SCSI initial program
loading for zSeries

This paper describes a new kind of initial program loading
(IPL) for IBM zSeries® servers. The new IPL protocol expands

G. Banzhaf
F. W. Brice
G. R. Frazier
J. P. Kubala
T. B. Mathias
V. Sameske

the set of inputfoutput devices that can be used during IPL
to include Small Computer System Interface (SCSI) Fibre
Channel protocol (FCP) disk devices (SCSI disks). We begin
by describing several new challenges resulting from the use of
SCSI disks during IPL, followed by a brief overview of new
concepts we have applied to the IPL process to overcome these
challenges. We continue with a step-by-step description of the
processes executed during SCSI IPL, the tools used, the disk
format, the parameters required, and related topics. Since
SCSI IPL is supported for virtual machines instantiated by
the z/VM® operating system, some unique features of this
capability are described. Finally, we describe a variation of
SCSI IPL that enables the contents of memory to be dumped

onto a SCSI disk.
I

Introduction

This paper describes a new process for loading and
starting an operating system (OS) on IBM zSeries*
servers. The loading process is referred to as booting or
initial program loading (IPL).

Traditionally, zSeries input/output (I/O) has been based
on devices conforming to the zSeries I/O architecture
[1, 2]. Since these I/O devices are controlled by channel
programs comprising channel command words (CCWs),
they are referred to as CCW-based 1/0O devices. IPL from
these devices is called CCW IPL. Recently, a zSeries
version of the Linux** OS and a Fibre Channel protocol
(FCP) channel were introduced, enabling zSeries use of
Small Computer System Interface (SCSI) FCP devices [3].
We refer to these as SCSI devices. A new IPL process,
called SCSI IPL, enhances this zSeries SCSI support by
allowing the loading and starting of an OS from SCSI disk
devices (or SCSI disks). This paper describes SCSI IPL,
along with related features such as the ability to load a
dump program from a SCSI disk.

Typically, a single OS is loaded into a computing
system. However, IBM zSeries servers can be partitioned
into separate logical computing systems. System
resources—memory, processors, and I/O devices—can be
divided or shared among many such independent logical
partitions (LPARs) under the control of an LPAR
hypervisor built into the zSeries system [4]. Each LPAR
supports an independent OS loaded by a separate IPL

operation. Further, when the z/VM OS is running in an
LPAR, the LPAR resources can be further divided or
shared among a large number of independent virtual
machines (VMs). An OS running in a VM is said to be a
guest operating system of the z/VM operating system, and
is referred to as a VM guest. Each LPAR and each virtual
machine can use the SCSI IPL function.

The challenges

To understand the additional complexities introduced

by SCSI IPL compared with CCW IPL, a general
understanding of the latter is needed. As mentioned
above, I/O devices used for CCW IPL are controlled by
channel programs comprising a sequence of CCWs. A
CCW contains a command to perform an individual read,
write, or control operation for an I/O device. CCWs also
designate the memory and storage areas associated with
read and write operations. I/O operations are initiated
by an OS on a central processing unit (CPU) and are
scheduled for execution in a channel by a system process
running on a system assist processor (SAP). The channel
programs are executed by channel engines running
independently of the CPUs and SAPs.

Each CCW-based I/O device is identified to an OS by a
two-byte device number. The system programmer defines
the I/O configuration, including the assignment of a device
number to each I/O device, through the I/O configuration

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

G. BANZHAF ET AL.

507

508

program (IOCP) [5]. The IOCP creates an I/O
configuration data set (IOCDS) that describes the
configuration to the zSeries server, providing the
correlation between the device number known to an OS
and the physical device connected to a channel.

CCW IPL is initiated by the system operator using
zSeries manual controls, such as those provided at the
support element (SE) or a hardware management console
(HMC). An SE supports a single zSeries server and
provides the operator with a variety of controls to perform
functions such as power-on and power-off, various types of
resets, [PL, and many other functions. An HMC provides
a subset of the same controls, but can communicate with
more than one SE, and hence with more than one zSeries
server at a time, allowing for consolidated operation of
multiple servers. (For a VM guest, CCW IPL is initiated
automatically at user logon or by a command at the user’s
terminal.) The system operator supplies only the device
number of an I/O device on which resides a bootstrap-
loader program for the OS to be loaded. This device
becomes the IPL device. Upon initiation of an IPL
operation, the system looks up the applicable channel,
control-unit, and I/O-device identifiers for the specified
IPL device number as described in the IOCDS. The
system initiates a channel program that begins with
an implied Read CCW, executed as if it existed at
memory location 0, that reads the first 24 bytes (three
doublewords) available from the IPL device into locations
0-23 of logical-partition memory. (For a virtual machine,
“the system” is the z/VM OS rather than functionality
built into the zSeries server itself, and the memory is
the virtual memory of the virtual machine.)

For disk IPL devices, the first available bytes are in
record 1 on track 0 of cylinder 0. The doubleword at
location 0 typically contains a program status word (PSW)
that is later used to begin instruction execution. Command
chaining from the implicit Read CCW causes execution of
the channel program to continue at location 8. Thus, the
second doubleword is typically a Read CCW to read
additional CCWs from the IPL device into memory. The
third doubleword is typically a transfer-in-channel (TIC)
CCW that branches to the additional CCWs. These
CCWs typically begin reading the OS into memory.

