. When the MC bit is
active for a particular address on a book, it indicates that
read-only (unchanged) copies of the data for this address
may exist in multiple books.

Table 2 lists each of the possible L2 cache ownership
states in a z990 system. If the cache ownership state for a
particular address on a book is invalid, the data for this
address does not exist in the L2 cache on that book. Note
that for an address to be valid, either of the conditions
IM = 1 or MC = 1 must exist. Also, if an address is valid,
it must be either read-only, exclusive to a CP, or unowned.
All lines held exclusive must be IM = 1. Also note that
valid lines with IM = (are always unchanged.

P. MAK ET AL.

The following is a summary of the cache-coherent ring
commands that may be launched from any given book, and
conditions specific to the launch of these commands:

e Fetch Read-Only (CP instruction fetch which misses local
L2).

e Fetch Conditional Exclusive (CP operand fetch which
misses local L2). Grants exclusive ownership to
requesting CP only when L2 cache management state
is IM = 0 and MC = 0 on all remote books.

e Fetch Exclusive (CP operand fetch for subsequent store).
Fetch which misses local L2.

® Read-Only Invalidate. Spawned from local CP Fetch
Exclusive when L2 cache ownership state in requesting
book is MC = 1. No data transfer performed, since
requesting book already has a copy of the data.

e Least Recently Used (LRU) Castout. Stores aged,
changed L2 data to memory on remote book.

With the exception of the Read-Only Invalidate command
(which never transfers data), data for remote-fetch-type
operations is sourced from a remote L2 cache when IM = 1
on a remote book. If IM = 0 on all remote books, data
is sourced from the target memory book (i.e., the book
which contains the memory for the specified address).
Note that the target memory book (also known as the
memory master, or MM, book) may exist on either the
local book or one of the remote books, but there is one
and only one target memory book for any given address.

For all remote operations in closed-ring configurations,
an incoming ring message is received on each ring, and
an outgoing ring message is generated on the same ring.
Following receipt of the first incoming ring message,
a coherency interrogation of the local L2 directory is
performed, yielding a local response. To formulate the
outgoing ring response, the local response is merged with
the incoming ring response using the response coherency
ordering shown in Table 3.

Before giving an example of how this response
coherency ordering is used, we provide a brief description
of each of the responses listed in Table 3:

e IM Hit — This local response is generated if L2 cache
ownership state is IM = 1 and no local IM Reject or
MM Reject conditions (described below) are indicated.

e IM Reject — This local response is generated if another
remote operation contending for the same address has
already indicated an IM hit response.

e MM Reject — This local response is generated if another
remote operation contending for the same address could
potentially access data at the target memory address.

e Memory Data — This local response is generated as a
second response accompanied by data from the target

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

memory book if the local and incoming ring responses
at the target memory book are any combination of Read
Only Hit, Miss, or No Status (described below).

Read Only Hit — This local response is generated if the
L2 cache ownership state is Read-Only, IM = 0, and no
local IM Reject or MM Reject conditions are indicated.
Normal Completion — This local response is generated
whenever processing for an LRU Castout operation

has been completed at the target memory book.

Miss — This local response is generated if the L2 cache
ownership state is found to be Invalid and no local IM
Reject or MM Reject conditions are indicated.

No Status — This response is launched on both rings of
all closed-ring configurations whenever a new remote
fetch or remote store command is launched.

As an example of how the coherency-response-merging
scheme in Table 3 is applied, if the incoming ring
response is No Status and the local response is IM Hit,
the outgoing ring response will be IM Hit (i.e., the higher-
order response takes precedence). Note that the response
forwarded as the first outgoing ring response (i.e., the
early or first response) reflects the merged status from
coherency interrogations on those books that have
received an incoming first ring message on this ring. The
response forwarded as the second outgoing ring message
(i.e., the final or second response) reflects the merged
status from coherency interrogations on all books.

Table 3 shows that the IM Hit response is the highest-
ordered ring response. This means that for any remote
book which observes a local IM Hit response, the final
responses returned to the requesting book will be IM Hit
responses. For remote fetch operations requiring data
transfer (e.g., Fetch Read-Only), a local IM Hit response
also ensures the generation of a special intermediate data
response on one of the rings. The intermediate data
response is always transmitted on the ring which results in
the shortest path between the book sourcing the data and
the requesting book. Intermediate data responses may
precede or follow an IM Hit first response, but always
precede an IM Hit second response. The intermediate
data response does not factor into the coherency-
response-merging scheme shown in Table 3.

