
The IBM eServer
z990 floating-
point unit

G. Gerwig
H. Wetter

E. M. Schwarz
J. Haess

C. A. Krygowski
B. M. Fleischer

M. KroenerThe floating-point unit (FPU) of the IBM z990 eServer� is
the first one in an IBM mainframe with a fused multiply-add
dataflow. It also represents the first time that an SRT divide
algorithm (named after Sweeney, Robertson, and Tocher, who
independently proposed the algorithm) was used in an IBM
mainframe. The FPU supports dual architectures: the zSeries�
hexadecimal floating-point architecture and the IEEE 754
binary floating-point architecture. Six floating-point formats—
including short, long, and extended operands—are supported
in hardware. The throughput of this FPU is one multiply-
add operation per cycle. The instructions are executed in five
pipeline steps, and there are multiple provisions to avoid stalls
in case of data dependencies. It is able to handle denormalized
input operands and denormalized results without a stall
(except for architectural program exceptions). It has a new
extended-precision divide and square-root dataflow. This
dataflow uses a radix-4 SRT algorithm (radix-2 for square
root) and is able to handle divides and square-root operations
in multiple floating-point and fixed-point formats. For fixed-
point divisions, a new mechanism improves the performance
by using an algorithm with which the number of divide
iterations depends on the effective number of quotient bits.

Introduction
This paper describes the floating-point unit (FPU) of the
IBM z990 eServer* [1], a high-performance microprocessor
optimized for commercial workloads. The FPU supports
two architectures: binary floating-point (BFP) compliant
with the IEEE 754 Standard [2] and hexadecimal floating-
point (HFP) as specified by the IBM z/Architecture* [3].
There are six floating-point formats and six integer
formats supported: short, long, and extended formats for
the two architectures, as shown in Figure 1. (In the IBM
PowerPC Architecture*, these formats are called single,
double, and quad.)

In zSeries* microprocessors, extended-precision
operations are implemented in hardware. This includes
support for both HFP and BFP architectures and integer
operands.

The z990 FPU had a variety of predecessors: the 1996
G3 FPU [4], the 1997 G4 FPU [5, 6], the 1998 G5 FPU
[7, 8], the 1999 G6 FPU, and the 2000 z900 FPU [9].
Compared with them, the main z990 FPU goals were

to optimize for BFP and have a fast multiply-add execution
in order to support the increase in new zSeries workloads,
particularly those utilizing Linux**. These applications are
typically written in Java** or C�� and depend on BFP
architecture even in commercial applications. The G5, G6,
and z900 FPUs support BFP and HFP, but do not have a
one-per-cycle throughput for BFP instructions. They have
been in the field for five years, and customers are now
heavily using BFP, so it was important to set a goal
of improving BFP performance while emphasizing
HFP performance. The goal was also to create a high-
performance implementation, more like the IBM pSeries*
workstations, which requires a dataflow that supports a
fused multiply-add execution. This allows a theoretical
peak performance of two floating-point operations per
cycle. More details about this and a comparison with the
POWER4* processor design can be found in [10].

For the divide implementation, we also looked at the
zSeries predecessors and the POWER4 design. They
all use a multiplicative divide algorithm, such as a

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

311

Goldschmidt or Newton–Raphson algorithm. Alternatives
for the divide algorithm were investigated in the light of
our goals to optimize the main dataflow and have a tighter
cycle. We therefore looked at an SRT divide algorithm. It
was named SRT after Sweeney, Robertson, and Tocher,
who proposed it independently [11, 12]. The SRT divide
algorithm has the following advantages and disadvantages
for the z990 design:

1. The SRT divide hardware can be placed to the side to
allow the optimization of the main dataflow for a fast
fused-multiply-add implementation.

2. It can be made wide to allow extended operands,
something that is not possible with a multiplicative
algorithm, which is limited because of the width of the
main multiplier.

3. It requires somewhat more area.
4. When no divide instruction is running, the clock of an

SRT divide hardware can easily be switched off to save
power.

5. The performance is better for instructions with a short

operand format, since we gain two quotient bits per
cycle.

6. The performance is worse for floating-point instructions
with a long format.

7. The performance of integer divides can be improved,
since we use a method to iterate on only the effective
number of the quotient bits. This is based on the effect,
according to our benchmarks, that most integer division
results are only small numbers.

8. The rounding is simpler, since the partial remainder is
always exact and therefore no back-multiplication is
necessary.

9. The performance is better for instructions with
extended format.

After consideration of these arguments, we decided
upon the SRT implementation.

BFP and HFP architecture in one dataflow
Both the HFP and BFP architectures are already
implemented in hardware in the 1998 IBM zSeries G5

Figure 1

Data formats supported by the floating-point unit (FPU).

