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An integral part of the IBM eServer� z990 I/O subsystem is
the self-timed interface (STI) switch chip. The STI switch is
an application-specific integrated circuit (ASIC) designed to
provide high I/O connectivity and high bandwidth within the
system. The complexity of the functional verification of the STI
switch chip is inherent in the implementation of seventeen
logical clock domains and the support of six different STI
interfaces with programmable frequencies. The logic within
these clock domains is connected via asynchronous interfaces.
This paper describes the methodology to verify the functionality
of the switch chip with various STIs by introducing a
combination of verification techniques. This involves random
biased stimulus generation, automated result prediction
checking, and the use of cycle simulation to stress the logical
design. The cycle simulation required new techniques to model
equivalent behavior in order to verify the correct integration of
nondigital components on the chip. Advanced methods were
implemented to ensure correctness of the frequency-dependent
design units and functionality across the asynchronous
interfaces. A single verification environment was developed,
providing the flexibility to seamlessly support the different
levels of design abstraction and uncover the design errors at
the appropriate level.

Introduction
The z990 eServer* I/O subsystem comprises an architecture
providing I/O connectivity, networking connectivity, and
intersystems connectivity. Since the introduction of the
z900 system [1], significant improvements have been
implemented in the I/O subsystem architecture. The
higher I/O connectivity that is supplied breaks the limit
of 256 channels, providing faster and more efficient
transmission between systems and to the networking
attachments. As depicted in Figure 1, an integral part
of the new and improved z990 I/O subsystem is the
STI switch chip.

The STI switch chip provides high-speed connections
between the memory bus adapter (MBA) and the I/O
attachments [2] and to other systems within the Parallel
Sysplex* [3]. The switch chip is also called the multiplexor/
demultiplexor chip. The connection to the MBA can be
via the enhanced self-timed interface (eSTI), which
is configured to operate at 2 GB/s, or via the multispeed
self-timed interface (mSTI). The mSTI can be configured
to operate at a data rate of 333, 500, or 1000 MB/s.
This configuration dictates whether the switch chip
operates as a level-one or as a cascaded level-two device.
As a level-two device, the switch chip connects to a
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level-one STI switch via the mSTI link. This configuration
provides higher connectivity. Four mSTI ports are
implemented to support the downstream I/O connections.

The mSTI and eSTI support data is transferred via
electrical cables in a serial fashion in which the clock is
transmitted with the data across the physical link [4]. To
support this interface, the switch chip integrates a physical
adaptation layer and a logical adaptation layer for each of
the interfaces. The physical adaptation layer serializes
and deserializes the transfers of data, while the logical
adaptation layer assembles the information packets and
supports a parallel interface with the chip host logic.

The STI links and the supporting adaptation layers can
be programmed to operate at multiple frequencies. In
addition, the host logic integrates several clock domain
units. In all, the switch chip integrates a total of seventeen
different clock domains. As a result, the interfaces
between these domains and link boundaries are
asynchronous over a wide frequency range. Information-
packet-forwarding logic algorithms were implemented to
ensure arbitration fairness between incoming and outgoing
packet flow and to optimize this flow as a function of data
length and clock frequency.

To ensure a high-quality design and a fast time-to-
market, the majority of the ASIC logic is verified using a
functional cycle simulation environment. With 9.6 million
transistors integrated in the switch chip, the objective

was to utilize a high-performance cycle simulator [5]
as much as possible where appropriate to maintain high
performance across the various levels of simulation. The
functional verification methodology [6, 7] implements a
random biased approach to stimulate the designs with
automated checking using cycle simulation.

Some of the logic units contain nondigital designs
integrating analog components, differential interfaces, and
subcycle wire delays. In this case, an event simulator is
used to ensure the functional correctness of these
components. Also, the approach is to verify these
components in a standalone-unit environment so that these
units need not be verified exhaustively at the chip level.

Register-transfer-level (RTL) design models are
generated to verify the function within the chip as well as
the internal and external interface protocols. This includes
verifying the interactions between the new designs and the
integrated intellectual property. These RTL models are
referred to as one-cycle simulation models. In turn, full
chip gate-level design models are created to verify the
functionality and integration of error recovery, clocking
structures, and test logic. Some of the error-recovery
design features are verified using the partial RTL model.

Very often during the design development cycle, IP
components, nondigital components, and the rest of the
chip logic are designed in parallel. For example, this was
the case with the development of the physical and logical
adaptation layers within the switch. This creates unique
challenges to identify the necessary verification
environments, the appropriate methodology, and the
verification tasks to be covered for each environment.
Also, emphasis must be placed on reusing verification
components for stimuli generation and prediction
checking across the various verification levels.