For diagonally opposite books (which exist only in
four-book closed-ring configurations), the incoming first
response and the incoming second response are merged
with the local response to formulate the outgoing message
on both rings. This process is called diagonal book
accumulation. Diagonal book accumulation ensures that
all incoming second responses reflect the merged status
of coherency interrogations on all books in four-book
closed-ring configurations. Intermediate data responses
sourced by any adjacent book in a four-book closed-ring
configuration are returned to the requesting book in the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Table 3 Response coherency ordering for combined ring
responses.

Order Response
1 IM Hit
2 IM Reject
3 MM Reject
4 Memory Data
5 Read-Only Hit
6 Normal Completion
7 Miss
8 No Status

minimal number of hops. (That is, the direction of the
intermediate data response at an adjacent book will
always be on the ring opposite to the first incoming ring
message.) Note that an intermediate data response
sourced by a diagonal book can be sent on either ring,
since the paths between the data source book and the
requesting book on the two rings are equidistant.

A critical component of the IBM eServer z990 ring
coherency management system is the establishment of two
system coherence points known as the intervention master
(IM) and memory master (MM) coherence points.

As described earlier, an IM = 1 L2 cache ownership
state indicates that this book was the most recent to
receive cache ownership for that address, and that there
can be only one book with IM = 1 for a given address.
Remote operations which generate an IM Hit local
response simultaneously set a token called IM Pending.

Activation of this cache-based token permits the
operation which set the token to proceed while any
subsequent contending requests for the same address
are rejected via the IM Reject response described
earlier. In general, the IM Pending token is set if

e L2 cache or memory data is to be sourced from a book.

L2 cache or memory data or an IM Hit ring response

is in the process of passing through a book (as a result

of being sourced from another book).

e The cache ownership states for a Read-Only Invalidate
operation are currently in the process of being updated.

e An LRU Castout operation is being processed at the
target memory book, or store data for an LRU Castout
operation is passing through a book (en route to the
target memory book).

For the MM coherency point, there is only one MM book
in the system. More specifically, this book is the target
memory book. Remote operations which are the first

to arrive at the MM book and which do not observe an
IM = 1 L2 cache ownership state set a token called MM
Pending. Activation of this memory-based token permits

P. MAK ET AL.

329

330

the operation which set the token to proceed while any
subsequent contending requests for the same address are
rejected via the MM Reject response described earlier.
Remote fetch operations which have set the MM Pending
token return memory fetch data only when both incoming
ring responses on the target memory book are Read-Only
Hit, Miss, or No Status and the L2 cache ownership state
is IM = 0.

In conjunction with the IM and MM coherence points,
a third type of address interlock is used which ensures that
incoming first-ring messages targeting the same address
always leave the book in the same order in which they
arrived. This first-in first-out (FIFO) ordering of first
responses is maintained regardless of the order in which
the incoming ring operations are actually processed.
Maintaining the order of first responses helps to ensure
that all outgoing ring responses always reflect a merged
status that is consistent with directory coherency results.

Memory-coherent directory

The zSeries architecture provides a fully coherent memory
for the entire multibook z990 system. This is a single fully
shared memory address space, with all processors and I/O
devices on all books having the capability of updating the
entire address space and having access to updates made by
any other processor or I/O device in the shared address
space anywhere in the system. This coherency is managed
entirely by the hardware. The coherency requirement can
produce considerable traffic on the interconnections for
maintaining coherency, in particular on the ring
connecting the books.

To maximize efficiency and performance in a z990 ring-
connected multibook system, techniques are employed to
minimize the number of storage requests that require
coherency broadcast requests on the ring. Ring capacity
for handling broadcast requests is limited by the number
of interconnecting wires and signaling rate the package
technology can provide. Coherency broadcast requests on
the ring also increase storage access latency owing to the
distance and additional logic these requests must traverse.
The z990 storage subsystem contains unique hardware
features to minimize memory-coherency-checking traffic
on the ring, thereby reducing the average storage access
latency while maintaining the fully coherent memory
required by the zSeries architecture. This is accomplished
without requiring any memory management by software.

To accomplish this, the z990 server provides a memory-
coherent directory (MCD) that tracks storage references
in order to control which references require coherency
checking on the full system (across all books) and which
do not. Each memory location is physically backed by
storage on one book (the home book), but the data
corresponding to this storage location may be cached

P. MAK ET AL.

or used on any book. The MCD contains remote access tag
(RAT) bits that indicate whether or not regions of storage
have been referenced and are potentially cached on books
other than the home book. When a storage access for a
storage location located on the home book is initiated
and data is not already cached locally in a favorable state,
the RAT bit for the corresponding region of memory is
referenced to determine whether memory-coherency
checking for the referenced storage must take place across
all books or may remain within the referencing book.
Storage references for addresses with the backing storage
on another book must always be broadcast to all books
unless the data is already cached in a favorable state on
the local book. When the contents of storage are removed
from a book to be potentially cached elsewhere, the
corresponding RAT bit must be set. This is done
automatically as part of the data access.

