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The communication interface between support element
applications and applications running on the zSeries® system
processors is an essential part of the zSeries system design.
For example, the interface is used to load firmware during
startup, it is used for service actions such as configuring or
deconfiguring 1/O channels, and for many other functions.

It must be fast, reliable, and failsafe. A special hardware
interface in the clock chip is used to connect the service
infrastructure (support element and cage controller) to the
central electronic complex (CEC). Four firmware parties

are involved in the communication: support element, cage
controller, and two firmware layers running on the processors
in the CEC: millicode and i390 code. Starting with the z900,
the interface between the support element and cage controller
was implemented using the NetMessage protocol, whereas the
interface between the cage controller and processors still used
the legacy service-word communication protocol from previous
IBM §/390® models. This meant that the cage controller had
to translate the NetMessage protocol from the support element
side to the legacy service-word protocol toward the CEC

side. In the z990, the communication interface between the
support element and the CEC was generally replaced by the
NetMessage protocol. The following paper describes the new
design and structure of the support element to CEC
communication.

Introduction

The IBM 2990 server is a large-scale server designed

to meet the needs of customers at the high end of the
marketplace. Such servers are capable of running multiple
operating systems at the same time. The maintenance and
management of these servers is done concurrently. With
the IBM z900 server, an out-of-band system control
structure was introduced to manage these complex systems
[1]. Such management tasks include testing the hardware
before the operating system is loaded, loading the
operating systems, concurrent repair, concurrent upgrade,
reporting of and recovering from errors, etc. To
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accomplish these tasks, a distributed service and control
subsystem consisting of redundant support elements, cage
controllers, and communication links has been introduced
(Figure 1). (A more detailed, in-depth description of the
system control structure can be found in [1].)

The firmware responsible for executing system
management tasks runs on different system components
(the processor module itself, the cage controller, and the
support element). Certain system management tasks
require the cooperation of firmware components on the
central electronic complex (CEC), the cage controller
(CC), and the support element (SE). For example, to
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Overview of the 2990 system. (CEC: central electronic complex;
CC: cage controller.)
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2990 communication infrastructure. (TCP: Transmission Control
protocol; IP: Internet protocol; SSI: serial support interface.)

replace an I/O card, it must be removed from the SE view
of the system configuration, the firmware running on the
processors must be informed that it can no longer access
this hardware, and when it can be powered off safely,

the CC in the I/O cage where the card resides must be
instructed to power off the card. This is just one simple
example of a management task, but it shows the need

for communication between the involved firmware
components. It can be seen in Figure 1 that the support
element is connected to the cage controllers via a
redundant service network, which is realized by Ethernet
connections. The cage controllers in the CEC cage are
connected to the processor modules via the XMsg-engine '

I The XMsg engine is a hardware interface on the clock chip that connects the

cage controller to the CEC. The XMsg engine contains read/write first-in first-out
(FIFO) registers for data exchange as well as several control lines, among them
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hardware in the clock chip. When firmware components
residing on the support element have to communicate with
firmware components running on the processors, they
require the assistance of firmware on the cage controller
because there is no direct hardware connection between
the support element and the processors.

With the IBM z990 server, the method by which the
support element firmware communicates with firmware
components running on the processors has been changed.
A new protocol has been introduced, and the design,
structure, and implementation of the firmware components
involved in communication tasks have been changed.

Motivation

Figure 2 shows the new communication infrastructure
designed and implemented for the IBM z990 server. First,
a short explanation of the new structure is given, and then
the rationale for the new design is enumerated.

The support element is connected to the cage controllers
via a redundant Ethernet connection, while the cage
controllers are connected to the processor module via
the XMsg-engine hardware. The standard Transmission
Control protocol/Internet protocol (TCP/IP) suite is used
for SE communication with the cage controllers. On the
side of the CC and processor module, the XMsg-engine
handler is used to access the XMsg-engine hardware.

Both TCP and the XMsg-engine handler offer the
same logical interface by offering a byte-stream-oriented
interface (see [2]). This means that they offer a plain
send/receive interface for unformatted data and they
guarantee that the data arrives in the same order as sent.