When the channel program completes, the contents of
the doubleword at address 0 are made the current PSW.
The IPL process is considered complete, and instruction
processing begins in the OS bootstrap loader, which then
completes the loading and initialization of the OS.

SCSI IPL is a more complex process. In addition to
identifying the IPL device by a two-byte device number,
SCSI devices are identified by two eight-byte numbers: a
worldwide port name (WWPN) that identifies the Fibre
Channel (FC) port of a SCSI target device in the FC
fabric, and the logical unit number (LUN) that identifies

G. BANZHAF ET AL.

the logical device, or logical unit, within the SCSI target
device [6]. A logical unit serves as the zSeries IPL device.

In addition to requiring more parameters to identify the
IPL device, the operational steps are more complex. First,
a login operation with the FC fabric is required. An FC
fabric is composed of switches that connect storage
controllers in a storage area network (SAN), known as
SCSI target devices, and host computing systems, known
as SCSI initiator devices. The login process requires the
transfer of the unique WWPN of the host channel to its
adjacent switch in the fabric. In response, the switch
provides a shorter (three-byte) identifier used to identify
the host channel in subsequent communications within the
fabric. The next step involves contacting a name server
within the fabric to obtain the address of the SCSI target
device to be accessed. The FCP channel performs a port
login to the target device port, followed by a process login
to initiate FCP operations. At this point data can be read
from the logical unit serving as the IPL device.

The number and complexity of logical operations
needed to perform I/O through an FC fabric is much
greater than for reading 24 bytes from a directly attached
CCW-type I/O device. A complex program is needed to
construct SCSI Read commands, encapsulate them into
FC command sequences, and extract data from the
corresponding response sequences. This greater
logical complexity of operations for SCSI IPL and the
corresponding increase in the number of input parameters
made it impractical to simply extend the implicit system
operations of CCW IPL. Therefore, a new mechanism for
SCSI IPL was developed.

The solution
SCSI IPL is performed by a combination of zSeries system
functions and a special program called the machine
loader. The machine loader executes in the program
memory (LPAR or virtual machine) in which the IPL is
being performed. As with CCW IPL, a system operator
uses zSeries manual controls at the SE or an HMC to
initiate a SCSI IPL. (Following the pattern of CCW
IPL for a VM guest, SCSI IPL of a guest is initiated
automatically at user logon or by a command at the user’s
terminal.) The SE goes beyond its function of handling
operator input in CCW IPL, and places the machine
loader and the IPL parameters in the LPAR memory.
An overview of the SCSI IPL process initiated at the
SE for an LPAR is shown in Figure 1. The primary
components are the SE, the machine loader (ML), the
LPAR memory, the SCSI IPL device, and the OS loader.
To initiate a SCSI IPL, the operator enters the IPL
parameters as shown in Step 1. One way to do this is to
enter them at the SE console as shown in Figure 2. Since
there are several IPL parameters, some of which are
multiple bytes in length, the parameters can be saved in

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

User specifies IPL parameters Logical partition
and activates SCSI IPL

OS loader continues IPL process
IPL parameters by loading OS files from IPL device
SE console
,,,,, OS loader
Pt
l Machine loader OS files

Support element

‘ Machine loader loads OS loader
(SE)

from IPL device and starts its execution
(Machine loader is overlaid)

Machine
loader

SE copies machine loader and IPL parameters into
logical partition memory and starts execution of OS loader OS files
machine loader

SE hard disk
SCSI IPL device

Figure 1

Control flow for a logical partition IPL.

g _____________[Hi§
CPC: PODMNXK4
Image: LPO1

Load type: ONormal @Clear @SCSI ©SCSI dump

i Store gtatus

Load address [saBT

Load parameter I—
Tima~out vatue G8G 489 1o 808 geconds
World wide port name @
Logical unit number [51aFacooa0000000
Boot program selector E

Boot record logical block address [000POPOBODODODOD

O$ specific load par § 64M

root=/dev/sdal zfcp_map="0x5c00 H
0x1:0x5005076300cf8104
0x0:0x521 memememamama"[

| ok | [Reset | [cancel | [Help |

HMC/SE panel used to initiate a SCSI IPL.

activation profiles for easy reuse in subsequent IPL The SE begins the IPL by transferring the machine
operations. After the parameters are entered, the operator loader from SE local memory into LPAR memory as
starts the IPL by an entry at the console. shown in Step 2 of Figure 1. The SE also stores the IPL

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 G. BANZHAF ET AL.

509

510

parameters in a specified location in LPAR memory in a
specified format to be available for use by the machine
loader. When this is complete, the SE signals the LPAR
hypervisor to start the execution of the machine loader.
In Step 3, the machine loader executes in the LPAR
memory with all of the available zSeries programming
facilities. This allows the machine loader to perform the
complex operations necessary to complete the SCSI IPL.
First, the machine loader uses the IPL parameters stored
by the SE in LPAR memory to locate the IPL device and
the location on the IPL device of the program to be
loaded. Next, SCSI commands are built to access the IPL
device, and the machine loader determines the locations
in LPAR memory in which to place the program. The
SCSI I/O operations are initiated through a zSeries FCP
channel to load the program. Note that the machine
loader must avoid overwriting itself when loading the
program, so the machine loader relocates itself when
necessary during this process. Finally, control is
transferred to the loaded program, completing the IPL
operation. By this time, there is no further need for the
machine loader, so it can be overwritten. Typically, the
program to be loaded is an OS loader, which loads the
rest of the OS from the IPL device as shown in Step 4.
The IPL concept described here goes beyond the boot
capabilities available on most other computer systems.
Typically, a relatively simple routine, such as the basic
input/output system (BIOS), controls the initial OS boot
process [7-9]. Such IPL routines usually support a very
limited set of devices with fixed device formats, and since
they are typically implemented in read-only storage, they
are not easily modified. The process described in this
paper, in contrast, supports the use of an arbitrarily
complex IPL routine, referred to as the machine loader.
In a typical non-zSeries machine, after power-on self-
test (POST), the system BIOS identifies the boot device,
typically an internally attached integrated drive electronics
(IDE) or SCSI disk. The BIOS then reads the first
physical block from the device, called the master boot
record (MBR), and executes a piece of code contained in
this block [7]. Some systems incorporate FC adapters that
provide BIOS extensions, allowing use of an FC-attached
device. However, these extensions are often restricted to
point-to-point FC connections, and they often require an