The design of the MCD allows for some imprecision in
the RAT bits to lessen the cost and performance impact
of implementation. The MCD must always provide a
positive indication when data has been cached outside the
owning book, but may provide a false positive indication
in some instances in which data is not actually cached
outside the owning book. With this imprecision, one RAT
bit can represent a range of storage addresses rather than
a single address, which minimizes ring traffic overhead for
maintaining the state of the directory. This avoids negating
the effect of reducing memory-coherency ring traffic by
adding a large amount of other traffic for maintaining the
state of the MCD. Each RAT bit in the z990 represents
16 MB of storage, a size compatible with unit sizes of
storage regions typically assigned by software to individual
applications. This MCD design consumes a minimum of
chip area and can be placed in a favorable location on
the chip where it can be accessed with minimal delay.

The success of the MCD depends on the fact that a
large multiprocessor system often runs a multitude of
smaller workloads simultaneously, each utilizing a fraction
of the available processors and memory. If software
assigns tasks to processors on the same book as the
physical storage they are utilizing, the RAT bits (which
are initially off) remain off, and storage accesses remain
within one book and do not drive any memory-coherency
checking on the ring to other books. For workloads where
processors are working with storage that is resident on
other books, the RAT bits are set as a result of storage
requests from the processors; this causes future memory-
coherency checking for the affected address range by
processors on the book containing the physical backing
storage to be broadcast on the ring to the full system.
RAT bits are reset by a Power-On Reset [5], and when
storage is de-allocated by clearing the corresponding entry
in the storage configuration array, a process normally
associated with dynamic storage reconfiguration [6]. By

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

monitoring storage references and updating the RAT bits
automatically, the hardware is able to dynamically modify
memory-coherency checking for different applications to
the appropriate scope of a single book or the whole
system. This guarantees full adherence to architected
memory-coherency requirements while providing improved
performance for applications that are either intentionally
or by chance contained within a single book.

Hardware manages the scope of memory-coherency
checking automatically. The only role played by system
software (e.g., the operating system) in this is to assign
processors and storage to obtain the best effect of the
known system structure and characteristics, and this role
is not a requirement.

When large modular systems as disclosed here run
workloads that do not require the resources of multiple
books, it is advantageous to assign workloads to processors
and memory that are contained entirely within one book
where possible. When workloads cannot satisfy this
requirement, the system automatically accommodates
them by expanding the scope of memory-coherency
checking as required.

Memory asynchronous interface

During the architecture and design phases of a chip,
physical limitations often dictate certain aspects of the
design point. For example, these limitations might include
performance, power, cooling, space, size, available
technologies, and cost.

In the prior IBM eServer z900 machine, the physical
realities allowed an operating frequency relationship
among the chips in the system chip set that satisfied all
requirements. The central processor (CP) chips operated
at a frequency f. The CP chips communicated with the
SCC, SCD, MSC, and other central infrastructure chips,
collectively called nest chips because they provide the
common connection point for processors, memory,
and I/O. The nest chips, including the main storage
controller (MSC) chip, operated at f/2. The MSC chips
communicated with the synchronous memory interface
(SMI) chips, which operated at f/4. The SMI chips
communicated with the DRAM chips, which operated
at f/8.

To satisfy the data bandwidth requirements of each
faster chip, the slower chip would supply data over a
double-width bus at half the signaling rate of the faster
chip, and this would be converted to the width and
signaling rate required by the faster chip. All interchip
communications remained synchronous because of the
integral speed ratios and a latch in each faster chip to
align its clock cycles to those of the slower chip.

For the z990, the available SMI technology could not
meet the requirement to operate the SMI chips at half the
speed of the nest chips. One option would have been to

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

operate the chips as follows: f (CP), f/2 (nest), f/8 (SMI),
f/116 (DRAM), with the SMI chips operating at one-eighth
the speed of the CP chips rather than one-fourth, and
with the DRAM chips operating at half the speed of the
SMI chips.

The option of operating the SMI and DRAM chips at
synchronously slower integral speeds would have resulted
in system performance degradation, because the effects
of the slower speeds could not be overcome with wider
interfaces. It was decided that the best approach to
maintaining the needed data bandwidth was to operate
the SMI and DRAM chips at their maximum operating
frequency, utilizing a fully asynchronous interface rather
than the integer ratios used in the past. The MSC chips
would have two clock domains: one to interface with the
SMI chips at their frequency relationship (SMI domain),
and one to interface with the nest chips at their frequency
(nest domain).

To provide communications among the facilities in each
clock domain, a robust yet flexible operating protocol had
to be established so that the frequency ratio between the
two domains could be varied.