Hex floating-point data formats

Short, 32 bits

Short, 32 bits

Long, 64 bits

Long, 64 bits

Extended, 128 bits

Extended, 128 bits

0

0

1

1

0 1

0

0

0

0

0

0

1

1

1

1

1

1

8 31

8 63

8 127

Char

Char

Char

Fraction 6 digits

Fraction 14 digits

High fraction 14 digits

63 7265

S

S

S S Char Low fraction 14 digits

Binary floating-point data formats

127

Char

Char

Fraction 23 bits

Fraction 52 bits

Fraction 112 bits

(�1)S • 16(char � 64) • 0. fraction

(�1)S • 2 (char � bias) • 1. fraction

Short bias � 127 (single precision)

Long bias � 1023 (double precision)

Extended bias � 16383 (quad precision)

S

S

S

12

16

Signed integer data formats and unsigned (S is most significant numeric bit) integer data formats

S

S

31

63

Numeric bits

Numeric bits

9

32 bits

64 bits

31

63

Char � characteristic

Bias � 64 (for all formats)

63

127

128 bits

S

Char

Numeric bits

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

312

processor [7], but a hexadecimal dataflow is used. This
requires binary operands to be converted to hexadecimal
operands, creating an extra step. The HFP instructions are
capable of performing one add or one multiply per cycle
with a latency of about three cycles. The BFP instructions
can be pipelined only at a rate of one instruction every
other cycle because an extra cycle is necessary to convert
between BFP and HFP.

The way of handling two formats in the same unit is to
use an internal format that has a wider exponent and
can include both formats. One problem is the different
form of the bias. The exponent bias [13] in the HFP
architecture is of the form 2n�1, and in the BFP the
architecture is of the form (2n�1 � 1). The direct
conversion requires the shifting of significands and the
adding of constants to the exponents. The solution is
an extended internal format with a separate internal
representation for BFP and HFP:

XBFP i
� ��1� XS � �1 � Xf� � 2 Xe�biasBi,

biasBi i
� 2 n�1

� 1 � 32767,

XHFP i
� ��1� XS � Xf � 2 Xe�biasHi,

biasHi i
� 2 n�1

� 32768.

With that conversion, cycles that were necessary in the
previous design can be avoided. More details about the
two formats can be found in [10].

Dataflow overview and resolving of data
dependencies
Figure 2 shows the pipeline-oriented structure of the FPU.
The real execution cycles are E1, E2, E3, E4, and E5. In
the E minus 1 (E–1) cycle, the instruction itself is
decoded; in E0, a memory operand arrives and the
floating-point register file (FPR) can be read out.

Figure 2

Main fraction dataflow of the FPU with feedback paths.

57
556

56

60 116

116 7

116

64

116

E�1

E0

E1

E2

E3

E4

E5

E6
FPU_RESULT

Rotate Round

Normalize

NORM_OUT

HIS reg

INCR

ADD out LZC

SUM reg CARRY reg

Main adder with precounting TRUE/

CMPL

CSA stage regC2 reg

DIVIDE

SQRT

LZD

TZD

NAN reg

FPU C reg FPU A reg FPU B reg

Booth decode

FETCH_BUS

CSA 30:8 4 stages 3:2 counter

CSA 8:2 4 stages

CSA 3:2 1 stage

Align

Floating-point registers 25 � 64 3R1W

(16 arch regs plus 4 work regs plus...

Result

...5 LWRs)

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

313

The main actions for these pipeline stages [10] are as
follows:

E0 Load cycle.
E1 Calculate shift amount for alignment, Booth

encoding, and first multiplier tree.
E2 Align addend and second multiplier tree.
E3 Main addition and counting of leading zeros (LZC).
E4 Normalization.
E5 Rounding.
E6 Write back.

When there is no dependency of operands between the
instructions, a different instruction can be under execution
in every pipeline stage at the same time. However, in
some cases an instruction may require the result of a
previous instruction as a source operand. In that case, the
instruction has to wait in the E0 cycle until all source
operands are available. To avoid such stalls— or at least to
minimize the number of wait cycles—the feedback paths,
shown in red in Figure 2, are designed into the fraction
dataflow. Thus, for certain arithmetic instructions, a result
of the normalizer can be forwarded directly into the A, B,
or C source registers. Others may be forwarded out of the
Rounder. The forwarding out of the Result register is
possible in nearly every case.

The dependency of an instruction on previous loads is
resolved by using the five Load-Wrap registers (LWRs).
This register stack is part of the register file on the top,
which contains the 16 architectured FPRs, four Work
registers, and the five LWRs. All Load operands are
staged through these LWRs. They can be addressed and
read out like any other FPR, so for an actual instruction
in E0, it is only a question of address modification to fetch
the operands of previous load instructions. With this
implementation, waits caused by Load instructions can
be avoided.

Handling of denormalized inputs
Our architecture includes two types of instruction formats
that are executed directly with memory operands: RX and
RR. The RX type of instruction operates on one register
operand and one storage operand, while the RR type of
instruction operates on two register operands [13]. This is
different from the IBM PowerPC Architecture, in which
only loads can fetch memory operands. The advantage
of RX instructions is that with one instruction, two
operations can be executed at one time, a load and an
arithmetic operation. It is the nature of such instructions
that the memory operand arrives late at the execution
unit, and there is no format conversion beforehand.

In the PowerPC Architecture, only RR instructions are
possible, which allows the addition of tags to the operands
in the register files, making it possible to recognize
denormalized numbers. Such a tagging is not possible

on the zSeries Architecture. Therefore, the detection of
denormalized numbers must be integrated in the first
execution cycle, which requires some additional effort in
the multiplier and the aligner logic.