This paper identifies the verification tasks for ASIC
chips. The overall verification methodology used to verify
the STI switch chip is described, and the various models
and levels of verification are highlighted. A special
modeling of non-cycle-simulation-compliant logic is
addressed. A detailed description of the verification
environments is also provided. Special consideration is
given to a new method developed to verify chip designs
with multiple asynchronous clock domains using a
stress-testing mechanism in a simulation cycle environment.
The verification of the asynchronous interfaces and the
handling of the clocks within a cycle simulator are
discussed.

ASIC verification tasks
The verification tasks of an ASIC design can be divided
into the following subcategories: mainline, error detection,
reporting and recovery, and pervasive verification tasks.

Figure 1

IBM z990 I/O subsystem overview.
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Special focus is required on verifying the asynchronous
interfaces and the design features being influenced by the
frequency variation.

Mainline verification tasks
In transaction-based I/O ASIC chips, mainline verification
is commonly referred to as information packet flow. The
objective is for the interface to provide random biased
stimulus of defined information packets, posted and
nonposted, at both external and internal interfaces, and
predict the appropriate outcome and responses as a result
of the generated stimulus, thereby ensuring the data
integrity and correct behavior of internal registers. Correct
packet conversion, packet routing, packet destinations, and
data payload lengths have to be checked. In addition,
during this verification task, interface protocol checking
must be performed according to the chip interface
specifications. This incorporates packet transmission,
packet acknowledgment, packet timeouts, and correct
handshaking. It incorporates performance verification to
prove the predicted latency and the effective usage of
existing resources. During mainline verification, deadlock
conditions can easily be detected with timeout checking
mechanisms. When a timeout occurs, the chip function has
reached a stalled state, or deadlock, and packet flow stops.
Live-lock conditions, which occur when internal resources
are not freed up, must be monitored in order to detect
design bugs.

Error detection, reporting, and recovery tasks
To verify error detection, reporting, and recovery features
of the design, an error injection mechanism must be in
place to force error scenarios. The objective is to ensure
that the error is recorded correctly. This is accomplished
by introducing internal monitoring mechanisms.
Subsequently, error reporting of the error conditions,
such as interrupts or checkstops, is also verified.
Assertion checking is used to ensure that the error
conditions are properly reported. Depending on the
masking implemented for each error condition, an
error can be classified as a soft error or as a hard error.
The simulation environment integrates a structure to
randomly set the error-masking bits and verify that
each error condition is classified properly. A detailed
description of the error injection and error recovery
functionality and simulation environment to verify
these tasks is outside the scope of this paper.

Pervasive verification tasks
Overall, nonfunctional tasks fall into this category,
including the power-on-reset (POR) sequence, logic built-
in self-test (LBIST), clock generation and distribution,
register accesses with the system clocks running, and
physical link initialization.

The LBIST verification task involves connection
checking between the pseudorandom pattern generator
(PRPG) and the multiple input shift register (MISR) [8].
In addition, LBIST signatures generated from function
simulation test cases must be compared with signatures
generated in the testbench test-pattern generation model.

The physical link interface initialization and calibration
sequence must be followed prior to ASIC link operation.
The simulation environment checks that the proper
initialization sequence is followed and that the required
bit pattern is used to reach the link operational state.
LBIST and physical link initialization tasks are integrated
in overall ASIC POR sequence verification tasks.

In any ASIC device, the phase-locked loop (PLL)
programmability is verified, and the locking functionality
is checked to ensure that accurate clocks are generated
to the various partitions of the chip to reset its logic.
Owing to the multiple clock sections and numerous
configurations, an important task included in the overall
pervasive verification realm is the clock generation and
distribution verification.

Another aspect of pervasive verification is the ability to
access the design internal registers while the system clocks
are running. Basically, various checks are implemented to
verify the read and write accessibility of available internal
registers via the specified service interface. This is done
while other mainline information packet flow is being
exercised. In the process of checking register accessibility,
the actual register functionality is verified to ensure that
the proper operation occurs as a result of setting specific
register bit values.

Asynchronous interface verification tasks
Because of the increasing number of configurations of
the I/O chips and the external interfaces running in a
different, asynchronous clock section, the issue of verifying
the correct function of asynchronous boundaries becomes
a more complex issue. The first problem is to identify the
asynchronous boundaries in a specific design. If special
design rules are applied, a static check can be applied that
the design actually follows the rules of the asynchronous
boundary. This is possible only if the design is newly
developed and is able to follow the given rules. In most
cases either a legacy design or an external intellectual
property is used as the implementation on one side of an
interface that does not follow those rules. This makes the
static verification of the asynchronous boundary impossible,
and requires functional verification.