The NetMessage protocol is the protocol for the
application level (layers 4-7 in the TCP/IP protocol
suite [2]). It is used for communication between the
support element firmware components and the firmware
components running on the CEC. It defines the format
of the data exchanged via TCP/IP and the XMsg engine.
While the support element and the CEC firmware use the
NetMessage protocol to “understand” each other, the cage
controller requires no notion of a protocol. The CC serves
only as a bridge/router [2, 3] between the Ethernet and
the XMsg-engine hardware. The CC simply has to forward
each byte arriving at the TCP protocol level to the XMsg
engine. This approach has several advantages: The CC
firmware is not affected by any protocol changes in the
application layer, no protocol translation has to be done,
and so on.

The solid arrows in Figure 2 show the data transmission
path, while the dashed-line arrows show the logical
communication path on each International Standards

two high-priority reset lines for resetting the communication interface in case of
errors. It is connected to the cage controller using the serial support interface
(SSI) and is also accessible by millicode.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004



Organization/Open Systems Interconnect (ISO/OSI) or
TCP/IP protocol suite layer.

These changes from our earlier approach were made
for the following reasons:

e Simplification of firmware structures and components. The

new protocol has helped to simplify the structure and
the code of firmware components on the SE, CEC, and
the CC. Eliminating the need for protocol conversion
on the CC is just one example.

Elimination of a single point of failure. The redundant
service network and multiple XMsg engines in a
multibook system offer the possibility to communicate,
even if a hardware link is broken. The firmware
components exploit this feature. For example, on the
CEC side, the clock chip hardware interface is serviced
by a single dedicated processor—the communication
master processor—from among the group of system
assist processors. The communication master processor
is determined at system startup time, but the functionality
can be concurrently reassigned to another processor on
another book if required in case of hardware failures.
Fault tolerance. With the new structure, an error does
not break the whole communication path or terminate
applications using it. A reset mechanism was implemented
to reset and recover the communication path end to end.
Fault isolation/error data collection. If an error occurs,
however, it is necessary to isolate the firmware
component where the error occurred and to collect all
information needed to analyze the error. This may
require information from all firmware components
involved in the communication.

Simple/enhanced recovery of the whole communication
path. A recovery and reset path was designed and
implemented as a parallel path to the “normal”
communication path. Using this path, resets can be
signaled to the SE, CC, and CEC. This path is used

to recover from communication errors.

Performance. The new protocol and firmware structure
must be as simple as possible to be fast and efficient.

Off-the-shelf standard protocol software, such as the
Remote Procedure Call (RPC) protocol, could not be
used because the firmware stack on the CEC side
(which consists of millicode and 1390 code running on
the processors) has to fulfill specific requirements. The
millicode layer, which is the lower-level firmware layer,
is written in assembler language. It uses a subset of the
z/Architecture® instruction set, plus a set of hardware-
specific extensions that are executable only in this
millicode layer (e.g., instructions not part of the
zSeries* architecture to directly access specific hardware
resources). The millicode assembler code is unique for
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each zSeries hardware generation and has to be reworked
for each new zSeries system generation. Therefore,
standard communication protocol software cannot just be
recompiled and run on a millicode level—it would have to
be rewritten in this special assembler code and adjusted
for each new system.

The 1390 part of the communication protocol, which is
the higher-level CEC firmware layer and is written in PLS8
language, has to fulfill certain requirements that do not
allow the use of standard communication protocol code.
The 1390 kernel does not support multiple processes;
instead, for all 1390 applications there is a dispatching
scheme that expects that they run uninterrupted, but
have to adhere to agreed-upon maximum run time per
application before they return to the dispatcher. In
general, responsiveness is an important issue in CEC
firmware, because there are many firmware components
that run on the processors and have very tight timing
requirements.

Robustness and simplicity are essential in all firmware,
but this is especially so for millicode or i390 code
firmware, where design or coding errors may bring the
whole system down and disrupt the customer’s operation.

Also, off-the-shelf middleware usually does not address
topics such as redundancy, fault tolerance, and error
recovery [4]. Implementing all z990-specific features,
such as redundant networks, reassignment of the
communication master processor, fault isolation, and error
recovery, with off-the-shelf middleware or protocols would
have introduced a complex and error-prone firmware
structure.