The frequency ratio between the two clock domains is
referred to in the design specifications as gear ratio; in this
case, the ratio involves time rather than frequency. The
fastest speed at which the nest domain can run with
respect to the SMI domain is a 3/8 ratio. The slowest
speed at which the nest domain can run with respect to
the SMI domain is a 9/8 ratio. The normal operating ratio
is 4/5 (i.e., the nest domain is running at 1.6 ns while the
SMI domain is running at 2 ns).

Before we examine the internal communications
protocol between two asynchronous clock domains within
the MSC, it would be helpful to understand the external
interfaces to the MSC and their associated communication
protocols.

There is a synchronous interface for the command and
address from the cache control chip (SCC) to the MSC
chip. The command and address are delivered over two
consecutive cycles: Cycle 1 contains the command and
part 1 of the address; cycle 2 contains a null command
and part 2 of the address. No gap is needed between
commands. A “command accept” status, with a fixed
time relationship to each command, is sent back to the
SCC. Commands are sent on the basis of available MSC
resources monitored by the SCC. The final status for a
command has no fixed time relationship to the receipt of
the command by the MSC. Commands can be executed
out of order on the basis of MSC priorities and resources.

The MSC also has a synchronous interface to and from
the SCD chips. Data flows to the MSC in a fixed relationship
to its associated command. Data flows to the SCD chips
in a fixed relationship to the “alert” status sent to the SCC. 331

P. MAK ET AL.

332

’ Memory card ‘ Memory card
[PMA O]~ {PMA 1] PMA 3
1 1
Memory E Memory Memory E Memory
DIMMs I DIMMs DIMMs 0 DIMMs
1 1
1 1
[smi | [smr | [smi] [smr | [smi] [smr]
e 1
X Key Y X Key Y
port port port port port port

Figure 5

Memory structure.

E " Nest clock SMI clock
g€ 3
35
O
2 oMB 4/1 Selector
Command/ i
address Pipe | | Pipe | | Pipe
Pipe A A A S
- A Rec H Rec H Rec - g £
z £ | hold Command latch | | latch | | latch B2
1 <
g tag E 1 2 3
= =
S =
2
Reset 2]
=}
g
-
S
5
<
Pipe
Ack || Ack || Ack A
Rec [] Rec [] Rec Ack
ACK | jatch ||latch || latch latch
tag | 3 2 Ic
Pipe B —
Pipe C —
Pipe D —
Delayed 2 edge —

Asynchronous communications protocol. (SMB: speed-matching
buffer; SMI: synchronous memory interface; Ack: acknowledge;
Rec: receive.)

On the asynchronous interface from the MSC to the
memory cards, the MSC has three independent operating

P. MAK ET AL.

partitions (data X, data Y, and key) with three independent
physical interface ports, as shown in Figure 5. The X and Y
ports for memory access are selected by address. The SCC
encodes this selection in the command. The X port is
connected to a processor memory array (PMA) on one
memory card, and the Y port is connected to a PMA

on the other memory card (the port with the shorter
connection in the figure is considered local and the
other port is considered remote: The X port is local

for the first MSC chip, and the Y port is local on the
second MSC chip). The key port, for accessing storage
protection keys required by the z/Architecture® [7], is
connected to the local memory card.

The X port, Y port, and key ports are all asynchronous
interfaces utilizing the logic shown in Figure 6. Each X
and Y port interface is further partitioned for fetch, store,
and special operations. The separation of commands to
the X, Y, and key ports is done in the nest domain. The
gathering of status and data from the X, Y, and key ports
is also done in the nest domain. There are a total of 48
tag signals and 48 acknowledge signals between the clock
domains. Only one port is described in the following,
although the description applies to all X, Y, and key
port operations.

When information such as commands, addresses, data,
or status has a destination in the other clock domain, the
information is first placed in a speed-matching buffer
(SMB) array, as shown in Figure 6. The write clocks and
write enable controls for the SMB are generated in the
same clock domain as the source information. No clocks
are required to read the information from the SMB, only
a signal to control a selector which gates the output of
one of the array elements.

At the time the information is written into the SMB,

a single control signal (Command tag in Figure 6) is sent
through a series of three metastability latches. Given that
the clock from the launching latch and the clock for the
receiving latches are totally asynchronous [i.e., they have
different cycle times and different clock phases with
respect to each other from two separate phase-locked
loops (PLLs)], the receiving latches may exhibit
metastability; that is, their behavior may be unpredictable
in that during level transitions the receiving latch may
capture a one or a zero, or may exhibit a poorly timed,
slow, or delayed level transition. A series of latches are
inserted to reestablish stability in the receiving domain
with properly timed and shaped transitions on the correct
clock edge before the result can be used. Three latches
are placed in series for metastability correction on the
basis of timing analysis for the z990 application frequency.
The clocks for the metastability latches are generated in
the clock domain where the receiver latches for the
information are located. The number of clock cycles it
takes to pass through the three latches varies because the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

first latch may act as a flush path with no delay rather
than as a one-clock-cycle delay device. In every case,
enough time elapses for the information in the SMB to
become stable before the tag signal emerging from the
metastability latches is used to gate the SMB array
output.