Design abstraction to perform verification tasks
Typically, separate verification environments and tests are
developed to implement the various verification tasks.
These environments include random biased test-case
generation for mainline verification tasks, deterministic
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tests for error injection, recovery simulation, and pervasive
function verification tasks. This typically limits the
simultaneous execution of the different tasks, and it also
means that the specific tasks can be performed only on
specific abstraction levels of the design. In most cases,
the mainline functional stress tests are performed on an
RTL model to efficiently eliminate the functional bugs.
Gate-level design sources are previously verified or are
integrated in a unit environment as part of the overall
verification effort. Pervasive functions, such as the power-
on-reset sequence, initialization of the chip via the service
interface, and changing the frequency of the clocks, must
be verified on a gate-level model, since it requires all
clocking, scan rings, and test logic connections, which are
introduced as part of the design-for-test process [9]. If the
environments are disjunctive, the sequence to initialize the
chip via the service interface and perform functional stress
tests after the start of the clocks does not validate the
initialization function.

Figure 2 shows the optimum abstract model levels for
performing the specified verification tasks. To fulfill those
requirements, maximize the efficiency, minimize the
turnaround time of hardware bugs, and structure the
verification environment along with the hardware design
development while providing a complete verification, a
multistaged verification methodology has been deployed to
verify the switch chip. This methodology supports partial
chip RTL as well as full gate-level-cycle-based simulation
environments.

Using the same environment for all verification stages
and ensuring that the verification efforts keep pace with
the design development offers the flexibility to reassign
the verification model level to the appropriate verification
task. Also, this provides the capability to stimulate the
service interface while executing regular mainline
functions and in the process exercise multiple logic
functions simultaneously.

Verification methodology
A very efficient methodology is required to minimize
the turnaround time of design bugs, which is a tradeoff
between the amount of resources and development
time. The complexity of the chips requires focused unit
verification for certain partitions, leaving the full chip
to be tested at the higher levels. It is desirable to verify
as much as possible on an RTL using abstract cycle-
simulation models. In addition to the unit- and chip-
verification efforts, the integration of the entire chip was
tested on a subsystem and system level. Legacy chips or
newly developed chips were connected to the STI switch
executing tests in order to uncover potential specification
problems in the implementation of the interface protocols.

Unit simulation
The function of the physical macros is to transmit data
over a cable with a high frequency. The functional
implementation of the physical macros is on the gate level
and has a very well-defined interface. The alignment of
data within a clock cycle and multiplexing data controlled
by wire delays represent logic which cannot be verified
using a cycle simulator, since the abstraction of the model
leads to elimination of all delays other than clocked
latches. Therefore, the physical macros supporting the
mSTI and eSTI protocols were verified in a standalone
testbench using event simulation with the correct timing
information. Slow, nominal, or fast timing information of
the appropriate ASIC technology was loaded into the
event simulator, and link initialization and functional
operations were performed to verify the proper behavior
of the design. Also, a unit-verification environment was
created for the logical eSTI and mSTI macros to ensure
appropriate initial design quality.

Chip-level modeling
Cycle simulation does not allow full timing verification.
However, event simulation with the full signal delay
information usually occurs late in the verification process,
and with the large designs, achieving full timing simulation
is impractical because of performance degradation. This is
overcome by using cycle simulation coupled with the use
of static timing analysis and checking tools such as
EinsTimer* [10], ensuring correct function.

Figure 2

Model requirements vs. verification tasks.
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Typical I/O ASIC designs have multiple clock partitions
that are mostly asynchronous to one another; hence,
special modeling must be applied to reflect an accurate
relationship between the different clock sections and
their numbers of simulator cycles per clock cycle of the
respective domain. Algorithms must be applied to evaluate
logic only in clock sections in which the clock edges
actually occur.

Chip model stages
The logic design used in simulation was modeled under
two main categories— one-cycle and two-cycle models. The
following section describes the model stages used for the
switch chip.