update to the BIOS to specify the address of the boot device.

The concepts used in zSeries SCSI IPL significantly
enhance the capabilities of IPL, as described above. By
using an arbitrarily complex machine loader and loading
it into the machine from the SE to control the IPL
process—instead of using a routine that is stored in read-
only storage—the IPL routine can be upgraded more
easily. Since the machine loader can be arbitrarily
complex, it can fully utilize all of the capabilities of the
machine, and it can support a wide range of boot devices

G. BANZHAF ET AL.

at any address in an FC SAN. The zSeries SCSI IPL
process also supports simultaneous execution in multiple
logical partitions or z/VM guests. Details of how these
new concepts were applied to SCSI IPL, along with a
variation of SCSI IPL that dumps the contents of program
memory to a SCSI disk, are provided below.

IPL of a logical partition

Initiating IPL

On a zSeries server, IPL of an LPAR can be initiated
from an HMC or an SE in different ways. In particular,
IPL can be initiated either manually via a specific load
task or implicitly as part of a process called activation.
The latter is a process that takes the LPAR into a desired
state, such as the “IPL-complete” state, that may include
prerequisite functions, such as powering-on the entire
system and starting the LPAR, depending on the state
of the system. Activation can be scheduled to occur at

a predefined date and time. An activation profile is the
sequence of steps and associated parameters that define
the desired activation sequence. The profile includes the
IPL parameters that are entered from the load panel of
the load task when the IPL is done manually.

The load task and activation methods are both available
from the SE or the HMC. In addition, either method can
be initiated through a Web interface provided by the
HMC. The actual IPL of an LPAR is always done by the
SE. If IPL is initiated via the HMC, a special protocol is
used to route the request to the SE. From this point, we
describe only the actions performed by the SE.

Before initiating an IPL operation, the operator
must choose the type of IPL and supply the IPL device
information. There are two types of CCW IPL, called load
normal and load clear. Similarly, there are two types of
SCSI IPL, called SCSI load with dump (in which the
contents of main storage are preserved, as with load
normal), and SCSI load (in which the contents of main
storage are cleared, as with load clear). All are available
via both the load task and the activation methods. For
CCW IPL, two IPL parameters apply: a load address (the
device number of the IPL device) and an optional load
parameter to be passed to the OS being loaded. Many
more IPL parameters are required for SCSI IPL, all of
which have been added to the load panel of the load task
and to the activation profiles. Figure 2 is an example of a
load panel with input values to select a SCSI IPL; it is
discussed in detail below.

The IPL parameters are placed in the LPAR memory in
the form of an extensible markup language (XML) string.
The SE builds the XML string describing the type of IPL
and all of the relevant parameters. The XML string is
made available to the machine loader as well as the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

<eServer_ipl_script version="1.0">

<type>ipl</type>

<ipl_control_section id="first_ipl">

<ipl_platform_loader>
<fep_ipl>
<devno>0x5AB1</devno>

<wwpn>0x5005076300C293CB</wwpn>

<lun>0x514F000000000000</Tun>

<br_1ba>0x0000000000000000</br_1ba>
<boot_program_selector>0x00000000</boot_program_selector>

</fep_ipl>
</ipl_platform_loader>
<system_control_program>

<parameter_string>

mem=64M root=/dev/sdal zfcp="0x5c00 0x1:0x50050076300cf9104

0x0:0x521f000000000000"
<{/parameter_string>
</system_control_program>
</ipl_control_section>

</eServer_ipl_script>

SCSI IPL parameters shown as an XML string.

program being loaded. Figure 3 shows the XML string
created from the load panel input of Figure 2.

When the IPL operation is complete, feedback about
success or failure and any error messages are shown on
the SE or the HMC console from which the IPL operation
was initiated. The SE regards the IPL as complete when
the machine loader is successfully loaded into an LPAR
and started. The machine loader behaves like any OS
in an LPAR, reporting its progress and potential error
messages via a special operating-system messages console
that can be made visible on the SE or an HMC.

Input parameters

The panel shown in Figure 2 allows the selection of
different types of IPL. Load types normal (load normal)
and clear (load clear) are used to initiate CCW IPL.
These two types differ in the reset operations performed
in the context of the IPL. A single load address is
required, and a single eight-byte load parameter can

be optionally specified.

Load type SCSI (SCSI load), as selected in the example
in Figure 2, is used to initiate SCSI IPL of an OS, and an
extended set of parameters can be specified. The same
parameters are valid for load type SCSI dump (SCSI load
with dump), which can be used to initiate SCSI IPL of a
dump program, as described later.