The number of operations the nest sends to the X
port, Y port, or key port is determined by the number
of controllers available to handle the various requests.
For example, there are four fetch operation controllers
available on the X port. The nest does not send more than
four fetch operations to the X port until an X port fetch
operation completes and the controller becomes available
for a new fetch operation. This allows the nest to send
four back-to-back fetch operations. The SMB therefore is
designed with enough elements to handle four concurrent
X side fetch requests.

In Figure 6, one command tag signal is associated with
each element of an SMB. As an SMB element is being
written in the sending domain (SMB in Figure 6), a tag
hold latch (Pipe A hold in the figure) is also being set on.
Similar Pipe B, C, and D command tag logic exists for
each of the other SMB elements, not shown in the figure
except for their inputs to the 4/1 selector gate. The output
of the Pipe A hold latch drives the input of the first
metastability latch in the receiving domain. This first
receiving latch (Rec latch 1) drives the input of a second
receiving latch (Rec latch 2), the second latch drives the
input of a third receiving latch (Rec latch 3), and the third
latch (now stabilized) drives the input of a fourth latch
(Ack latch) whose purpose is to return acknowledgment
of the receipt to the sender. This acknowledgment latch
output is sent back to the original clock domain as an
acknowledgment tag (Ack tag) and eventually becomes
the reset for the Pipe A hold latch. However, the
acknowledgment signal must first pass through three
receiving metastability latches (Ack Rec latches) in the
original sending domain before resetting the Pipe A hold
latch.

In the SMI clock (receiving) domain, an edge detector
looks for receiving latch 3 to go to a set state while the
acknowledgment latch is still in a not-set state. This
detection becomes the basis for reading an element from
the SMB. Owing to the asynchronous interface and the
frequency application, two command tags (corresponding
to different elements within the SMB) may emerge
simultaneously from their respective metastability latch
chains in the SMI clock domain. The logic has a provision
to serialize these two events by delaying one (via the
delayed 2 edge event to the edge detection in Figure 6) to
prevent an attempt to simultaneously read two different
elements of the SMB, since there is only one SMB bus
to the SMI clock domain.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Load : :
omry: U203 04 X5 X6 X7 X8 X9 Jrof11)12)13)14)15)16)
Unload
(Nest): ﬂﬂﬂﬁﬂ@ﬂﬂﬂﬂ

3 0123456

Speed-matching sequence in a 4/5 gear ratio.

Along with the edge-detection logic on the receiving
domain, logic exists to check receiving latch 3 to ensure
that it goes to a set state and holds. A condition in which
receiving latch 3 would set for one cycle and return to a
non-set state sets an error checker that would stop the
machine. This latch should never set for only one cycle,
and it should always be stable.

Because of the different clock rates in the nest and SMI
domains, the data transfer rates within the two domains
do not match each other. Special care is needed to
achieve seamless data transfers on both sides and to
maximize system performance. The z990 system places
the SMB between the two clock domains to solve this
problem.

For fetch operations, data flows from the SMI side to
the nest side. Data flows in the opposite direction for
stores. Figure 7 is an example of data transfer for a fetch
operation.

The 2990 nest clock runs faster than the SMI clock. In
order to maintain a seamless data transfer for fetches,
once the data starts to load in the SMI side, the nest-side
logic must wait for a certain number of cycles before it
starts unloading the data. The number of cycles depends
on the clock ratio between the two clock domains. Figure 7
illustrates the speed-matching behavior in the SMB. The
clock ratio between the unload (destination) side and the
load (source) side in the example is 4/5. Thus, in order
to maintain seamless data transfer for 16 cycles of data
without buffer data overrun, the unload side must wait
until the load side preloads four or more cycles of data
transfer.

Data flows in the opposite direction for store operations.
Since the load side generally runs faster in this direction,
there is no need for unload side to wait more than one
count of data transfer before beginning to unload the
buffer. If the clock ratio is defined as m/n, the formula
for the number of data transfers to wait before beginning
unloading is

n
{16 - 15} if m > n; otherwise 1.
m

P. MAK ET AL.

333

334

Nest clock SMI
domain clock domain
Speed-
matching
nlond | " Load
Nest SMI
fetch fetch
controller controller
T T Controls Wiy
controller
Asynchronous | crossing
X Controller
Ratio settings
clock
Ratio- Ratio- Parameter
clock clock
. . generator
driver receiver g
Clock ratio

Clock ratio detector in z990 applications.