C�� models replaced the hardware design of the
physical macros in the one-cycle logic design model. These
models are referred to as mSTI and eSTI behaviorals in
Figure 3. This allowed the simulation to mimic the actual
mSTI link initialization sequence and information
packet formatting, thus resulting in a shortened
round-trip time for data transfer. Test cases that required
the rigorous examination of packet forwarding between
the STI logical macro and host logic were conducted
under this abridged version of the switch design. A
model implementing the behavior of the universal
service interface (IF behavioral) is used to exercise
base maintenance functions. Each clock domain is
fed by a simulation-only programmable oscillator
macro to allow frequency variation.

The two-cycle model, which is a full representation of
the design of the switch gained from the gate-level netlist,
underwent variations to accommodate pervasive function
testing. This full chip gate-level model (also known as the
two-cycle model), whose characteristics are augmented in
subsequent versions, uses the service interface behavioral
to set up the PLL, LBIST, logic reset, flush reset, and
latch initialization logic. For a complete analysis of end-
to-end data transfer, additional mainline and recovery
testing was performed on the full chip gate-level model
shown in Figure 4. Each instance on an analog PLL was
replaced by simulation-only logic (PLL behavioral) which
was the equivalent of a real PLL in a cycle simulator. The
content of this logic existed as described in [11]. It was
used to verify the surrounding controls of the PLL to
program the clock delay, pulse width, and frequency
of the PLL.

To verify the correct function of the pervasive function
required a multivalue representation of the logic, which
led to the development of a multistate full chip gate-level
cycle-simulation model. Apart from a binary zero or one,
a value “X” can be assigned to every net to indicate not
initialized or don’t care. This first variant deployed an
unknown initialization sequence on the design latches for

additional testing of flush reset. Unlike the full chip gate-
level model, which required a 10% duty cycle for clocks, a
second variant was developed to exhibit a 50% duty cycle
for its clocks. The latter model was used for LBIST and
signature matching verification. Asynchronous boundary
testing utilized a third variant, shown in Figure 5, which
incorporated additional simulation-specific random delay

Figure 3

Core RTL model with explicit clocking of each clock domain.
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Full chip gate-level model.
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macros to provide simulation with programmable delays
at critical asynchronous paths. This third model was
periodically modified as the identification of asynchronous
crossings within the design continued to evolve.

Modeling accurate behavior of non-cycle-simulation-
compliant components for cycle simulation
To enable a design for functional verification, nondigital
design components, which do not naturally behave
correctly in a cycle simulator, must be modified. For
example, physical layers to drive chip interfaces, wire
delays, and specific behaviors of the drivers on the chip
boundary require timing information to reflect accurate
logic behavior. This required timing information can,
however, be modeled and incorporated in a cycle-
simulation model to provide equivalent behavior. The gain
in simulation performance justifies the additional effort to
model this behavior. Special simulation-only logic driven
by the simulator clock, instantiated within the chip, can
provide behavior equivalent to a certain level in a cycle
simulator, which can be used to ensure functional correctness
within its context. However, race conditions, clock jitter,
temperature drift, and skew cannot be reflected in a cycle
simulator to ensure accurate functionality.

The physical macros were incorporated in the two-cycle
model generated from the gate-level netlist of the chip.
Physical macros used unique latches and state machines,
which are based on both the rising edge and falling edge
of the cycle. The complex clock and data paths of the
macro malfunction when they are clocked with 50% duty
cycle clock inputs. In cycle simulation, the input value of
the slave latch is captured if the clock input is accordingly
high. Since the switch chip deals with multiple asynchronous
clock domains, a 50% duty cycle clock, which could be
high for multiple simulation cycles, can cause incorrect
values to be propagated through the latch models; this
happens if data is captured from an asynchronous
boundary which is running at a different clock
frequency. This phenomenon causes two different
data sets to be launched, while the capturing latch
processes both data sets in one clock cycle, creating false
simulation results in the model used. Hence, the edge-
triggered latches had to be altered into a different form
in order to be correctly modeled in a cycle simulator.
An example is illustrated in Figure 6, where the upper
waveform shows the modeling of clocks for edge-triggered
latches as an input to the clock divider, and the middle
waveform the output of the clock divider, which can cause
false simulation results. The waveform at the bottom
represents the result of the modified clock. Furthermore,
logic was added for multiplexors, on which clock inputs
were used as data signals. Figure 7 shows an example in
which a clock was used to output two sets of data at twice
the speed without defining another clock; this is used as a
two-to-one serial converter. For proper behavior, this logic
required alteration in the simulation model, since clocks
on the data inputs cause a delay of one simulation cycle
the output. The delay of one simulation cycle causes the
logic path to capture inaccurate data from the asynchronous

Figure 5

Full RTL chip model with modeling of asynchronous interfaces.
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Fifty percent clock duty cycle altered and divided by 2.
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boundaries. To reach functionality, the clock inputs to
these latches were ensured to be 50% duty cycle and
aligned with altered clocks for latches represented in
Figure 6. The unique clocking structure of the physical
macro required both 50% duty cycle clocks used as data
inputs and altered clocks for conventional clock inputs.