For CCW IPL, the load address specifies the two-byte

device number (four hexadecimal digits) of the IPL device.

For SCSI IPL, the load address specifies a two-byte device
number associated with the FCP channel to be used to

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

access the FC fabric in which the IPL device resides. This
device number, defined in association with the channel in
the IOCDS, is not associated with a real I/O device, but
rather with a pair of queues in the channel for exchanging
commands and responses between the program (the machine
loader in this case) and the channel [3].

The load parameter specifies an optional eight-character
extended binary-coded decimal interchange code (EBCDIC)-

encoded load parameter to be passed to the OS being loaded.

The time-out value is used only for CCW IPL. Some
devices take longer to respond to an IPL request, and the
time-out value allows the user to specify a longer time-out
than the default value.

The worldwide port name is the eight-byte permanent
name (16 hexadecimal digits) assigned to the FC adapter
port of the SCSI target device containing the logical
unit serving as the IPL device. The FC fabric must be
configured in such a way that the FCP channel used for
the IPL operation has access to this port.

The logical unit number (or LUN) is the eight-byte
identifier (16 hexadecimal digits) of the logical unit
representing the IPL device.

The boot program selector, a decimal value between 0
and 30, is used to select the section of the IPL disk on
which the desired OS resides. (The SCSI IPL function
allows up to 31 different operating systems to reside on
one IPL disk.)

The boot record logical block address specifies the logical
block address (LBA) of the boot record. (A boot record is
used to locate an OS loader on an IPL disk. Normally,

G. BANZHAF ET AL.

511

512

Step ’ Step

. Step .

Main storage

Data mover

Component 3

Component 2

Component 3

XML parameter string

—> Component 1

Component 2

XML parameter string

Machine loader

Machine loader

e

XML parameter string

Component 1

Machine loader initializes, parses
XML parameter string, and
accesses IPL device

IPL device

Component 1

’ Machine loader reads boot program
components from IPL device into
main memory to a temporary location

. Data mover copies boot program
components to their final location

Operation of the machine loader.

this boot record is located at LBA 0. The SCSI IPL
function allows the boot record to be located at a different
LBA.)

Finally, the OS-specific load parameter is optionally used

to pass a string of characters to the program being loaded.

Neither the system nor the machine loader interprets or
uses these parameters. For example, the OS-specific load
parameter can be used to identify additional I/O devices
and related storage addresses required by the OS being
loaded.

The same IPL parameters apply to SCSI dump. The
difference from SCSI load is that the IPL device must
contain a dump program rather than an OS. A dump
program for an OS is used when the OS has failed and it
is necessary to dump the contents of memory to a storage
device for analysis.

Loading and starting the machine loader

After the SE obtains and checks the IPL parameters from
the load panel or an activation profile, the SE builds the
XML string from the parameters. The SE requests the
LPAR hypervisor to perform a clear reset of the LPAR to
be loaded, much as for a load clear CCW IPL. When the
reset is complete, the SE reads the machine loader from
the SE local disk and moves it into the LPAR memory
starting at address 0. This is done using a generic service-
word interface that is provided for communication

G. BANZHAF ET AL.

between the SE and the system. The SE also moves the
XML string into the LPAR memory at an architecturally
defined address not occupied by the machine loader.

Next, the SE requests the LPAR hypervisor to start
execution of the machine loader. The LPAR hypervisor
executes a Restart PSW function, which sets the current
PSW from the contents of locations 0-7 of the LPAR
memory (i.e., the first eight bytes of the machine loader).
This PSW contains the address of an entry point in the
machine loader, and instruction processing begins at this
address.

Operation of the machine loader

The operation of the machine loader is diagrammed

in Figure 4. The machine loader begins with some
initialization, including the allocation of memory and
possible relocation of the XML string to a different
memory area. Next, the machine loader parses the XML
string, checking for correctness and validity. If problems
are detected, the machine loader displays appropriate
error messages at the operating-system message console
and terminates its operation.

When parsing is successful and all of the necessary
information has been obtained, the machine loader begins
I/O operations to the IPL device. First, the machine
loader establishes communication with the FCP channel

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Boot record Program table

Header _,—} Header
Program table pointer

Entry n

Entry 1 _,—} Entry 1
Entry 2 Entry 2

Component table

Header

Entry m

— [o]

S - IET

Entry 1

By | > e]

Boot map

Figure 5
Layout of the data on the IPL disk.

using the specified device number. Next, the machine
loader issues a request to the fabric name server with the
WWPN for the SCSI target device containing the logical
unit to be used for the IPL. The FC name server resolves
this WWPN into a corresponding three-byte identifier for
use by the FCP channel in communications with the SCSI
target device. Using this FC identifier, the machine loader
issues an Open Port request for the target port to the
FCP channel [3], which in turn performs an N_Port Login

function for this port [10] on the target device, if required.

Finally, the machine loader uses the LUN from the input
parameters to issue an Open LUN request to the FCP
channel [3], which establishes a logical connection in the
channel to the logical unit serving as the IPL device.

If these steps are completed successfully, the machine
loader issues SCSI Read requests to the IPL device to
determine whether the IPL device has a valid IPL format.
The overall layout of the data on the IPL device is shown
in Figure 5. First, the machine loader looks for a boot
record at the specified LBA. Normally, this boot record is
expected to be at LBA 0, but the operator may specify a
different LBA. If a valid boot record is found at the
specified LBA, the machine loader checks an indicator in
the boot record header that indicates that the boot record
is in the zSeries format. If the format is zSeries, the
machine loader extracts a program table pointer (LBA)
from the boot record.