Table 4 shows the number of data transfers that must
complete before unloading begins for various clock ratios
in order to seamlessly transfer 16 cycles of data transfer.
From the table, we can see that the hardware must behave
differently for different clock ratios. A hardware clock
ratio detector is included to adjust the wait time
automatically on the basis of clock ratios. The clock ratio
detector automatically calibrates the clock ratio between
the two clock domains. According to the ratio detected,
the detector logic informs other logic in the MSC chip to
adjust its behavior to achieve maximum efficiency.

The clock ratio detector shown in Figure 8 consists of
two physical parts: a ratio-clock driver in the nest domain
and a ratio-clock receiver in the SMI domain. The ratio-
clock driver constantly outputs ratio-clock pulses. The
pulse width equals 128 local nest clock cycles. The
receiver in the SMI domain counts the pulse width N
in term of its local SMI clock cycles. For each clock
pulse, the receiver can determine the clock ratio between
the two domains by the following formula:

Ratio r = N/128.

The r here is usually a real number, but the clock ratio
output must be an integer in a digital machine. The z990
server uses a predefined resolution of 16. The output
integer R in a real machine can be represented as

Integer ratio R = N/8.

P. MAK ET AL.

Table 4 Speed-matching delay for 16-cycle fetch data
transfers on the z990 SMI-to-nest interface.

Clock Data transfer
ratio wait count

1
7/8
4/5
3/4
5/8
1/2
3/8 1

el =N BV I N UL

In addition to the basic ratio-counting ability, the
clock ratio detector has the ability to adjust the output
resolution and output range of each step. It also prevents
possible oscillation of the output ratio if the ratio is right
at the boundary where output is about to change. For
error reporting, the detector continuously monitors for
any change of clock ratio and will report an error if the
ratio changes in a wrong direction.

Once the ratio detector determines the system clock
ratio, the ratio is used to generate parameters to adjust
memory controller timing behavior. This behavior
ultimately changes the relative load and unload times
between the two clock domains so that the system can
automatically maintain a seamless data transfer with
minimum wait.

Memory power governor

Designing a power supply and cooling system for the
maximum possible memory utilization would have been
unnecessarily expensive on the z990 system, since the
majority of the time the memory utilization is low owing
to high cache-hit ratios. The alternative was to design a
power supply for a more typical case with some margin of
cooling capacity, and then add power governor logic to
prevent overheating in the rare cases in which the memory
utilization in the system comes close to reaching its
maximum. The solution offered is based on capping the
average DRAM current consumption by limiting the
number of memory transfers during each fixed refresh
interval. This can guarantee that the total memory card
power consumption will never exceed the limit. The power
management is transparent to the operating system and is
done concurrently with normal machine activity.

Each DRAM must be refreshed within a certain period
of time, which is fixed for a given DRAM technology. This
makes it an excellent reference point for observing the
memory transfers. Any command (Activate, Read, or
Write) that has to be issued to fetch or store the data in
the DRAM is considered to be a memory transfer. The
DRAM memory power consumption depends strongly

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

on the number of received Activate, Read, and Write
commands. The power governor indirectly measures the
current by counting these commands during each refresh
interval. If the current exceeds the limit, the power governor
changes the timing parameters to reduce the number of
memory transfers during the next refresh interval.

The power governor implementation shown in Figure 9
includes a governor counter which counts the number of
energy-consuming commands sent to the memory within
one refresh interval. Once the refresh controller completes a
memory refresh interval, the value of the governor counter is
latched into the governor hold register and the governor
counter is reset. Once the refresh request receives a refresh
grant from the DRAM control logic, the power governor
decides whether to change the memory timing parameter.
At this time, all memory controller state machines with
the exception of the refresh controller are idle. Changing
parameters at this time guarantees that the memory timing
restrictions are not violated. If the value in the governor
hold register exceeds the threshold value in the governor
ON threshold, the timing behavior for mainline functions
(ordinary memory fetches and stores) is changed for the
next refresh interval. The time for executing a single fetch
or store operation remains the same, but the time between
two consecutive operations is changed by adding idle cycles.
At the end of the next refresh interval, if the governor
hold register is less than the governor OFF threshold, the
‘governor restores the initial timing parameters.

A worst-case analysis shows that for an IMS' workload
a memory access would be initiated once every 38.4 ns in
a 16-processor, two-book configuration. On the basis of
the current threshold, the power governor would be
activated if the rate of memory requests was greater than
1 every 33 ns. These calculations are based on an IMS
workload because it has one of the highest memory
interface utilizations.

The operating parameters are programmable and may
be dynamically updated by firmware to adapt to operating
conditions. The power governor implementation provides
a simple and flexible means of balancing system
performance against system power and cooling limits.