Chip verification methodology and tools
This environment utilizes the C�� language and object-
oriented constructs to implement the expected behavioral.
It also takes advantage of existing simulation libraries
developed in C�� to support biased random stimulus
generation using parameter tables and simulation run
control. The C�� simulation environment interacts with
the cycle simulator, utilizing the function sets provided by
the simulation application interface (SimAPI) [12] to
control the simulation and to access facilities within
the design. For each of the major design interfaces, a
combination of a stimulus generator, interface driver,
and interface monitor represents a behavioral. Internal
facilities are monitored to determine the internal state of
the model and to check the content of internal registers.
Boolean equivalence checking is done on the various stages
and abstraction levels of the design using Verity [13].

Functional coverage
Coverage measurements were obtained with the
implementation of coverage models that collected
occurrences of interesting events, including both successful
events and specific failure events. Two types of coverage
models were implemented. One type focused on detecting
and recording events internal to functional units within
each ASIC. The other type essentially monitored the
ASIC external interfaces for all specified commands and
protocols. For both coverage model types, the collection
of events was processed to provide a picture of the
overall functional verification coverage. The analysis
from the coverage reports provided feedback for test-
case generation and coverage model development
stages. This is an iterative process carried out
throughout the ASIC development.

Functional verification environment
The environment consists of packet generators, drivers,
monitors, result prediction, and checking to verify
mainline, recovery, and error injection. Figure 8 shows
the code structure. The packet generator generates a
variety of information packets and link control words
(LCWs), destined for devices both downstream and
upstream from the switch. This also includes configuration
information packets for internal facilities of the switch, and
broadcast messages containing device status information
such as interrupts. The packet generator can operate in a
deterministic or random mode. Deterministic mode allows

specific definition of stimuli, while random mode utilizes
probability tables to bias random values in information
packets and link control messages. The elements
generated by these tables include information packet
lengths, source/destination ports, different types of
read/write commands, and link control messages indicating
the link state. Error injection is also randomly exercised
by using information from similar probability tables
to generate erroneous stimuli to the chip and also to
misinterpret information transmitted from the chip. This
includes errors such as corrupt bits on the data link and
faults in the decoding/encoding process of bits. The
eSTI/mSTI link drivers stimulate the external mSTI and
eSTI data links with the information generated by the
packet generator based on the STI protocol, whereas
the maintenance and power-on-reset drivers respectively
stimulate the service wire interface and the power-on-reset
state machine to allow access to the internal facilities of
the switch that are required by the service element. On all
mSTI and eSTI links, protocol monitors record incoming
and outgoing packets and perform protocol checking and
report transactions. A device resource monitor is also
present to watch and record any internal changes within
the switch chip.

Figure 8

Switch chip verification code structure.

Configuration/system definition

P
a
c
k
e
t 

g
e
n
e
ra

to
r

fo
r 

m
S

T
I 

li
n
k
s

P
a
c
k
e
t 

g
e
n
e
ra

to
r

fo
r 

m
S

T
I 

li
n
k
s

eSTI/

mSTI

link

driver

mSTI

link

driver

mSTI

link

driver

P
a
c
k
e
t 

g
e
n
e
ra

to
r 

fo
r

e
S

T
I/

m
S

T
I 

li
n
k
s

Device

resource

monitor

eSTI/mSTI

protocol

monitor

mSTI

protocol

monitor

mSTI

protocol

monitor

I/O switch

facility/

resource

manager 

Configuration

system

definition

I/O switch

model

under

verification

Result prediction and comparison

Service

element

interface

mSTI

interface

Maintenance

driver and

power-on-reset

driver

mSTI/

eSTI

interface

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 B. HOPPE ET AL.

467



The checking code illustrated in Figure 9 predicts and
compares all actions performed on the external interfaces
and within the chip. In the checking protocol, outgoing
packets and packets generated as a result of internal
chip changes are referred to as outgoing events. Packets
targeted to a resource within the chip are referred to as
incoming events. There are three main types of checking
code: 1) the packet checker, which decodes, predicts, and
compares all packets targeted to each of the mSTI and
eSTI ports; 2) the internal checker, responsible for
decoding, predicting, and comparing all packets targeted
to internal chip facilities; 3) the operation history register
checker, also in charge of decoding, predicting, and
comparing all traffic (information packets and general
link control messages) that is recorded within the switch.
Reports from the monitors and checkers are used by the
I/O switch facility/resource manager to maintain the device
status database and manage event processing.