NetMessage protocol

A communication protocol is needed for communication
and data exchange between the firmware components
residing on the different subsystems—support element
and cage controller—and the CEC itself [1, 5]. The
protocol must satisfy the requirements of each firmware
component. It has to be clear, simple, fast, and easy

to implement with different programming languages.
The millicode/i390 code implementation must be
straightforward, simple, and small in code size. Despite
this, the protocol must be easily extensible and general
enough to be suitable for future extensions and for
firmware components with more processing and memory
resources.

The protocol has to provide support for various
aspects of firmware communication requirements, such
as versioning, unique transaction control, request
identification, source/target identification, and error
recovery. Thus, compared with a pure transport layer, it
provides an additional level of reliability for firmware
applications.
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(a) NetMessage protocol layers. (b) NetMessage request layer.

The following areas must be addressed by the protocol:

e Support for bidirectional communication requests.

e Support for multiple parallel communication requests.

¢ Sending of outbound requests to the correct recipient.

e Routing of inbound requests to the corresponding target
application.

e Checking of transactions and appropriate error
handling.

e Supporting acknowledgment mechanisms below the
transaction level to provide enhanced error handling
and fault isolation.

e Recovery from communication and network problems.

e Support for transaction timeouts and appropriate error
and recovery handling.

e Support for a reset mechanism to provide stability and
reenable communication after the detection and
handling of errors.

e First error data capture (FEDC) support.

To satisfy these requirements, the NetMessage protocol
was split into two layers, as shown in Figure 3(a). The first
layer (message layer) is used for simple message transfer.
The second layer (request layer) is used to send messages
of different types, such as requests and replies.

Message layer

A message consists of a small header containing
administrative data, and the message data itself. The
only purpose of the message layer is the safe transfer
of messages. Each message is acknowledged by an
acknowledge header. The message layer ensures that a
message is delivered once (duplicate detection), and
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recovers in case of errors by retransmitting the same
message.

The message layer is able to transfer messages of
different message types. The protocol headers provide
data elements for detecting and recovering from errors.
The protocol handshake provides a way to detect and
isolate errors, but the main contributor for fault isolation,
recovery, fault tolerance, etc. is the NetMessage message
layer implementation. If, for example, the acknowledgment
for a message does not arrive in time, it could be that the
connection via the Ethernet is broken. The message layer
is responsible for detecting this and initiating a reconnect
over the second Ethernet. This is just one example of a
communication fault.

Request layer

The request layer, shown in Figure 3(b), uses the message
layer to transfer different message types (requests and
replies, resets, etc.). The request layer implements a
simple request/reply protocol. A firmware application

on the support element, for example, is able to send a
request to another firmware application on the CEC. This
request is then executed, and the result is transmitted as a
reply back to the support element.

A request includes a request header that contains
administrative information, such as the originating
application and the application to which the request
should be sent. Other parts of a request are a request
identification containing information about the kind of
request that should be executed and the request data
itself. Each request is answered by a reply containing
a reply header, a reply type, and the reply data. The
message acknowledge headers and message headers in
Figure 3(b) are sent by the message layer and are not part
of the request layer functionality. The request layer is also
able to send other message types for communication
management, etc. The capability of sending different
message types offers room for future extensions.

Service-word communication using the
NetMessage protocol

The support element and CEC applications communicate
with each other using service words. There are two
additional protocol layers required for service-word
communication: a service-word handler layer, which
consists of a service-word handler both on the support
element (CEC communication handler and communication
control handler) and on the CEC side (390 communication
handler), and the application layer, which consists of the
support element and CEC applications that exchange
information using the service-word protocol. The applications
on the support element and the CEC are the communication
endpoints.
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As shown in Figure 4, each service word consists of a
service-word request (command information and data),
and an acknowledgment (service-word reply) from the
other side. For simplification, the message acknowledgments
from the message layer are omitted in this figure. Space is
provided in the service-word header/data structures to support
data integrity checking. The entire communication path is
time-out controlled.

Each service-word request and reply consists of a
service-word request or reply header, respectively,
followed by the service-word data to be transported
between support element and CEC applications. A service-
word request header contains a service-word sequence
number, command code, additional fields to further
specify the command, information about the logical
partition and processor on the CEC that is sending or
receiving the command, and information about the length
of the application data that follows. A maximum data size
of 512 KB was chosen for 2990, because it is a good
compromise between the requirement to transport large
amounts of data within one service word and the memory
space that must be reserved on the CEC for buffering
service words during the transfer before they are sent to
their final destination. However, this size can be adjusted
for future projects as necessary. The command code, along
with the target processor/logical partition information,
is used by the support element and CEC service-word
handlers to route the service word to the appropriate
support element or CEC application. The service-word
sequence number is owned by the application and
can be used for recovery, duplicate detection, trace
matching, etc.