Concluding remarks
In this paper we have described a few of the advanced
design features of the 2990, including

e A modular package that supports a variable number of
processing books for each system.

A ring-connected structure and communication protocol
that provides high bandwidth and fast response
connections between books to sustain high performance

I'IMS is an IBM transactional and hierarchical database management software
application.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Governor ON
threshold
A
Refresh request Refresh grant
Y
Refresh C>A
controller
- L»| Governor Power DRAM =
= hold governor
. Governor N : ontrol] control §
g counter el . logic a
3 C logic
i L
5
= Z
T ol ©
3l 8 —
Governor OFF E E
threshold CPU
B
Figure 9

7990 power governor.

in a system with fully shared, fully coherent memory,
and that supports dynamic reconfiguration for adding
books while the system is running.

Additional cache states, and a memory-coherent

directory, to minimize memory-coherency interrogation
requests between books for enhanced performance and
efficiency.

An asynchronous memory interface to allow processors
and memory to each operate at its optimal frequency,
with seamless transfers, for maximum performance.

A memory power governor to obtain maximum
performance consistent with system power and cooling
limits.

These features are included to improve the performance
of the IBM eServer zSeries family of processors.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. P. Mak, M. A. Blake, C. C. Jones, G. E. Strait, and P. R.
Turgeon, “Shared-Cache Clusters in a System with a Fully
Shared Memory,” IBM J. Res. & Dev. 41, No. 4/5, 429-448
(July/September 1997).

2. K. M. Jackson and K. N. Langston, “IBM S/390 Storage
Hierarchy—GS5 and G6 Performance Considerations,” IBM
J. Res. & Dev. 43, No. 5/6, 847-854 (September/November
1999).

P. MAK ET AL.

335

336

3. P. R. Turgeon, P. Mak, M. A. Blake, M. F. Fee, C. B. Ford
III, P. J. Meaney, R. Seigler, and W. W. Shen, “The S/390
G5/G6 Binodal Cache,” IBM J. Res. & Dev. 43, No. 5/6,
661-670 (September/November 1999).

4. J. Probst, B. D. Valentine, C. Axnix, and K. Kuehl,
“Flexible Configuration and Concurrent Upgrade for the
IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5, 551-
558 (July/September 2002).

5. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832-01), October 2001, pp. 4-47; see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

6. S. G. Glassen, R. S. Capowski, N. T. Christensen, T. O.
Curlee III, R. F. Hill, M. J. Kim, M. A. Krygowski, A. H.
Preston, D. E. Stucki, and F. J. Cox, “Method and
Apparatus for Dynamic Storage Reconfiguration in a
Partitioned Environment,” U.S. Patent 5,819,061, October
6, 1998.

7. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832-01), October 2001, pp. 3-9; see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

Received October 15, 2003, accepted for publication
April 12, 2004, Internet publication May 28, 2004

P. MAK ET AL.

Pak-kin Mak IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601

(pmak @us.ibm.com). Mr. Mak is a Distinguished Engineer in
zSeries custom hardware design. He received his B.S.E.E.
degree from the Polytechnic Institute of New York and his
M.B.A. degree from Union College. Mr. Mak joined IBM
Poughkeepsie in 1981, working on the ES/3090 BCE cache
design. He has designed high-end system controllers and L2
caches for ES/9021 bipolar-based systems, and he was the lead
architect for the S/390 G4, G5, G6, z900, and z990 processor
storage/cache subsystem designs. Mr. Mak currently holds 14
patents; he has received six IBM Invention Achievement
Awards, three IBM Outstanding Innovation Awards, three
IBM Outstanding Technical Achievement Awards, and two
IBM Division Awards.

Gary E. Strait IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(strait@us.ibm.com). Mr. Strait is an Advisory Engineer in
eServer Hardware Development. He was the logic team
leader for the z990 SCE 1/O interface. He joined IBM in
1980 after receiving his B.S. and M. Eng. degrees in electrical
engineering from Rensselaer Polytechnic Institute. Mr. Strait
previously held design positions on the storage subsystem of
the IBM ES/3090, ES/9021 subsystems, and the I/O interface
of the S/390 G4, G5, G6, and z900 systems. He has received
four IBM formal awards, holds four U.S. patents, and has
three patents pending.

Michael A. Blake IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(mablake@us.ibm.com). Mr. Blake joined IBM in 1981 after
receiving his B.S. degree in electrical engineering from
Rensselaer Polytechnic Institute. He is a Senior Technical
Staff Member in eServer Hardware Development, and was the
overall logic team leader for the z990 SCE, as well as lead
ring unit designer. He previously held design and team leader
positions on the IBM ES/3090, ES/9021, S/390 G4, G5, G6,
and z900 systems. Mr. Blake has received several IBM

formal awards, including two IBM Outstanding Technical
Achievement Awards, two IBM Outstanding Innovation
Awards, and an IBM Corporate Award for his work on the
z900 SCE. Mr. Blake currently holds four U.S. patents and
has seven patents pending.