Multiplier with correction for denormalized
operands
The multiplier is needed in a 56 � 56-bit width, which is
required by the fraction width of the HFP long operands.
This requires 29 partial products when using a radix-4
Booth encoding, which requires a counter tree of eight
levels. To that, an extra correction term can be added
without significantly increasing the delay.

At the beginning of the first execution cycle, it is
assumed that all BFP operands are normalized and the
implied unit bit has the value “1”. When it is recognized
that this assumption is not true, the correction is
performed until the end of this first execution cycle.

The multiplier can be corrected by modifying a
Booth term directly and feeding that term late into the
counter tree. The correction of the multiplicand is more
complicated and requires an additional correction term.
When the exponent of the multiplicand is decoded during
the cycle and a denormalized operand is detected, the
implied unit bit of the multiplicand can be corrected when
the correction term is a late entry in the counter tree.

The product P out of the multiplier Y and the
multiplicand X is identical to the product out of the
Booth term Wj as representation for the multiplier and
the multiplicand X�, when the correction term lzcl
[14, 15] is subtracted, as shown below:

X � x0 � �
i�1

n�1

xi � 2 �i,

Y � y0 � �
j�1

n�1

yj � 2 �j,

Y � �
j�1

n�1
2 �1

Wj � 4 �j,

Wj � ��2, �1, 0, �1, �2	 ,

P � �
j�1

n�1
2 �1

Wj � X � 4 �j,

X� � x1 � �
i�1

n�1

xi � 2 �i,

X � X� � x0 ,

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

314

P � �
j�1

n�1
2 �1

Wj � X� � 4 �j
� Y � x0 ,

lzcl � �Y � x0 .

Aligner with correction for denormalized operands
The addend is shifted right according to the calculated
shift amount D. It is simple to correct the implied unit bit
of the addend directly, but the shift amount must also be
corrected. To do this, the shift amount is calculated for
the exponent difference D � 1 and D � 1 additionally and
selected on a late multiplexer in the cycle, after the
decoding for denormalized operands has been done.

With that, denormalized input operands can be handled
without stalling the pipeline. More details about calculating
the shift amount and alignment limitations can be found
in [10].

Handling of denormalized results and limitations
The dataflow width is limited to an addend of 56 bits plus
four guard bits and a product field, which is aligned with
the adder of 112 bits and four guard bits for a total
of a 176-bit-wide dataflow. There are certain cases of
unnormalized and denormalized addends or products
that require sophisticated handling in the hardware.

With regard to the alignment of the addend with the
product, the radix point of the product is fixed in the
dataflow. The radix point of the addend is shifted right to
achieve the proper fraction alignment prior to the addition
of the two. For HFP arithmetic, the radix point is always
left of a field, while for BFP arithmetic, the radix points
of the dataflow are partitioned as follows:

After alignment and main addition, there is a data
width of 176 bits with two possible radix points for BFP
operations, as shown below:

�Addend field �Product field �
�
–––– 60 bits–––� �
–– 116 bits –––––––––��
�1.cccc ...cGGGGGGG�xx.pppp......pGGGGGGGGGG�
^ ^

� Radix1 � Radix2

Some extra guard bits G are appended to the fraction
bits c of the addend and to the fraction bits p of the
product.

In general, Radix1, which corresponds to the exponent
of the addend Ec, is taken when the addend is greater
than the product. This leads to a shift right of 60 bits
before normalization. Accordingly, Radix2, which
corresponds to the exponent of the product Ep, is
taken when the addend is smaller than the product.

The normalization uses the precise leading zero count,
LZC, to normalize the fraction and to calculate the
normalized exponent En � Ep � LZC.

When a denormalized result is required (while
underflow exceptions are masked), there is the potential
possibility that En
 Emin. This is a problem because
En
 Emin is not allowed by the BFP architecture.

To avoid this, a mask is used in the leading zero
count logic to allow limiting the leading zero count,
LZCmax � Ep � Emin. This takes effect when En is
in the range of Emin but still somewhat greater.

In one case, when an underflow exception will occur
anyway (architectural exception), the dataflow is unable to
deliver the correct denormalized result. This occurs when
the addend is denormalized, the product is denormalized,
and the underflow exception is not masked.

The dataflow is then disjointed and cannot generate the
correct normalized result with a wrapped exponent. The
solution is to generate a pseudo-exception by hardware
and have it corrected by a routine in the millicode
exception handler. Since we have an underflow condition
that is not masked, this case will end in an architectural
exception anyway, so there is no real performance
degradation. For more details, see [10].

Rounding of different formats
Most schemes for rounding according to the IEEE
754 standard show a guard, a round, and a sticky bit.
In our implementation, we have a precise normalized
result; therefore, no additional guard bit is required. The
rounding depends only on the least significant bit (LSB),
the round bit, and a sticky bit.

Since we have three different BFP formats, we are
limited by the widest format, which is the extended format
with a mantissa of 113 bits. For the smaller formats (short
and long), we also need the appropriate round bit and a
sticky bit, which consists of a merge of the remaining bits
on the low-order side of the mantissa.

With this and the actual rounding mode, we can
determine via a rounding table which part of the fraction
should be used incremented and which part should be
taken as is for the rounded result. The LSBs of the
fraction are needed for the rounding mode round to
nearest. Figure 3 shows how the rounder dataflow is
implemented in an aggressive cycle time.