The program table addressed by this pointer contains
the zSeries format indicator and LBAs of additional
control structures for up to 31 bootable programs on
the IPL disk. The boot program selector from the input

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

parameters identifies a particular program table entry,
which represents a particular OS.

At this point, the machine loader has used all of the
required IPL parameters, and the IPL device itself
contains all of the additional information to complete the
IPL. The program table entry contains the address of a
component table specific to the OS being loaded. An OS
comprises one or more components to be loaded into
different locations in the LPAR memory, and each
component is described in a component table entry.

The component table header contains the zSeries format
indicator, plus another indicator that the program is an
OS (for a SCSI load operation) or a dump program

(for a SCSI dump operation).

Each component table entry defines the type of
component and the address in LPAR memory where
the component is to be loaded. While each component
is loaded into a contiguous area in memory, the code
segments comprising the component may be scattered
in several segments on the IPL device; therefore, the
component table entry for each component contains the
address of a segment table. Each segment table entry
contains the address (LBA) and size of a segment of the
OS being loaded.

The machine loader sequentially processes components
and segments within components. After validating the
information in the data structures, the machine loader
reads the program code and data associated with the
selected OS (addressed by the segment table entries) into
the LPAR memory (see Step 2 in Figure 4). However, in
most cases the machine loader is not able to store the

G. BANZHAF ET AL.

513

514

data in the target memory locations specified in the data
structures mentioned above, since this data would then
overwrite the memory area occupied by the machine
loader or the XML string. Instead, the operating-system
segments are placed in temporary buffers with addresses
higher than the memory locations occupied by the
machine loader itself (see Figure 4).

While loading the different components into main
storage, the machine loader creates a table called a move
map. The move map contains the current (temporary)
component location, the component size, and the ultimate
target location in the LPAR memory. The machine loader
might once again be required to relocate the XML string.
If an examination of the component target location in
memory reveals that a component would overwrite the
XML string, the XML string is moved to another area
where no conflict exists. This is done by creating an entry
in the move map for the XML string.

With the OS components all loaded into memory, the
machine loader moves the components and the XML
string to their final locations. This cannot be done by the
mainline machine loader code, since this process would, in
most cases, overwrite the machine loader itself. Therefore,
the machine loader includes a small move routine capable
of performing this move operation. The move routine is
copied to a memory location above all of the areas that
currently contain needed program code or data or will
contain it after the relocation (see Step 3 in Figure 4).
The machine loader branches to the move routine to
perform the moves according to the move map. This
process typically overwrites the machine loader, which
is no longer needed.

The move routine ensures that the doubleword at
memory address 0 contains a PSW by which the OS can
be started by the LPAR hypervisor. There are two ways
for the starting PSW to be specified on the IPL device.
One method is to include the starting PSW in the first
eight bytes of a component to be loaded at memory
location 0. Alternatively, the starting PSW can be specified
explicitly in the last component table entry. In this case
the move routine stores the specified PSW into LPAR
memory locations 0-7.

The final task of the move routine is to store the
address of the XML string in an architecturally defined
location for use by the OS loader and issue a special
instruction to signal completion to the LPAR hypervisor.
The DI AGNOSE instruction requests the LPAR hypervisor
to perform a clear reset operation for the LPAR (except
that the LPAR memory is not cleared) and to begin
instruction processing for the OS loader by setting the
current LPAR PSW from the contents of the doubleword
at address 0.

G. BANZHAF ET AL.

IPL of a VM guest

The IPL of a VM guest from a SCSI IPL device is very
similar to SCSI IPL in an LPAR (Figure 6). In particular,
the same machine loader is used, performing the same
functions. The VM OS or VM hypervisor performs a reset
for the virtual machine and uses a special instruction to
request that the system place the machine loader in

the pages (four-kilobyte blocks) of the virtual machine
memory. The system moves the machine loader from a
reserved portion of the zSeries hardware system area
(HSA) into the real page frames comprising the virtual
machine memory. The VM hypervisor creates the XML
string containing IPL parameters based on input

received from the VM user or established by the VM
administrator. The XML string is placed in the virtual
machine memory, and the address of the XML string

is placed in the architecturally defined location.

As in the case of an LPAR, the VM hypervisor starts
execution of the machine loader by setting the current
PSW of the virtual machine from the contents of bytes
0-7 of the virtual machine memory. The machine loader
runs normally, with assistance from the VM hypervisor
only when needed. For example, I/O instructions are
intercepted by the VM hypervisor so that the virtual
memory addresses used by the machine loader (or any
other program in a virtual machine) can be translated
into the real memory addresses used by the channel. The
machine loader is not aware of such assistance because
zSeries instruction interception gives control to a
hypervisor (LPAR or VM) when required by the
architecture or requested by the hypervisor, and the
hypervisor causes the instruction to appear to have been
completed in the architecturally defined manner. Typically,
the hypervisor issues the same machine instruction that
was issued by the guest, preceded and followed by any
other required processing, as, for example, with the
address translation described above for I/O instructions
intercepted by the VM hypervisor.