The acknowledgment from the other side consists of
a service-word reply header, which repeats part of the
command information and contains an application
response code that informs the originator as to the
success or failure of the requested operation. Optional
reply data can follow the service-word reply header:
either application data for good replies or collected
FEDC data, which, for error-type replies, aids in finding
the root cause of the error.

Both communication endpoints can initiate a service-
word communication sequence, as shown in Figure 5. Full
duplex transfer mode is supported, i.e., an SE-initiated
service word and a processing-unit (PU)-initiated service
word can be processed simultaneously, but only one
service-word transfer initiated by each side is allowed for
reasons of service-word handler implementation simplicity.
For PU-initiated service-word requests, while a PU-
initiated service word is active, a busy-status/application
retry mechanism is used (see also the section on 1390
implementation). For SE-initiated service-word requests,
the SE service-word handler stacks and serializes the
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requests. This means that retry on the application level is
not required for SE applications, while the retry on the
CEC side is driven by the applications.

There are SE-initiated service words of the Wit e type
(up to 512K data bytes can be sent from the SE to the
CEC) and of the Read type (the SE can request up to
512K data bytes from the CEC). Analogously, the protocol
supports both data transfer directions for PU-initiated
service words, but currently only the Wi t e-type transfer
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is exploited for these (i.e., CEC sends up to 512K data
bytes to the SE, but does not request data from the SE
within one service-word communication).

Example of service-word use: Capacity upgrade on
demand

A capacity-upgrade scenario for processors (see also [6])
shows a typical usage sequence of service words: The
upgrade request is initiated on the hardware master
console or SE. After some preprocessing, the SE sends a
data record containing the requested processor upgrade
configuration to the CEC, using an SE-initiated service
word of the Wi t e type. The concurrent upgrade
application on the CEC then processes the upgrade
request and sends a PU-initiated service word that
contains (as data) the resulting return code of the upgrade
operation to the requesting SE application. In the case
of a successful upgrade operation (i.e., there are new
processors available), additional PU-initiated service
words containing a configuration/state change notification
are sent to the SE application that manages processor
configuration and state information. This SE application
now queries the CEC for current processor configuration
and state information using a series of SE-initiated
Read-type service words. In parallel, the SE concurrent
upgrade application has examined the return code

of the concurrent upgrade operation on the CEC,

and, in case of success, ensures that the logical partition
hypervisor and the operating system software are
notified that a configuration change has happened.

Both notifications are done by using SE-initiated

Wit e-type service words.

Once notified, both the logical partition hypervisor
and the operating system software can use standard
z/Architecture methods to find out about the new
configuration and bring the new processors online and into
operation. The process of bringing new processors online
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again results in a series of PU-initiated processor state
change notifications and SE-initiated query processor
state service words, so that the new processors can be
displayed with their correct status on the SE processor
view screen.

There are many other typical examples for users of
service-word communication in all areas of SE and CEC
interaction, either initiated on the SE or by the CEC side.
Examples on the SE side include concurrent channel
upgrades, concurrent firmware upgrade (patches), system
activity display, and channel operations such as configure
on/off sequences. On the CEC side, the sending of
processor error data and logging information to the
SE log file are examples.

Protocol error handling and communication reset
sequences

Upon detection of protocol errors (e.g., transaction ID
mismatches, cyclic redundancy check errors, and several
more) certain other conditions (such as processor
reassignment, processor restart in the middle of an
ongoing communication, or time-out conditions), both
service-word handlers on the SE and CEC can start a
reset sequence that will reset the communication path
from end to end. Both the hardware and the firmware
structures involved in the communication have to be
reset to a defined idle state.

An acknowledged reset sequence is used to ensure that
the entire communication path is reset. Such a reset may
interrupt currently ongoing service-word transfers, and for
simplicity and safety of implementation, it was decided
to abandon the currently ongoing service-word transfer
completely and provide a method for the applications to
allow a retry of these aborted service words. The reset
sequence is safe, even when both SE and CEC decide
to request a reset simultaneously. Since the reset has
to have the highest priority in the handling of service
words, it is signaled via two high-priority hardware
interrupt lines in the XMsg engine, one for each
direction.