Verification of multiple asynchronous clock
frequency domains and interfaces

Clock handling and stress testing across multiple
asynchronous frequency interfaces using a random
cycle simulation environment
As shown in Figure 10, the STI switch chip supports a
layered design structure which integrates multiple clock
frequency domains. The I/O ports and link adaptation
layers (LALs) are configured to operate at various

frequencies. The host adaptation layers (HALs) operate
at slower frequencies relative to the I/O port. The host
logic (HL) contains multiple clock domains as well.

The clock logic within the ASIC chips is verified more
accurately with the use of a full chip gate-level model,
which makes it possible to introduce accurate subcycle
delays in the logic paths. However, the overall simulation
performance associated with these large-size models
considerably limits the number of simulation runs. With
the proper modeling of analog and timing-dependent
components, the use of simulation-cycle-based models can
improve the overall simulation performance considerably.
In this case, an abstraction of the design components is
developed and then integrated with the rest of the ASIC
design to generate an RTL model.

In order to handle the verification of the various clock
domains, the clock behavior is driven from multiple
sources. The source of the clocks differs, whether a single-
cycle simulation environment or a two-cycle simulation
model is being implemented. In a one-cycle model, the
input to the oscillator macro is toggled. The intent is to
verify the clock paths and the clock gating logic within the
chip. The clocking structure logic integrates an on-product
clock generation (OPCG) logic, which is verified as well.
When a two-cycle simulation environment is used, the
clocks are driven by toggling the outputs of the phase-
locked-loop (PLL) logic. This approach provides
simulation coverage of the overall clocking structure on
the chip, including the clock splitters and clock dividers.

Figure 9

Checking structure and result comparison in verification code for the switch chip.
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In this case, the actual clock logic is used to drive the
various clock frequency domains.

Checking mechanisms are implemented as part of the
random environment to ensure that all domains are
clocked at the appropriate frequency so that the overall
clock logic is structured properly.

In a simulation cycle environment, the multiple
frequency clock domains are represented as simulation
cycles per system clock cycle relationships. With the
use of these simulation cycle representations, frequency
stress testing can be performed using a random cycle
environment. This is the basis for the method described
in [14]. The method involves the calculation of multiple
frequency simulation cycles using an automated greatest
common factor (GCF) method; the asynchronous interface
stress testing is then performed by skewing the cycle
relationships using a random cycle simulation
environment.

As shown in Figure 11, a mathematical approach is used
to generate the default discrete simulation cycle (sim cyc)
values in order to represent the different frequency

domains. First, a unit of time must be identified so that
one simulation cycle can be equated to this unit of time.
The unit of time is determined as the GCF between the
various frequency domain values. This can be represented
as follows:

GCF[NorthLAL(0), NorthHAL(0), . . . , HL, ML, . . . ,
NorthLAL (m), NorthHAL(m), SouthLAL(0),
SouthHAL(0), . . . , SouthLAL(n), SouthHAL(n)],

where ML stands for maintenance logic.
Note that for clock domains with decimal frequencies,

the GCF is calculated on the basis of all numerator
values, with the decimal values represented as fractions
(i.e., 0.8 ns � 8/10 ns; factoring the numerator, we have
1, 2, 4, 8). After the GCF between all numerators is
determined, it is divided by 10 to obtain the value
of the unit of time. The default simulation cycles for
each frequency domain can then be calculated using
the formula [domain simulation cycles � (domain
frequency/GCF)]. The GCF value ensures that the most
efficient unit of time (represented in simulation cycles) is
determined. This guarantees that the appropriate default
simulation cycle values are selected to represent the
different clock domains and to provide the most efficient
model performance.

Figure 10

Clock domains of the STI switch chip.
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Flowchart representing frequency default values as simulation cycles.
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The behavior of the clock drivers, internal monitor, and
interface monitor and driver behaviorals is depicted in the
flowchart diagram of Figure 12. The default simulation
cycle relationships are input by each driver or monitor
behavioral corresponding to each frequency domain. The
interface driver and monitor behaviorals make use of the
LAL simulation cycle values. This is true for the north
and south interfaces. The clock drivers and internal
monitor behaviorals use the default LAL, HAL, HL,
and ML simulation cycle values.