Kevin W. Kark IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(kark@us.ibm.com). Mr. Kark received his B.E.E.E. degree
from the City College of New York in 1983 and his M.S.C.E.
degree from Syracuse University in 1989. He joined IBM

in 1983 at the IBM Product Development Laboratory in
Poughkeepsie in the storage subsystem organization. Mr. Kark
is a Senior Engineer in eServer Hardware Development and
has held various design and team leader positions on the IBM
ES/9000 and IBM S/390 CMOS G3, G4, G5, G6, z900, and
2990 systems. He was the logic team leader for the z990

main storage controller. Mr. Kark has received several IBM
formal awards, including three IBM Outstanding Technical
Achievement Awards, an IBM Outstanding Innovation Award,
an IBM Division Award, and an IBM President Award
(Europe). He currently holds three U.S. patents and has

two patents pending and several publications.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Vesselina K. Papazova IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(papazova@us.ibm.com). Mrs. Papazova is an Advisory
Engineer in eServer Hardware Development. She was
responsible for the memory interface logic design for the
2990 SCE and was a designer on the ring unit. She received
her M.S. degree in electrical engineering from the Technical
University, Sofia, Bulgaria, in 1995. From 1995 to 1998
Mrs. Papazova worked as a microprocessor system designer
for ROCON, LCC. In 1998 she joined the Sigma-Delta
Corporation in Bulgaria, where she was responsible for

I/O unit logic design for single-chip microcontrollers. In
2000, she joined IBM upon her arrival in the United States.
Mrs. Papazova has one pending patent.

A. E. (Rick) Seigler IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(seigler@us.ibm.com). Mr. Seigler joined IBM Poughkeepsie
in 1980 after receiving B.S.E.E. and M.S.E.E. degrees

from Rensselaer Polytechnic Institute. He worked as a logic
designer and systems test engineer on ES/3090 systems, and as
a recovery/serviceability systems test manager for ES/3090 and
ES/9021 systems. In 1992 he joined S/390 Custom Hardware
Design, where he now works as an Advisory Engineer;

prior to that, he served one year on an IBM Faculty Loan
assignment at the Georgia Institute of Technology in

Atlanta. He was the z990 SCE test floor leader following his
assignment as a logic designer on the ring unit. Mr. Seigler
holds seven patents and has four patents pending; he has
received IBM Outstanding Technical Achievement Awards

for his work on the G4, G5, G6, and z900 systems.

Gary A. Van Huben IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(vanhuben@us.ibm.com). Mr. Van Huben joined IBM

in 1986 and is currently an SCE design team leader in
eServer Hardware Development. He has held various design
assignments involving the S/390 storage controller, central
processor, and I/O subsystem. He served as the dataflow chip
team leader for the z990 SCE in addition to his assignments
as a logic designer on the ring unit. Mr. Van Huben also
architected and supervised the data management methodology
and processes used to develop the z990 CEC. In 1986, he
graduated from Clarkson University with a B.S. degree in
electrical and computer engineering; he currently holds 14
U.S. patents and has received five IBM Invention Plateau
Awards, two IBM Outstanding Technical Achievement
Awards, and an IBM Outstanding Innovation Award for

his work on the z900.

Liyong Wang IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601

(liyongw @us.ibm.com). Mr. Wang is a Staff Engineer in
eServer Hardware Development. He received an M.S. degree
in electrical engineering from Rensselaer Polytechnic Institute
and a B. S. degree in engineering physics from Tsinghua
University, China. He joined IBM in 2000 after working for
Pitney Bowes, Inc., as an ASIC engineer. Mr. Wang is a logic
team member for the 2990 MSC; he currently has one patent
pending.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

George C. Wellwood IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(wellwd1@us.ibm.com). Mr. Wellwood joined IBM in 1963 in
the thin-film memory development area. In 1969 he joined the
S/360 Model 195 development team and has since remained
in mainframe development. He was a designer on the S/370
Models 3032 and 3033. On the H series machines, he was

a designer on the memory controller. On the G4, G5, and
G6 CMOS machines, he was a designer on the L2 cache and
memory subsystem. For the z900 and z990 machines, he was
a designer on the memory controller. Mr. Wellwood was an
Advisory Engineer in S/390 Custom SCE Design and is now
a consultant to that team. He received IBM Outstanding
Technical Achievement Awards for his work on S/390 G4

L2 cache development in 1997 and S/390 G5 cache and
memory subsystem development in 1998. He holds two

U.S. patents and has five publications.

P. MAK ET AL.

337