Support element implementation

The SE firmware components shown in Figure 6 are
responsible for communication with the CEC firmware.
They were designed and implemented using object-
oriented technologies and well-known design patterns
(observer, leader follower, facade, acceptor, connector,
etc.) [7]

CEC communication handler

The central part of the SE firmware structure is the CEC
communication handler, which provides a communication
interface between SE applications and CEC firmware
applications. The service-word protocol (see the section
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above on service-word communication using the
NetMessage protocol) is transferred as NetMessage
requests/replies. Applications can use the CEC
communication handler to send service words to CEC
applications and can register for receiving service words
from CEC applications. An interface for transferring files,
data areas, etc. to the CEC is also provided.

The CEC communication handler passes the service
words to the NetMessage layers, where they are packed
in a NetMessage request block and sent to the CEC. The
NetMessage layer delivers incoming requests containing
service words from the CEC side to the CEC communication
handler.

In the case of an error, the CEC communication
handler uses the communication control handler to
query the status of the communication path and to fetch
additional error information (FEDC). The communication
control handler is also used to reset the entire communication
path and to take recovery measures. The communication
control handler has registered itself at the NetMessage
layer for incoming requests containing recovery/reset
requests from the CEC side. It takes the corresponding
actions if such a recovery/reset request arrives and
instructs the CEC communication handler to perform
its recovery/reset actions.

The communication control handler uses the
NetMessage layers to contact and communicate with
the cage controller. The cage controller is able to read
the hardware status of the XMsg engine and from the
hardware gathers additional FEDC data that contains
more explicit information about the error that occurred.
With other words, the communication control handler
talks with the firmware residing on the cage controller
but not with the firmware on the CEC, while the CEC
communication handler talks with the CEC firmware.
Depending upon the error information that was gathered,
the corresponding recovery actions—e.g., resetting the
internal states of the CEC communication handler and
resending the service word—are taken.

CEC communication handler virtualization

Since 2990 is a multibook system (see also [8]) and
consists of up to four books, a CEC communication
handler is created for each book in the system. Each
CEC communication handler is in contact with the cage
controller on the corresponding book. Only one CEC
communication handler is active at a time; this is the
CEC communication handler for the book in which the
communication master processor resides. To simplify
access for applications, a virtualization of the CEC
communication handler has been introduced. Applications
need only know the virtual CEC communication handler.
The virtual CEC communication handler redirects
incoming and outgoing service words, file transfers, etc.,
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(a) Overview of the z990 cage-controller service-word handler.
(b) Cage-controller service-word handler software layer.

to the currently active CEC communication handler. The
active CEC communication handler is changed when the
communication master processor is reassigned across
books.

2990 cage-controller service-word handler and
applications

The standard cage-controller service-word handler is
implemented as a bidirectional data pump, forwarding
packets to and from the SE and CEC without knowing
anything about the protocol. This pump is supervised by
a control application to control and synchronize the data
pump with the SE/CEC, to collect FEDC data, and to
communicate the actual state to the SE/CEC if necessary.
Figures 7(a) and 7(b) respectively provide a functional
overview and describe the layers of the new cage-
controller service-word handler. Applications that are
new compared with the z900 are indicated with a dagger
symbol. The data pump does not access any NetMessage
functions to the TCP/IP network, but directly uses the
TCP/IP-based network application programming interface
(Net API). To access the XMsg engine, the XMsg-engine
handler is used via hardware-independent functions. This
is a major advantage because today’s applications may
now be used in future designs in which the hardware is
changed; only a new engine handler is needed, and there
will be no change in the behavior of the application. The
service-word control application alone communicates

via the NetMessage protocol to the SE and, on “the
other side,” the control application uses the hardware-
independent functions to communicate via the XMsg-
engine handler to the CEC.
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Service-word data pump

The control application can start, stop, and reset the data
pump [Figure 8(a)]. (The data pump forwards the service
words from SE to the CEC and vice versa. It is a plain
packet forwarder.) Once the data pump is started (the
default state), it establishes a Net API (TCP/IP) server
connection to the SE. Packets can be received and sent in
both directions. There are two independent threads: one
to receive packets from the Ethernet and forward them
immediately over the serial support interface (SSI)” to
the CEC, and one to receive packets from the SSI and
forward them over the Ethernet to the SE.