Division and square root
The architecture requires an operand width of up to 116
bits for floating-point operands of divide and square-
root mantissas. An extra-wide (116-bit) divider dataflow
permits that calculation to be performed in hardware. An
SRT algorithm is used to gain two Bits of the quotient for
divide operations and one bit of the root for a square-root
operation in one iteration (one cycle).

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

315

A wide variety of different divide and square-root
instructions and formats are supported. In addition to the
six floating-point formats, there are also integer formats
for divide instructions with an operand width of 32, 64,
or 128. These binary integer operands may be signed or
unsigned. In an unsigned operand, all bits are used to
express the absolute value of the number, while for signed
binary integers, the leftmost bit represents the sign,
followed by the numeric field. Negative numbers are
represented in two�s-complement binary notation with
a one in the sign-bit position [13].

SRT algorithm for division
SRT is frequently used in modern designs to implement
divide and square root. It is an iterative algorithm, and
one digit of the quotient can be determined in each
iteration. During each iteration, the next partial remainder
is calculated by multiplying the previous partial remainder
with the radix of the algorithm and subtracting a multiple
of the divisor. One divide iteration can be expressed as

Pi�1 � r � Pi � qi�1 � D,

where P represents the partial remainder, q represents the
quotient digit guess, D is the divisor, and r the radix of the
algorithm. The final quotient is the weighted sum of all
quotient digits.

Algorithm for square root
For the square-root operation, the root is both the
quotient and the divisor when the divide nomenclature is
applied to that operation. Since the root (divisor) is only
partly available, the equation for the iteration is slightly
more complicated,

Pi�1 � r � Pi � qi�1 � 2Qi � qi�1
2 r ��i�1�,

where P represents the partial remainder, q represents the
root digit guess, Q is the actual developed root, and r is
the radix of the algorithm. The final root is the weighted
sum of all root digits.

Implementation of the algorithms
Since the value for the actual quotient digit qi�1 is
estimated, the partial remainder Pi�1 can be negative. This
can be compensated by also allowing negative values for
qi�1. Allowing negative values for qi�1 makes it possible
to correct errors of the actual partial remainder in later
iterations. The algorithm for division is convergent as long
as the relation Pi�1
 (qmax � D)/(r � 1) is met. The visual
representation of this equation can be shown in a so-called
P–D plot. The ranges of qi�1 can be seen in Figure 4.

In our implementation for division, a radix of 4 is used
with a maximally redundant digit set [16, 17]. This reduces
the cost of the quotient estimate table lookup at the
expense of an increase of the range of quotient digits.
Because of the short cycle time, a full-width carry-
propagate adder (CPA) would not fit into the required
cycle time. Therefore, carry-save adders (CSAs) are
used, which is possible when the partial remainder is not
explicit, but in a carry-save redundant form. The effort for
this has been reduced by using only one carry bit for every
four sum bits.

With the sum and carry parts of the partial remainder
and a radix of 4, the equation of one divide iteration looks
like this:

Pi�1 � PS i�1
� PCi�1

,

PS i�1
� PC i�1

� 4�PS i
� PC i

� � qi�1 � D,

qi�1 � ��3, �2, �1, 0, �1, �2, �3	,

qi�1 � qi�1,1 � qi�1,2 ,

PSi�1
� PC i�1

� 4�PS i
� PC i

� � qi�1,1 � 1D � qi�1,2 � 2D,

where PS and PC are the partial remainder in a sum-and-
carry redundant form and qi�1,1 and qi�1,2 are the quotient
digit guesses separated into a guess of 1 and a guess of 2,
where each can take on the values �1, 0, or �1.

For a square root, the radix is 2 (r � 2), and the partial
remainder and the developed root are in a redundant
form, which leads to

Pi�1 � PS i�1
� PC i�1

,

Qi � QP i
� QN i

,

PS i�1
� PC i�1

� 2�PS i
� PC i

� � qi�1 � 2QP i
� qi�1 � 2QN i

� qi�1
2

� r ��i�1�,

qi�1 � ��1, 0, �1	 .

Structure of the fraction rounder.

Figure 3

Normalized result fraction

(including extended round bit)

INC INC INC

(53:112)

Mux MuxMux

113

Round bits (24, 53, 113)

LSBs (23, 52, 112)

cy cycy

Rounding

table

(0:23)

Rounding

mode

Stickies

114

24 29 60

(24:52)

Rounded result fraction

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

316

The term qi�1
2

� 2�(i�1) is always a single bit in the lowest
significant position. Therefore it can be handled as carry in
to the subtractor.

Figure 5 shows the main elements of the fraction
dataflow for divide and square root. The black entries are
needed for the divide function, while the red entries are
the additions needed for square root. It can be seen that
the dataflow structures for divide and square root are very
similar in this approach; it is a very effective way to add a
square-root function to a divide implementation with very
little additional hardware.

Divisor register
This is a simple register with the maximum width of 113
bits for a BFP extended-precision operand. The divisor is
constant during the divide iterations.

Table lookup
Only a very small amount of combinatorial logic is needed
to implement this function. For the divide operation, it
has the five most significant bits of the partial remainder
and the two most significant bits of the divisor as input.
The output consists of three bits, the sign of the quotient
digit, and two bits for the value of the quotient digit.