The IPL of a VM guest is initiated from the guest
operating-system console, i.e., the terminal at which the
VM user logs on (see Step 2 in Figure 6). The same set of
IPL parameters (i.e., load address, WWPN, LUN, etc.) are
specified. The z/VM allows the establishment of the IPL
parameters in advance (similar to an LPAR activation
profile) by including them in the guest directory entry.
The VM directory defines the identities of each virtual
machine, the virtual resources available, and the real-
system resources to be used to satisfy the virtual resource
allocation. The SCSI IPL parameters are specified in a
new LOADDEYV directory statement. Similarly, there is a
new user command, SET LOADDEV, by which the user
can specify one or more of the IPL parameters. Any
parameters not specified in the SET LOADDEV command
remain as previously established in the directory or by an

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

zSeries server

User specifies IPL parameters
and initiates VM guest IPL
via VM console

IPL parameters

Machine loader loads OS loader VM guest
from IPL device into VM guest
memory and starts its execution .

(Machine loader is overlaid) 05 ltemiler eeitiues

VM screen] - IPL process by loading
Machine loader | @ OS loader OS files from IPL device
\ A
I— . VM hypervisor loads machine OS files

Support element
(SE)

Machine
loader

. Machine loader code is
transferred into hardware
system area (HSA) during IML

Machine
loader

SE hard disk

loader and IPL parameters into
VM guest memory and starts
execution of machine loader

VM hypervisor

Hardware
system area

OS loader OS files

SCSIIPL device

Control flow for a VM guest IPL.

earlier SET LOADDEV command. The SET LOADDEV
command can also be used to clear previously established
SCSI IPL parameters. When all required SCSI IPL
parameters have been established, the user can issue the
existing IPL command to begin the loading and starting of
the virtual machine. The z/VM retains the IPL parameters
after IPL such that, if the same parameters are to be used
for the next IPL, the user need only enter the IPL
command again.

A difference between SCSI IPL of a VM guest and an
LPAR is that, for an LPAR, the machine loader is
transferred directly from the SE into the memory of the
LPAR each time an LPAR is loaded. As a performance
accommodation to z/VM, the zSeries system places a copy
of the machine loader in HSA when the system undergoes
initial microprogram loading (IML) (Step 1 in Figure 6).
This avoids the possibility of repeated, lengthy transfers
across the SE-to-system interface as multiple virtual
machines are loaded. Instead, the placement of the
machine loader in the memory of a virtual machine occurs
at memory-to-memory speed (Step 3 in Figure 6). Many
virtual machines can be loaded in parallel without delaying
each other, as they would if each virtual machine had to
receive the machine loader directly from the SE.

The special DI AGNCSE instruction issued by the machine
loader to complete its operation is intercepted by

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

the VM hypervisor instead of the LPAR hypervisor. The
VM hypervisor performs the required reset of the virtual
machine and begins instruction processing for the guest
OS loader by setting the current PSW of the virtual
machine from bytes 07 of the virtual memory. After that,
the IPL process continues much in the same way as
described above for an LPAR IPL (Steps 4 and 5 in
Figure 6).

The VM hypervisor itself can be a guest of another VM
hypervisor in a recursive manner. The SCSI IPL function
has been implemented in such a way that it works at any
level of VM hypervisor nesting.

The z/VM does not support the SCSI load-with-dump
function for guests, since z/VM already contains facilities
outside the zSeries architecture by which the memory of a
virtual machine can be dumped to devices available to the
VM hypervisor.

IPL of a dump program

SCSI IPL can be used to load any kind of program that
can run on its own, without the services of a separate OS.
Typically, such a program is an OS, but it can also be a
test platform or what is known as a standalone utility (a
utility that runs without a separate OS because it “stands
alone” by providing all of its own needed services). Special
provisions are made in SCSI IPL for standalone dump

G. BANZHAF ET AL.

515

516

. User specifies dump parameters

zSeries server — logical partition

and activates SCSI dump ‘ Machine loader loads dump

SE console
Machine loader

program from dump device into '
lower-address area of partition
memory and starts its execution

Dump program retrieves
data from dump save area,
stores it on dump device,
OS dump program releases dump save area,

| . LPAR hypervisor saves y and then dumps the rest of
Support element lower-address area of the partition memory
(E19) partition memory in HSA

Machine

SE copies machine loader and IPL
loader

parameters into logical partition
memory and starts execution of
SE hard disk machine loader

. [Dump save area] Hardware system area

OS dump
program

SCSI dump device

Figure 7

Control flow for a standalone dump operation.

programs, which are utility programs to dump the contents
of program memory to, in this case, a SCSI disk. It is
these programs for which the SCSI dump form of IPL

is provided.

Dump programs create a special challenge for SCSI
IPL. The function of the dump program is to save the
entire contents of program memory on an I/O device.
Thus, it is not acceptable to simply place the machine
loader in this same memory, because that would overwrite
data that should be saved.

When load type SCSI dump is selected to load a dump
program into the memory of an LPAR (Step 1 in Figure 7),
rather than send a clear reset request to the LPAR
hypervisor to clear the LPAR memory, the SE sends a
SCSI dump request before placing the machine loader in
the LPAR memory. The LPAR hypervisor handles the
SCSI dump request by performing a store status operation
for the logical CPU being IPLed in the LPAR, performing
a reset normal operation for the LPAR, and copying the
contents of the lower-address area of the LPAR memory
into a reserved area of HSA (Step 2 in Figure 7). The
amount of LPAR memory area that is saved is large
enough that nothing is lost from it when the machine
loader, the dump program loaded by the machine loader,
and their execution environments are placed there. If
memory-access problems prevent any particular memory
page from being saved in HSA, the LPAR hypervisor
marks the save area for that page, indicating that the
contents of the HSA page are not valid and are thus not

G. BANZHAF ET AL.

available to be retrieved by the dump program, as
described below.