The incoming service-word requests/replies are received
in small packets to obtain optimum performance. They are
immediately copied to an outgoing send buffer. In doing
so, the pump does not “look” into a service word and
hence does not know anything about its protocol,
beginning, or end. To exclude simultaneous access of
the threads to the XMsg engine/SSI, the serialization
management of the hardware-independent layer is used,
which allows only one thread at a time to access the
specific hardware. On the Ethernet side, no synchronization
is necessary, because send and receive can be performed
at the same time on the same socket (handled by TCP/IP).
In case of an error, the data pump can also be reset
from the service-word control application to ensure
that all buffers are empty and the connection to the
SE is reestablished.

2 The SSI connects the clock chip on the CEC with the cage controller.
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Service-word control application

To be able to control the service-word data pump,

but also to communicate with the SE/CEC for control
purposes, it was necessary to introduce the new service-
word control application [Figure 8(b)]. It starts, stops, or
resets the applications. In case of an error, the control
application collects all necessary cage-controller FEDC
data and sends it to the SE. It performs a reset of the
data pump only on request of the SE/CEC. The control
application can always be queried to return the actual
state of the cage controller/CEC. After a cage-controller
reset/reboot, the service-word control application
immediately starts the data pump.

FEDC data collection

The main part of the FEDC data is generated by the
application traces of the cage controller. All important
state changes are written in these trace statements and
then sent into the cage controller trace buffers. When
triggered by events, the trace buffers are sent by the
cage controller or polled by the SE (live traces).

In addition, the service-word control application
provides a set of state variables. These can be sent by
the cage controller or polled from the SE at any time.
Optional flags determine whether the FEDC data should
be regarded as a system log entry or just attached to the
SE trace. A complete explanation of FEDC data collection
may be found in [9].

Millicode implementation

The millicode layer serves as a CEC-resident hardware
device driver for the service-word communication. During
normal operation, the source or target of the service
words on the CEC side is i390 code, but i390 code
requires millicode both to send data out and to receive
data via the XMsg engine first-in first-out (FIFO)
registers. Figure 9 is an overview of the resources

and interfaces used by millicode.

At system initialization time, 1390 allocates two service-
word buffers, one to handle SE-initiated service words
and the other for PU-initiated service words. Using these
independent buffers allows full duplex mode: One request
can go from CEC to the SE, while the SE itself may send
a request to the CEC.

After setup of the buffers, i390 triggers the millicode
to initialize the service-word handling. During this
initialization, the data FIFO interrupts are enabled and
the millicode state is reset.

From then on, the only trigger from 1390 code to millicode
is to signal the start of a PU-initiated message-block-sending
operation as soon as 1390 has put the message into a buffer.
All other work needed to send out or receive messages up
to 512 KB long is directly driven by FIFO interrupts and
handled by millicode without i390 intervention.
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To send or receive these messages, the XMsg-engine
hardware provides programmable interruption logic that
allows a filling level to be defined individually—a so-called
watermark—for the incoming and the outgoing FIFO.
The inbound FIFO generates an interrupt when this
watermark is exceeded; the outbound FIFO generates
the interrupt when the filling level drops below the
watermark.

Millicode sets these FIFO-interrupt controls to receive
an interrupt whenever the expected amount of data has
arrived and can be read from FIFO to be put into
memory, e.g., the header length, or when all data
provided to the FIFO has been sent out and it is time
to refill from memory. The controls are set such that
a minimum number of interrupts are generated on the
CEC by maximum deployment of the FIFO size. This
avoids unnecessary interrupt-created overhead.

After initialization, millicode keeps track of the data
flowing in and out. This way millicode always has an
expectation about which buffer should be used in which
direction and how many bytes are missing until a
message ends and a new header should start. Using this
information allows some base checking of the incoming
data; consistency of the header contents and data integrity
and completeness checking are implemented here by
millicode, completely transparent for 390 code.