For square root, the table function is even simpler.
It requires only the three most significant bits of the
partial remainder as input. As output, two bits would be
sufficient, a sign bit and a value bit. Since the table is
merged for the divide and the square-root function,
the value is expressed there in two bits as well.

Figure 4 is a combination of a P–D plot and the actual
implemented lookup table. It illustrates the shifted partial
remainder ranges in which a quotient digit can be selected

Figure 4

Lookup table for divide and square root.

dc

dc dc dc

dcdcdc

dc

dc

dcdc

dc

dc

dcdc

dc dc dc

dcdcdc

�3

dc

dc

dc

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3 �3

�3 �3

�3

�3

�3

�3

�3

�2

�2

�2

�2

�2 �2 �2

�2�2

�2 �2

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1�1

�1 �1 �1 �1

�1�1�1�1

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�3

�3

�3

�3

�3

�3

�3�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

�3

0

0

0

0

0

0

 0

 0

 0

0

0

0

4 Pi

D

0111.1

0111.0

0110.1

0110.0

0101.1

0101.0

0100.1

0100.0

0011.1

0011.0

0010.1

0010.0

0001.1

0001.0

0000.1

0000.0

1111.1

1111.0

1110.1

1110.0

1101.1

1101.0

1100.1

1100.0

1011.1

1011.0

1010.1

1010.0

1001.1

1001.0

1000.1

1000.0

1.00 1.111.101.01

0

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

0

�1

0

0

0

0

�1

1

�1

�1

�1

�1

0

0

0

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

0

�1

0

0

0

0

�1

�1

�1

�1

�1

�1

0

0

0

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

 0

�1

 0

 0

0

0

�1

�1

�1

�1

�1

�1

0

0

0

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

�1

0

�1

0

0

0

0

�1

�1

�1

�1

�1

�1

0

0

0

�3, �2, �1, 0

�1, �2, �3 :

Divide table

(left entries in black)

�1, 0, +1 :

Square root table

(right entries in red)

qi�1
 � �3

qi�1
 � �2

qi�1
 � �1

qi�1
 � �1

qi�1
 � �2

qi�1
 � �3

qi�1
 � 0

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

317

without violating the bounds on the next partial
remainder. It can be seen that the table is asymmetric
with respect to �/� values because the partial remainder
has a redundant form which causes an additional error.
Because of this, the high-order bits of the partial
remainder can be too small (by one bit in the lowest
position), but can never be too large.

Generation of subtracting values
The estimated quotient digit determines the required
multiples of the divisor that have to be subtracted during
the actual iteration. Before selecting the multiples of one
or two, the divisor is inverted, depending on the sign bit
of the partial remainder. When the partial remainder is
negative, we have to add divisor multiples; when it is
positive, we have to subtract. The qi�1,1 term represents
divisor multiples of 1, and the qi�1,2 term represents divisor
multiples of 2. For square root, the same invert and
multiplex logic can be used, but a previous multiplexer
must select between the divisor (divide) and root (square
root).

Partial remainder register and subtractor
The two selected multiples of the divisor (or of the root
for square root) and the shifted contents of the actual
partial remainder are added together, and the result is
then latched into the partial remainder register. The 116-
bit width of this register is required by the HFP extended
format, including one hexadecimal guard digit. The

register consists of a sum part of 116 bits and a carry part
of 28 bits. The six high-order sum bits must be explicit
without a corresponding carry because they are used in
the table lookup. The most significant carry bit starts at
position 6, and only every fourth carry bit is stored. This
is possible because the subtractor does not use a full 4:2
reduction, but instead uses one stage of 3:2 reduction
(CSAs) and one stage of CPAs with a width of four bits.
On the high-order side, one CPA with a six-bit width is
needed to deliver an explicit value to the table.

These four-bit-wide CPAs in the low-order range save
latches, area, and power, and do not cost cycle time, since
the six-bit CPA is needed anyway in the high-order range.

Quotient or root register
The quotient register requires the same width as the
partial remainder (116 bits) and consists of two parts:
the Qpos and the Qneg registers. When the sign of qi�1 is
positive, it is stored in Qpos; otherwise, it is stored in Qneg.
The control logic delivers a pointer that defines the
position of the quotient register in which the actual qi�1

has to be stored. Typically, this is the output of a counter
within the control logic. The final quotient or root is built
after the last iteration by adding these two parts in the
main adder of the FPU.

Execution and performance of floating-point divides
Before the divide operation can start, the operands must
be loaded into the dividend and divisor registers. When an
operand is denormalized, a normalization in the main
dataflow is needed in advance. The required number of
divide iterations depends on the data format (short, long,
or extended). After the divider has completed enough
iterations, the sum and carry parts of the remainder and
the quotient are moved out into the main dataflow before
the main adder. There, they are added to obtain the
explicit value of remainder and quotient. The raw quotient
still may have a leading zero, which is removed by
normalization. The BFP quotient additionally requires
rounding. For this, the normalizer and rounder of the
main FPU dataflow are used. Table 1 shows the cycles
required for execution of IEEE floating-point divide
instructions.