To avoid allocating excessive HSA for this purpose, one
save area exists for all LPARs. Use of the save area is
serialized by the system to prevent simultaneous use by
more than one LPAR. Thus, saved data from one LPAR
cannot be intermixed inadvertently with that of another
LPAR, and no LPAR can gain access to the saved data
of another LPAR.

After saving the necessary amount of LPAR memory,
the LPAR hypervisor signals the SE to place the machine
loader in the LPAR memory (Step 3 in Figure 7). When
this is complete, the SE signals the LPAR hypervisor to
begin execution of the machine loader. The machine
loader runs as it does for a regular SCSI IPL, except that
the program on the IPL disk must be marked as a dump
program in the component table header, as mentioned
above (Step 4 in Figure 7). Also, when the machine loader
completes its operation, it uses a different form of the
DI AGNCSE instruction to pass control to the LPAR
hypervisor. This form of the DI AGNOSE instruction signals
the hypervisor to perform a normal reset instead of a clear
reset operation before setting the current LPAR PSW
from the contents of the LPAR memory locations 0-7.
The effect of the normal reset is to preserve the state of
any additional logical CPUs in the LPAR, allowing the
dump program to retrieve their state. The saved data in
HSA is also preserved for access by the dump program.

After the dump program is loaded, it determines where
to put the dump data. The XML string given to the dump

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

program identifies the device from which the dump
program itself is loaded. There are different ways for this
dump program to determine where to put the dump data.
One method is to format the device where the dump
program resides so that the dump data can be stored on
the same device. This is the method chosen by the current
implementation of Linux for zSeries. Another possibility is
to pass a different device address via the load parameter
(the optional IPL parameter passed through to the
program being loaded). Once the dump program has
identified the dump device, the dump program retrieves
the data that was saved in HSA. A new instruction
interface is provided for the dump program to retrieve
this data. After all saved data is retrieved and stored on
the dump device, the dump program signals the LPAR
hypervisor to release the HSA save area, enabling its
reuse in a subsequent dump process for other LPARs.
Because the dump program is responsible for signaling
the LPAR hypervisor to release the HSA save area, the
machine loader checks that the program being loaded is
indeed a dump program when a SCSI dump is requested.
As mentioned earlier, the IPL disk indicates in the
component table header whether the program is an OS or
a dump program. The machine loader checks whether the
value of this indicator matches the operation requested
from the SE. The machine loader aborts the process
with an error indication in case of a mismatch. After
the release of the HSA save area, the dump program
continues dumping the LPAR memory to the dump
device until the dump is complete (Step 5 in Figure 7).

Conclusions

In this paper we described the new SCSI IPL function of
IBM zSeries servers and described how it employs several
new concepts not typically used during IPL procedures.
These new concepts allow IPL of operating systems from
SAN-attached SCSI disks into the LPARs of zSeries
servers and virtual machines instantiated by z/VM on
these servers. A variation of SCSI IPL enables the
contents of LPAR memory to be dumped onto a SCSI
disk.

With this new feature, the Linux for zSeries OS can be
installed on SCSI disks connected to zSeries servers via
Fibre Channel protocol channels and a Fibre Channel
fabric. SCSI IPL can be exploited by other operating
systems in the future as they add support for SCSI I/O.
The function introduces the concept of using a complex,
full-featured machine loader program that is built into
the zSeries server via its support element and placed in
the program memory of an LPAR or virtual machine to

perform the SCSI IPL. This concept permits full exploitation

of z/Architecture* facilities when retrieving an OS loader
or a dump program from something as complex as an
FC fabric. The machine loader can be extended in the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

future to support IPL and dump operations involving new
I/O protocols, fabrics, and devices as new I/O technologies
develop.

Acknowledgments

The authors thank all of our colleagues who supported
this project during its design and execution. Our special
thanks go to Ingo Adlung, Chuck Brazie, Heiko Carstens,
Dan Clarke, Wolfgang Eckert, Joe Goldsmith, Clay
Harshberger, Michael Holzheu, Elisabeth Kon, Steve
Kriese, Juergen Leopold, Jim McGinniss, Stefan Mueller,
Frank Novak, Michel Raicher, Christoph Raisch, Otto
Ruoss, Albert Schirmer, Raimund Schroeder, Holger
Smolinski, Khadija Souissi, Rick Tarcza, Pamela Walford,
Steve Wilkins, and all the others who helped to make this
project a success. We also thank the anonymous referees
for their time spent reviewing this paper and for their
valuable comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds.

References

1. IBM Corporation, Enterprise Systems Architecture/390
Principles of Operation (SA22-7201); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

2. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

3. I. Adlung, G. Banzhaf, W. Eckert, G. Kuch, S. Mueller,
and C. Raisch, “FCP for the IBM eServer zSeries
Systems: Access to Distributed Storage,” IBM J.

Res. & Dev. 46, No. 4/5, 487-502 (July/September
2002).

4. IBM Corporation, IBM eServer zSeries z990 System
Overview (SA22-1032); see http://www.elink.ibmlink.ibm.
com/public/applications/publications/cgibin/pbi.cgi/.