Signaling back from millicode to 1390 code is done via
events. There are events for completed send operations as
well as for completed receive operations to let 1390 know
that the transfer of a request or reply block has finished.
There is also an event for a failed check, such as detection
of an inconsistent header or a failed data integrity check.
When millicode generates such a millicode-detected error
event, it also collects FEDC data which, in this case,
consists mainly of the header and/or ending data of the
currently processed message. When 1390 receives this
millicode-detected error event, it catches this FEDC data
and prepares to send it to the SE, where it is logged after
the following reset sequence is finished. On the basis of
this FEDC information, the problem debug is quite
efficient in the complex environment of the different
code layers that are all playing together in the game.

Besides normal operation, the service-word communication
is also used in the system checkstop state to transport error
information from the CEC to the SE, called CECDUMP. This
CECDUMP service-word communication is implemented
completely in millicode without i390 code support. The
CECDUMP code reuses the functional millicode service-
word routines and mechanisms and adds just a small
service-word handler on top of them. Reusing this code
made the CECDUMP quite reliable because there are
fewer special error code paths, but much of the code
works and is tested under normal conditions as well.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

reset or reset
triggers | events

XMsg engine Service-word
buffers
FIFO || Set
controls
Write
Inbound | |Interrupt P?Jlfifrfl?triz(t)erd
FIFO service words
Read Read
Millicode
FIFO  |o %
controls
Ol;t});)gnd Interrupt Write Buffer for
- SE-initiated
Write Read |service words
Set
High-priority [
reset
. Interrupt
interrupt Initiate, | Completion, Read
lines send, or | error, x l e
Write

[ w ]
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i390 implementation

The 1390 and millicode part of the i390 communication
handler always runs on one dedicated processor, the
communication master processor. To be able to service
other processors, the received service-word header
contains the target processor number. If the target
processor is the communication master processor, the
target 1390 application is called directly. If a different
processor is the target, the status of this processor is
checked. The service word can, of course, be distributed
only if the target processor is in a state in which it can
handle requests from the SE; otherwise, an error reply
is returned to the SE.

The target 1390 application is identified by a command
code in the service-word header. If no receiver application
for a certain command code is found, an error reply is
sent back.

i390 application interface and handling of PU-initiated
and SE-initiated service words

The following are the 1390 communication-handler call
interfaces with the application:

e The i390 communication handler provides the functions
i 390COMM _PUI and i 390COMM_SPI , which can be
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called by the application to handle PU-initiated and
SE-initiated service words, respectively.

Each application that wishes to receive SE-initiated
service words has to provide a function for the i390
communication handler to deliver the incoming SE-
initiated service words to an i390 application service-

word handler routine.

Finally, since the service-word transfer is processed
asynchronously, the application has to provide a routine
for the 1390 communication handler to call when a
service-word transfer has finished or to give the
application the retry initiative for a previously failed
service-word transfer: an i390 application service-word
notification routine.

Figure 10 shows the communication flow for the two
basic communication modes: PU-initiated communication
and SE-initiated communication.

PU-initiated communication

Referring to the upper half of Figure 10, it can be seen
that the function i 390COWM _PUIl is called from an
application to start a PU-initiated service word. In normal
operating mode, the i390 communication handler returns
control to the application after the request has been
given to millicode to send it to the cage controller. The
application can then return to the 1390 dispatcher, and
other 1390 work can be processed. Some time later, when
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millicode notifies the i390 communication handler that the
service-word reply has arrived, the application service-
word notification routine is called with the final status of
the service-word transfer. If the reply does not arrive

in time, a time-out condition is raised by the i390
communication handler, and a communication reset
sequence is initiated. In this case, the application receives
a time-out status as a final transfer status. When the reset
sequence is finished, i.e., the SE is responsive again, an
optional recovered from time out notification is passed to
the application service-word notification routine to allow
the application to retry the PU-initiated service word.

If the request to send a service word cannot be
processed because another PU-initiated service word is
currently in process, the return code i390 communication
handler busy is set for the application upon return from
the i 390COMM PUI call. When the PU-initiated side of
the 1390 communication handler is idle again, a ready after
busy notification is passed to the application, which can
then retry the PU-initiated service word.

SE-initiated communication

When an SE-initiated service-word request arrives, the
i390 communication handler examines the service-word
header to determine the target processor and the target
application (see the lower half of Figure 10). If there

is no error, the target application is called on the target
processor. The i390 communication handler enters a time-
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out-controlled state waiting for the application to come
back with the service-word reply. If there is bad target
processor or command code information, appropriate
error responses are immediately sent to the SE, as
described previously.