Execution and performance of integer divides
In classical benchmarks for mainframes, the results of
integer divide operations are often very small numbers.
Since the result width of an integer operand is fixed for a
certain instruction, this means that in most cases the result
contains many leading zeros, so there is a potential to
improve performance when the calculation of small
numbers would be faster.

Previous divide implementations are oriented to the
maximum width of a divide result and always require the

Dataflow structure for divide and square root.

Figure 5

Divisor

Partial remainder

(Dividend)

28

116116

116

116QPOS

QNEG

Quotient

Invert/

select

Invert/

select

SQRT

table

(�1, 0, �1)

ADD / SUBTRACT

25

CPA 6 CSA 110

DIVIDE

table

(�3, �2, �1, 0,

�1, �2, �3)

3

MUX MUX

/ Root

SL1

(*2)

3

SL2

SL1

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

318

same (maximum required) number of iterations to
calculate the result. With our implementation, the number
of divide iterations depends purely on the effective number
of quotient bits. We skip the calculation of the leading zeros,
which considerably improves the performance of integer
divides (Table 2).

Integer operands must be positive and normalized for
our divide calculation, which is done by a loop through
the main dataflow. Afterward, the operands are loaded
into the dividend and divisor registers, in the same way
as for floating-point operands, but they are handled
differently when the estimated qi�1 is stored in the
quotient registers. A start pointer and a stop pointer are
calculated by control and applied to the quotient register,
allowing the execution of only the real required iterations.

The number of effective bits nQ in the quotient can be
calculated in advance, when the effective bits nV and nQ of
the dividend and the divisor are known. These values are
calculated during the normalization process. For a 64-bit
integer division, the following equations are valid:

nQ0 � nV � nD for Vnorm � Dnorm

and

n1 � nV � nD � 1 for Vnorm � Dnorm.

Since we gain two bits per cycle, the number of effective
quotient bits nQe must be rounded up to the next even
number. The start pointer PStart and the stop pointer PStop

for a 64-bit integer divide are given by

PStart � 64 � nQe

and

PStop � 64.

Physical implementation
The FPU occupies an area of 3.76 mm2, and the divide
dataflow requires an area of 0.22 mm2, which is about 6%
of the FPU. This is still an acceptable part for a divide
implementation, even though a multiplicative divided
implementation might be somewhat smaller. The chip is
fabricated in IBM 0.13-�m CMOS SOI technology, with a
power supply of 1.15 V and a temperature of 50�C, and it
supports a clock frequency of 1.2 GHz.

In the left-hand area of the layout shown in Figure 6,
the fraction dataflow can be seen. This fraction dataflow
is implemented in a bit-stack approach. The A, B, and C
registers have a width of 56 bits. The bit stack is widened
on the alignment and multiplication to 116 bits. The
adder, normalizer, and rounder are also 116 bits wide.
The normalizer is located on the bottom.

The layout follows the pipeline-oriented figure of
the main fraction dataflow, but the pipeline stages are
interleaved and folded here. Thus, the rounder is above

the multiplier, since it has connections to the normalizer
as well as to the FPRs, which are at the top of the layout.
The exponent stack is located to the right of the A, B, and
C registers.

On the right-hand side are the synthesized control-logic
macros. A macro is a part of hardware that is logically and
physically designed to be independent of other macros.
For each execution pipeline stage, there is one separate
control macro. The divider is implemented in a
stack approach as well, whereby the divide table is
combinatorial logic which occupies a very small area
on the left-hand side of the divider macro. Since the
interconnection of the divide engine with the main
fraction dataflow is not timing-critical, this can be located
away from the main dataflow. In this case, it is in the
upper right corner of the layout.

The divider macro is completely designed in standard
inverting CMOS logic. Although it has been implemented
as a full custom macro, extensive use has been made of a
standard cell library in order to minimize the layout effort.

As a power-saving feature, most parts of the FPU can
be turned off completely when not in use. For enhanced
testability, each of the master–slave latches is accompanied
by an additional scan latch. Adding this extra scan latch to

Table 1 Cycles required for execution of IEEE floating-
point divide instructions.

Action Cycles

Short
format

Long
format

Extended
format

Load operands 3 3 15
Divide loops 14 28 58
Readout remainder/quotient 4 4 4
Calculate quotient 1 1 1
Normalize 1 1 1
Round 1 1 1
Write back 1 1 2
Total latency 30 39 82
Pipelined latency 25 34 77

Table 2 Execution and performance for integer divides.

Action Cycles

Load and concatenate 4
Normalize 5
Divide loops 1–32
Readout remainder/quotient 5
Invert sign (potential) 5
Write back 5
Total latency 30 – 61
Pipelined latency 25–56

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

319

the scan chain configuration results in increased transition
fault coverage.

Summary
The new IBM eServer z990 floating-point unit has been
described. It includes a fused multiply-add dataflow in
hardware that allows a throughput of one multiply-
and-add in one cycle with a latency of five cycles. Two
architectures, for binary and hexadecimal floating-point
instructions, are supported with each short, long, and
extended format. This has been accomplished by a unique
method of representing the two architectures with two
internal formats with their own biases. Denormalized
numbers can be handled on the input side as well as on
the output side in the normal flow, except for one rare

case, which is destined for an underflow exception handler
anyway.