5. IBM Corporation, IBM eServer zSeries Input/Output
Configuration Program User’s Guide for ICP IOCP (SB10-
7037); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

6. ANSI/INCITS, Technical Committee T10, “Information
Systems—Fibre Channel Protocol for SCSI, Second
Version (FCP-2),” American National Standards Institute
and InterNational Committee for Information Standards,
Washington, DC, 2001.

7. “The Master Boot Record (MBR) and Why Is It

Necessary?”; see http://www.dewassoc.com/kbaselindex.html.

8. R. Brown and J. Kyle, PC Interrupts, A Programmer’s
Reference to BIOS, DOS, and Third-Party Calls, Addison-
Wesley Publishing Company, Reading, MA, 1994.

9. D. A. Solomon and M. E. Russinovich, Inside Microsoft
Windows 2000, Third Edition, Microsoft Press, Redmond,
WA, 2000.

10. ANSI/INCITS, Technical Committee T11, “Fibre Channel
Framing and Signaling (FC-FS)”, American National
Standards Institute and InterNational Committee for
Information Standards, Washington, DC, 2002.

Received September 22, 2003; accepted for publication
November 18, 2003; Internet publication April 6, 2004

G. BANZHAF ET AL.

517

518

Gerhard Banzhaf [BM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (banzhaf@de.ibm.com). Dr. Banzhaf
received his M.S. degree in computer science from the
University of Karlsruhe (TH) and his Ph.D. degree in
electrical engineering from the University of Siegen (GHS).
In 1981 he joined the IBM Development Laboratory at
Boeblingen, where he was involved primarily with the
development of I/O subsystems and microcode for S/390 and
zSeries systems. In particular, his focus was on local-area
networks, infrastructures for the attachment of industry-
standard I/O, integrated storage, and the attachment of SCSI
Fibre Channel (FCP) devices.

Frank W. Brice IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(fbrice@us.ibm.com). Mr. Brice is a Senior Technical Staff
Member in z/VM Development, performing I/O-architecture
and system-design work for z/VM and the zSeries platform.
He received a B.S. degree with honors from the Stevens
Institute of Technology in 1968, after which he joined the
General Electric Company as a radar-systems engineer.
Taking an educational leave of absence in 1971, he received
an M.S. degree in computer science from Rutgers University
in 1972. Returning to GE, he joined the Space Division to
work on software for the NIMBUS and other satellite-imaging
programs. Mr. Brice joined IBM in 1974 in Kingston, New
York, working initially in the software-assurance organization.
He joined VTAM Development in 1976, leading the physical-
unit services team and later representing VTAM on the
Systems Network Architecture Maintenance Board. He
worked briefly in service-processor software development in
1983 and 1984 and then joined VM Development as an I/O-
software designer. He developed expertise in I/O architecture
and virtualization and continues working in these areas today.
Mr. Brice is a co-inventor on 13 U.S. patents, with several
additional patents pending; he has received several IBM
awards.

Giles R. Frazier IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (grf@us.ibm.com). Mr.
Frazier is a Senior Technical Staff Member in the eServer I/O
Architecture Department. His recent activities include work in
the development of the IBM FICON Architecture, for which
he received two IBM Outstanding Innovation Awards,
development of various aspects of SCSI architecture related
to mapping the SCSI protocol over Fibre Channel (FCP), and
participation in related design teams. Over the past ten years
he has been active in industry standards groups including the
InfiniBand Trade Association and the Fibre Channel Industry
Association, and was editor of the FC-SB-2 and FC-SB-3
standards. He received B.S. and M.S. degrees in electrical
engineering from Stanford University and has been with IBM
since 1973. Mr. Frazier is an inventor on seven patents with
several more pending, and he has authored numerous
publications. He is a registered Professional Engineer in the
state of Texas.

Jeffrey P. Kubala IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(kubes@us.ibm.com). Mr. Kubala is a Senior Technical Staff
Member on the z/OS Core Technical Design Team; he is
currently the technical team leader for the zSeries LPAR
hypervisor. He received a B.S.E. degree in computer

G. BANZHAF ET AL.

engineering from the University of Connecticut and joined
IBM in 1981. Since then, he has worked on compiler design
and development, OS/390 Hiperbatch, and S/390 and zSeries
logical partitioning. In addition to his role as the zSeries
LPAR hypervisor technical team leader, Mr. Kubala is actively
engaged with the iSeries and pSeries hypervisor teams as a
technical consultant.

Thomas B. Mathias IBM Systems and Technology

Group, 1701 North Street, Endicott, New York 13760
(mathiast@us.ibm.com). Mr. Mathias is a Senior Engineer

in the IBM Systems Group. He received a B.S. degree in
electrical engineering from Ohio State University and joined
IBM in Endicott, New York, in 1984. He has worked in
zSeries hardware development, and later in support element
and hardware management console microcode development.
Mr. Mathias was licensed as a Professional Engineer in the
state of New York in 1992. He is a co-inventor on three U.S.
patents and one pending patent application. Mr. Mathias has
received three IBM Outstanding Technical Achievement
Awards and numerous other IBM formal and informal
awards.

Volker Sameske IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (sameske@de.ibm.com). Mr.
Sameske is a software engineer in the IBM Systems Group.
He received an M.S. degree in mathematics from the
Technische Universitit Bergakademie Freiberg and joined
IBM in Boeblingen in 1999. Mr. Sameske has worked in
zSeries VSE software development and service, and has been
with the Linux for zSeries Development Team almost from
the beginning of the project.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