If asynchronous stress testing is not required, the one-
cycle random simulation can proceed, with the default
simulation cycle values representing the various frequency
domains. On the other hand, if asynchronous stress testing
is required, the representation of simulation cycles is
varied for each domain. This variation is based on the
design specifications, and it can be varied a certain
percentage above and below the default simulation cycle
value. The minimum variation is one simulation cycle. The
simulation cycle variation is selected at random on a per-
test-case basis. Once the new stress test values are set, the
one-cycle random environment simulation can proceed.

The approach of skewing the starting of the clocks in a
specific domain relative to the clocks in another domain
uncovers potential buffer underrun conditions (i.e., data is
read out of the buffer before it is written). Extreme clock

boundary scenarios can be tested as well. This also introduces
a checking mechanism to ensure that the rising edge of
one clock domain can be captured by the asynchronous
clock of another domain.

Asynchronous interface functional verification
The switch and the bridge chip contain many thousands of
signals that are transmitted from latches that are clocked
with one frequency, are potentially combined through
logic gates with other signals, and are later captured by
latches that are clocked at a different frequency with no
guaranteed phase relationship to the transmitting clock.
These “asynchronous interface crossings” require extreme
care in their modeling and verification, since relevant
timing information is not captured within the event or
cycle simulator models.

This type of clock section crossing is quite distinct from
a second type of crossing that also exists in great numbers
on these chips: synchronous communications between
latches of differing frequency. The macros implementing
the physical layers of eSTI and mSTI employ synchronous
interfaces internally between the custom-designed, very-
high-speed logic that makes up the serial timed interface
and the logic that interfaces with the host using a parallel
port and a much slower frequency of the chips. These
synchronous clock section crossings are correctly modeled
by the cycle simulation models and the static timing
analysis; consequently, they do not require the special
modeling described below for signals crossing asynchronous
clock sections. This section discusses the complexities of the
asynchronous design, and the modeling approach taken to
stress the design.

The first difficulty encountered in modeling the
asynchronous crossings is to identify all signals crossing
an asynchronous boundary requiring special focus in
verification. The switch chip contains legacy macros (both
updated and unaltered), as well as entirely new macros, all
clocked and connected in ways that are different from
previous designs developed for the IBM eServer z900
I/O subsystem. Furthermore, different designers picked
up most of the legacy logic, so having those crossings
identified by the designers is not an option. EinsTimer, a
tool used for static timing calculations, is employed after
setting up the clock transition times in the control files in
a way that enables the identification of all crossings as
highly negative “slack.” Slacklist is a term for the output
of a static timing tool. The slacklist lists the elements in a
path from the launching latch to the capturing latch, with
all gates in between. A slacklist shows the signal arrival
time and the timing slack at every point along each path.
The timing slack is the difference between the time when
the signal arrives and the time when it would be required
to arrive in order to barely meet the timing requirement
at the end of all paths it feeds. (An example timing

Figure 12
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requirement is that a signal must arrive before the falling
clock at the capturing latch.)

Another configuration of the timing tool entirely
prevents timing of paths between latches that are clocked
from the same oscillator source. This produced large
slacklists containing only those paths that were launched
by a latch in a clock section that was asynchronous to the
receiving latch. Studying the paths and their structures
resulted in identification of logical signals to be considered
as the “crossing point” for each path, and created a timing
“cut point” at that signal. (A crossing point is a point
conveniently chosen in the logic path that a signal
traverses when it has been launched by a latch clocked
by one frequency and captured by a latch clocked with
another frequency. For the simplest and most common
case, this is simply a wire or buffer between the two
latches. In more general cases, it could be a point in the
path after logic has combined a small set of signals which
share the same launching clock frequency and are being
combined before being captured by a latch with another
clock frequency. A cut point is a control command which
instructs the timing tool that this path should not be
timed. That is, no signal arrival time is carried through
the cut point, and therefore paths crossing this point
do not have negative slacks.) After this effort was
completed, a slacklist with no negative slacks and a
list of cut points for every asynchronous crossing
signal on the chip were available.

The list of asynchronous crossing signals serves as the
input for creating a simulation model that stresses the
asynchronous crossings. A simple logic model for a signal
delay randomizing function (SDRF) is shown in Figure 13.
The logic has an input, a random number generator, and a
switch controlled by the least significant bit of the random
number. The switch selects the input signal or the output
of a latched version of the signal with one cycle of delay.
The only output of this logic is the output of the switch. A
script loads the logic design file of the chip. Using the cut-
point list that contains all of the crossings, the script cuts
out each of the asynchronous crossings one by one and
reconnects each cut pair with a customized copy of the
SDRF element. The script writes the resulting altered
chip logic to a file, which is used as an input to the cycle
simulator.