Also, a fast divider dataflow is implemented which is
capable of supporting an extended-precision width and
achieves two result bits per cycle. This divider hardware is
also used for square-root operations. For integer divides,
the number of divide iterations depends on the effective
number of quotient bits, which significantly improves the
performance. For the redundant expression of the partial
remainder only, each fourth carry bit is used, which saves
about 80 latches when compared with a conventional
carry-save approach.

Acknowledgments
In addition to the authors, many other individuals
contributed to the success of the z990 FPU. Special
acknowledgment goes to Juergen Foag and Andree Marth
for their work on the design of the divide logic; to Hans-
Juergen Muenster for his work on control logic and timing
coordination; to Lukas Daellenbach, Dave Rude, Peter
Cook, Steve Klepner, Fanchieh Yee, Harald Mielich, and
Rainer Clemen for their work on custom design and
integration; and to Juergen Vielfort and Klaus Keuerleber
for their excellent work on verification and simulation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or
Sun Microsystems, Inc.

References
1. T. J. Slegel, E. Pfeffer, and J. A. Magee, “The IBM

eServer z990 Microprocessor,” IBM J. Res. & Dev. 48,
No. 3/4, 295–309 (May/July 2004, this issue).

2. “IEEE Standard for Binary Floating-Point Arithmetic,”
ANSI/IEEE Standard 754-1985, The Institute of Electrical
and Electronics Engineers, Inc., New York, August 1985.

3. IBM Corporation, Enterprise Systems Architecture/390
Principles of Operation (SA22-7201); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

4. G. Gerwig and M. Kroener, “Floating-Point-Unit in
Standard Cell Design with 116 Bit Wide Dataflow,”
Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, Adelaide, Australia, April 1999, pp. 266 –273.

5. E. M. Schwarz, L. Sigal, and T. J. McPherson, “CMOS
Floating-Point Unit for the S/390 Parallel Enterprise
Server G4,” IBM J. Res. & Dev. 41, No. 4/5, 475– 488
(July/September 1997).

6. E. M. Schwarz, R. M. Averill III, and L. J. Sigal, “A
Radix-8 CMOS S/390 Multiplier,” Proceedings of the 13th
IEEE Symposium on Computer Arithmetic (ARITH �97),
Asilomar, CA, July 1997, pp. 2–9.

7. E. M. Schwarz and C. A. Krygowski, “The S/390
G5 Floating-Point Unit,” IBM J. Res. & Dev. 43, No. 5/6,
707–721 (September/November 1999).

8. E. M. Schwarz, R. M. Smith, and C. A. Krygowski, “The
S/390 G5 Floating Point Unit Supporting Hex and Binary
Architectures,” Proceedings of the 14th IEEE Symposium
on Computer Arithmetic, Adelaide, Australia, April 1999,
pp. 258 –265.

Physical layout of the FPU.

Figure 6

CTL0

CTL1

CTL2

CTL3

CTL4

CTL5

NORM

ALIGN

ROUND

INCR

REGISTER

FILE

A/B/C

REGS

DIVIDE

EXPONENTS

MULTIPLIER TREE

SUM / CARRY REGS

ADD TRUE / LZC

ADD CMPL/ LZC

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

320

9. E. M. Schwarz, M. A. Check, C.-L. K. Shum, T. Koehler,
S. B. Swaney, J. D. MacDougall, and C. A. Krygowski,
“The Microarchitecture of the IBM eServer z900
Processor,” IBM J. Res. & Dev. 46, No. 4/5, 381–395 (July/
September 2002).

10. G. Gerwig, H. Wetter, E. M. Schwarz, and J. Haess,
“High Performance Floating-Point Unit with 116 Bit Wide
Divider,” Proceedings of the 16th Symposium on Computer
Arithmetic, Santiago de Compostela, Spain, June 2003, pp.
87–94.

11. K. D. Tocher, “Techniques of Multiplication and Division
for Automatic Binary Computers,” Quart. J. Mech. Appl.
Math. 11, Pt. 3, 364 –384 (1958).

12. J. E. Robertson, “A New Class of Digital Division
Methods,” IRE Trans. Electronic Computers EC-7, 218 –222
(September 1958).

13. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

14. C. A. Krygowski and E. M. Schwarz, “Floating-Point
Multiplier for De-Normalized Inputs,” U.S. Patent
Application No. 2002/0124037 A1, p. 8, September 5,
2002.

15. E. M. Schwarz, M. Schmookler, and S. D. Trong,
“Hardware Implementations of Denormalized Numbers,”
Proceedings of the 16th Symposium on Computer
Arithmetic, Santiago de Compostela, Spain, June 2003, pp.
70 –78.

16. M. D. Ercegovac and T. Lang, Division and Square Root:
Digit-Recurrence Algorithms and Implementations, Kluwer
Academic Publishers, Boston, 1994.

17. D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT
Division Architectures and Implementations,” Proceedings
of the 13th IEEE Symposium on Computer Arithmetic,
Asilomar, CA, July 1997, pp. 18 –25.