If the application returns in time with an i 390COVM _SPI
call and provides a buffer for the request data, the service-
word request data already received from the SE is copied to
the application data buffer, and the optional i390 application
reply data is copied into the millicode buffer to send it to
the SE. When the service-word reply, along with optional
service-word reply data, has arrived at the SE, a final status
notification is generated for the application. If the application
has not returned in time with an i 390COW _SPI call,
the 1390 communication handler itself sends an error reply
to the SE to finish this service-word transfer according
to the protocol rather than provoke a time-out on the
SE side.

i390 communication-handler internal states

Because communication from the SE to the CEC and
from the CEC to the SE can be active at the same time,
the 1390 communication handler requires two independent
state machines: one for the SE-initiated side and one for
the PU-initiated side. They are linked only via the reset
path. A reset, which is allowed at any time, causes both
state machines to enter the reset-in-process state.

Results

A number of improvements were achieved by introducing
the NetMessage protocol for CEC-to-SE communication.
The following results were observed.

By eliminating the need for protocol conversion on the
cage controller, the cage-controller code was significantly
simplified, thereby improving its reliability, availability,
and serviceability (RAS) characteristics and also the
portability of the code. Future protocol changes in the
interface between the SE and CEC are transparent to
the cage-controller code. Most of the cage-controller
implementation is independent of the actual CEC interface
hardware. If the CEC interface hardware changes, only the
XMsg-engine handler has to be replaced by a new device
driver.

The concept of a data pump relieved cage-controller
memory requirements dramatically, because there is no
longer a need to provide a large buffer for service words.

The number of necessary transfer steps to transfer one
service word was reduced from a complex scheme of up
to five data-block transfers per service word to only two
transfer steps: the NetMessage request and reply block
transfers. This simplified the state machines required on
the CEC side and created better performance due to less
protocol overhead.
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Further performance improvements were achieved by
increasing the maximum data size from 64 KB to 512 KB
per service word. This means less protocol overhead for
large data transfers, such as those used for CECDUMP
or initial firmware loading. Also, introducing full duplex
instead of half duplex mode allows two service words to
be active at the same time and reduces service-word
handler busy conditions.

Performance comparison of service-word data transfer
rates between the z900 and the z990 showed that the
performance of diskette IPL (“Load processor from file”
function with a sample file size of § MB) was improved
by more than 50%, and the performance of CECDUMP
(sample dump size 40-60 MB) was improved by more
than 400%. This performance improvement is, to some
extent, achieved through the new protocol described
in this paper, but other factors also contribute to this
improvement (for example, new, faster hardware on all
levels). Since the new protocol is not available on the
7900, it is, of course, difficult to say exactly what percentage
of the improvement can be attributed to the new protocol.

RAS characteristics have been improved by simplifying
the code and by introducing better recovery from error
situations and fault tolerance (for instance, the use of
acknowledged reset sequences and the introduction of
transaction IDs and sequence numbers in the protocol
headers). Also, FEDC capabilities have been greatly
enhanced; FEDC and continuous trace data is now
permanently written into special trace buffers and
retrieved and logged when it is required in case of a
failure [9].

Looking forward

The future requirements for an SE-CEC communication
interface can be easily met by the NetMessage
communication concept. For example, the new protocol
allows data to be both sent to and received from the other
side within one service word.

Also, traditional service-word functionality—such as file
transfers, CECDUMP, and logical partition hypervisor
communications—can now be realized by exploiting the
capabilities of the NetMessage protocol instead of using
service words. This reduces the traffic that flows over the
service-word path and allows parallel processing of several
types of SE-to-CEC communication tasks.

The protocol layering allows adjustments and extensions on
each level for all types of future SE-to-CEC communication
requirements. New NetMessage message types or request
types, etc., can be defined and supported as required.

Summary

By introducing the NetMessage protocol on all interfaces

involved in the processor-to-SE communication, z990

offers significant improvements over the z900 and its 445
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predecessors in the areas of performance, code simplicity,
RAS characteristics, and FEDC concept. Moreover, this
flexible, extensible concept for CEC-to-SE communication
puts zSeries firmware in a good position for future IBM
eServer* projects and their emerging requirements.
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