The cycle simulation test suite is run on this altered
model containing the randomized crossing delays. We find
that many asynchronous crossings were designed in such a
way that they can tolerate this level of randomization. For
those that can tolerate it, we consider the signals to have
successfully passed the verification criteria at this point in
the process. However, experience shows that this method
is overly pessimistic, and some of our crossings have failed
because of this unrealistic pessimism. The pessimism
springs from the act of determining a new random delay

for a signal every cycle. A signal can experience a delay
of one cycle on the crossing during a given cycle, and
then may have no delay the very next cycle. In effect, this
shortens a signal by one cycle. Some of the crossings were
designed to guarantee delivery of a single cycle pulse
regardless of the clock alignment, by relying on edge
detection to transmit the signal. For that type of design
approach, the shortening of a signal could make the signal
disappear completely. After a thorough review of such an
edge-detection crossing design indicating that the design
is sound, a second type of randomizing algorithm for the
crossings that used this design has been created. The
delay value of every such crossing signal is randomized
once at the start of every test case, and the random delay
selection remains unchanged throughout the execution
of that test case. Over time, this allows a rich set of
combinations of delays across the different crossing
signals, since the test-case suite is regressed repeatedly on
a daily basis. This is still pessimistic, since it assumes that
any signal crossing can pass or fall behind any other signal
crossing, because the randomizer sets the delay of all
crossings. It turns out that the asynchronous designs
implemented on the switch chip can tolerate this
pessimism, so the logic does not require any change.

One unexpected benefit from implementing this
particular verification process was that the portion that
identified the crossings could be done very early, because
of the simplicity of setting up the timing analysis tool
to produce the slacklists. The manual steps involved in
selecting the best crossing cut points required designers to
review each crossing individually. The slacklists showed
the tree structure of the path. This has been shown to be
a good method for allowing designers not familiar with the
legacy logic to become familiar with the crossing design
techniques and to discover unintentional crossings and
crossing design mistakes very early. Many problems were
discovered early in the design cycle, well before the
asynchronous model was built, and this proved very

Figure 13
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valuable in the intense period leading up to the final
verification and release of the design to manufacturing.

Summary and concluding remarks
The key to first-time success of the overall verification
effort of the switch chip was appropriate planning.
Identifying the tasks and incorporating error injection and
pervasive verification up front, as well as designing the
verification environment to enable exercising and checking
all of these functions on the appropriate level, allowed
limitations to be discovered before the critical phase
of the hardware verification. The flexibility to switch
hardware abstraction levels between RTL and gate level
for specific verification tasks using the same environment
enabled the team to provide early feedback to the
designer and permitted the full chip design to be tested
as it became available. Enabling the design for cycle
simulation by applying special implementation techniques
of non-cycle-simulation-compliant logic provided the
ability to exercise all functionality on a full chip using
the same simulator maintaining a high simulation
performance. This must be accompanied by an event
simulation of the components using those non-cycle-
simulation-compliant macros on a unit level. Since this
happens on smaller design pieces, it is a negligible effort
compared with verification of the complete logic of the
chip in an event simulation environment. The use of cycle
simulation on the full chip provides a tremendous performance
improvement. However, full automation of the process in
converting components containing non-cycle-simulation-
compliant logic requires additional effort and is not
possible at this time.

Functional coverage was an integral part of the
verification process, ensuring high quality of the design
to be released to manufacturing. The implementation of
coverage models provided a high level of confidence upon
completion of the verification efforts and helped quantify
the stress on the logic designs.

The asynchronous interface verification techniques
described in this paper were critical to the success of
bringing up the real hardware. Varying the frequencies
of the asynchronous clock domains early on the RTL
model allowed the verification of critical design function,
which was related to the frequency. Verification of the
functionality of the asynchronous interfaces themselves
involved the use of a timing tool to identify the
asynchronous crossings, and the insertion of special timing
delay logic at the identified crossings. This logic generates
a random delay at the asynchronous interfaces, thus
emulating real behavior using the random cycle simulation
environment. These techniques for verifying the function
of asynchronous interfaces in the specified frequencies
proved to be a success when the prototypes were tested in
a real machine. All asynchronous crossings operated as

intended. These techniques can generally be applied to
verify all ASIC chips with asynchronous boundaries.

*Trademark or registered trademark of International Business
Machines Corporation.
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