Received September 22, 2003; accepted for publication

Guenter Gerwig IBM Server Group, IBM Deutschland
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen,
Germany (ggerwig@de.ibm.com). Mr. Gerwig received his B.S.
and M.S. degrees in electrical engineering from the University
of Stuttgart in 1978 and 1981, respectively. He joined IBM in
1981 to work on chip card readers for banking systems. Since
1989 he has worked on floating-point designs for CMOS
microprocessors. He is the team leader responsible for the
design of the G2, G3, z990, and a future floating-point
unit. Mr. Gerwig received a third-plateau IBM Invention
Achievement Award and holds 11 patents. He is currently the
team leader responsible for a future recovery unit design.

Holger Wetter IBM Server Group, IBM Deutschland
Entwicklung GmbH, Schoenaichestrasse 220, 71032 Boeblingen,
Germany (hwetter@de.ibm.com). Mr. Wetter received his M.S.
degree in electrical engineering from the University of
Hannover in 1995 and joined IBM the same year. Since then
he has been working in the area of custom circuit design on
several generations of zSeries microprocessors. In particular,
he was involved in the design of the floating-point unit of the
z990 microprocessor. Mr. Wetter is a coauthor of several
publications and seven patents. He is currently working
on floating-point units for future pSeries and zSeries
microprocessors.

Eric M. Schwarz IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(eschwarz@us.ibm.com). Dr. Schwarz received a B.S. degree
in engineering science from Pennsylvania State University
in 1983, an M.S. degree in electrical engineering from
Ohio University in 1984, and a Ph.D. degree in electrical
engineering from Stanford University in 1993. He joined IBM
in 1984 in Endicott, New York, and in 1993 transferred to
IBM Poughkeepsie. He is a Senior Technical Staff Member
and was the z900 microprocessor logic design leader. Dr.
Schwarz provides support to IBM floating-point unit teams
and is on the program committee of the IEEE Symposium
on Computer Arithmetic. He is also actively researching
computer architecture and heads two IBM/CMU
microarchitecture work groups. Dr. Schwarz is currently
working on future microarchitectures for IBM zSeries,
iSeries*, and pSeries processors. He is an author of many
patents, conference proceedings, and technical reports.

Juergen Haess IBM Server Group, IBM Deutschland
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen,
Germany (haess@de.ibm.com). Mr. Haess received his M.S.
degree in electrical engineering from the University of
Karlsruhe in 1980. He joined IBM to work on I/O adapter
development, which included several released products. In
1994 he spent six months at IBM Poughkeepsie, where he
facilitated the transfer of the G3 FIB-chip design to that
location. He also coordinated this new I/O system with
the Boeblingen I/O designs. In 1997 he joined the CPU
development team, where he became a member of the
floating-point unit team. He was responsible for the design of
the z990 new binary fused multiply-and-add instructions. He
is currently working in FPU design on binary instructions for
the next IBM pSeries and zSeries processors. Mr. Haess
is an author or coauthor of several patents, a conference
proceeding, and two journal articles. He has received a
number of awards for his work, including three IBM Invention
Achievement Awards.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. GERWIG ET AL.

321

November 24, 2003; Internet publication April 6, 2004

Christopher A. Krygowski IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(cakryg@us.ibm.com). Mr. Krygowski received a B.S. degree
in electrical engineering from Clarkson University in 1989
and an M.S. degree in electrical engineering from the
National Technological University. He is currently a Senior
Development Manager leading microprocessor development
for future zSeries systems. Mr. Krygowski joined IBM in 1989
and has had various design and management responsibilities
in development of the IBM zSeries central processor units.
His recent contributions are the design of the integer and
floating-point execution units of the z990 processor. He is
the author of 17 patents and several technical articles. Mr.
Krygowski has received four IBM Outstanding Technical
Achievement Awards for his work on IBM zSeries processors.

Bruce M. Fleischer IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (fleischr@us.ibm.com). Dr. Fleischer is a Research
Staff Member in the VLSI Design Department at the IBM
Thomas J. Watson Research Center. He received his A.B.
degree in physics from Harvard University in 1981, and
the M.S. and Ph.D. degrees in electrical engineering from
Stanford University in 1987 and 1989, respectively. He joined
the IBM Research Division in 1989 to do BiCMOS circuit
design. From 1989 to 1992 he worked on BiCMOS SRAM
and communications circuits. Since 1992, he has worked on
microprocessor circuit design. Dr. Fleischer was a member of
the floating-point team for the z900 microprocessor, and the
lead circuit designer for the z990 microprocessor floating-
point unit. He is the author or coauthor of a textbook
chapter, several technical articles, and eight patents.
Dr. Fleischer received an IBM Outstanding Technical
Achievement Award for his work on the G7 (z990)
microprocessor.

Michael Kroener IBM Server Group, IBM Deutschland
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen,
Germany (mkroener@de.ibm.com). Mr. Kroener received
his B.S. degree in communications engineering from the
Fachhochschule fuer Technik in Esslingen in 1994. He joined
IBM in 1994 to work on the design and verification of
floating-point designs for CMOS microprocessors. In 1999
Mr. Kroener began an assignment at IBM Poughkeepsie,
New York, where he joined the Fixpoint Development Team
for G4. In 2001, he was invited to the IBM Academy, where
he presented the most recent floating-point design. He is
the author of four patents and several technical articles. Mr.
Kroener recently became a floating-point representative in the
IBM Development Team in Austin, where he is responsible
for integrating the actual floating-point design into the pSeries
microprocessor.

G. GERWIG ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

322

