
Configurable system
simulation model
build comprising
packaging
design data

H.-W. Anderson
H. Kriese

W. Roesner
K.-D. Schubert

A high-end eServer� consists of multiple microprocessor chips
packaged with additional chips on a multichip module. In
conjunction with memory and various I/O cards, this module
is mounted on a card called a processor book, and a few of
those cards on a board finally represent a major part of the
system. Before the first hardware is built, simulations must be
performed to verify that all of these components work together.
But before we can build the simulation models, we need to
find answers to many questions and to specify constraints,
such as the scope of the simulation, the representation of the
packaging data, the handling of cross-hierarchical connections
such as cables, and the handling of passive components such
as resistors and capacitors. This system model build should be
as flexible as possible. System verification must be done for
different system configurations (both single-processor and
multiprocessor systems, one-processor-book systems, and
multiprocessor-book systems) with or without I/O. Therefore,
not only should a configurable model build downsize the
model structure, but it should provide the capability to add
logic. The requirement to include special logic, such as clock
macros or checker logic, is driven by the use of emulation
and acceleration technology and by other speed-related
elements. This paper discusses these new concepts in eServer
development: a configurable simulation model build, the
automatic derivation of structural model data from packaging
design, and the addition of specific logic without affecting the
model structure generated by the previous step.

Introduction
One of the first lessons a new verification engineer has to
learn is that no verification can be performed by any kind
of simulation without a proper representation of the design
under test; this representation is called the simulation model.
In most cases, a chip design is specified using a hardware
design language (HDL). Various electronic design
automation (EDA) companies offer tools that compile the
HDL design source into a simulation model. In this paper,
we call this the classical approach. Designs created with this
approach are not described in one large flat file, but in
multiple files built in a hierarchical tree structure.

On this basis, it may seem that all of our problems
are solved and we are just a compile step away from
developing a simulation model when it is needed. While
this might be true for small ASIC chip designs, it is not
true for the development process of a large server. That
involves a host of new issues, most of which derive from
the fact that a large, distributed team of people follow
a complex process, with many individuals working on
multiple chips and the connecting packaging infrastructure
in parallel. In addition, the shortcomings of the
standardized languages force additional innovation. This
paper addresses the technical and process-related issues

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

367

that we had to solve to efficiently verify the system and
describes the implementation details of our solutions.

System verification aspects
The design and verification of a high-end eServer*
involves a significant number of design and verification
engineers. With such a large group, it is very important to
ensure the consistency of the data used in the daily work.
Any copy with local modifications to solve a particular
problem for a subset of people or a given task increases
the probability that design problems will occur and
remain undetected. If local copies are permitted, local
modifications may not be communicated and implemented
universally, and multiple versions of the design may
coexist without anyone being the wiser.

Because of these practical limitations, we established
a simulation-model-build ground rule that the design
sources should never be modified; modifications required
to support different verification activities were to be
handled by simulation-only add-on files. This rule solves
the problem in theory, but it also creates new problems.
The first problem is that across the global verification
team, there are different needs for the content of a system
simulation model. For instance, team A needs to build a
model that contains one processor chip, the complete
memory subsystem, and one I/O hub chip, while the
model needed by team B is identical, except that it should
contain two processor chips and no I/O hub chip. In the
classical approach, the difference between the two models
would result in different versions of certain packaging
levels. The only way to achieve this is to make a copy of
the original HDL files, manually change the content to
accommodate the different model configuration, and build
a new model. This can certainly be done, but there are a
few concerns.

When manual changes are being made in a copy of
the design source, there is a likelihood that errors will be
introduced. Furthermore, removing a component such as a
chip from a given model can lead to unconnected signals
that, in turn, may lead to compiler errors if they are not
handled appropriately. Fixing these errors usually requires
an iterative process that is not very effective. When this
method is applied to really large systems with many
packaging levels and many model configurations (and
therefore a long list of modified files), building a new
model can become a nightmare. The history and efforts
in this area are discussed in [1] and [2]. Both describe
the use of a hierarchical representation for a subsystem or
system structure. In addition, the authors talk about the
need for different system structures that can be effectively
simulated, and they state that this is a challenge for
system simulation. Our solution to this problem, simply by
adding configuration files for the model build, is described
in the next section.

The scope of system verification in the context of
eServer goes beyond just the chips. All chips developed
for the system are physically connected via the packaging
infrastructure, which consists of cards, boards, multichip
modules (MCMs), and cables. As the turnaround time for
packaging design increases and, as a result of increased
signal density, the possibility for workarounds decreases, it
becomes more and more important to verify not just the
chips, but the packaging design itself. Packaging is often
designed using graphical tools, and designs contain analog
components such as resistors, capacitors, and so on.
Obviously the electrical behavior—including timing and
noise—must be analyzed for all packaging levels, but the
logic of these designs must be verified as well. Functional
verification of the packaging is therefore one of the tasks
performed during system verification.

As mentioned above, the model build for any logic
simulation requires that the design be specified in HDL.
To achieve a reasonable simulation performance and to
make sure that even hardware acceleration or emulation
can be used, the input to the model build is not allowed
to contain analog components. Thus, the challenge is to
find a process able to convert graphical design input into
HDL while eliminating all analog components in a way
that ensures that the logic behavior remains identical.
As a side effect, solving this challenge not only helps
verify the packaging design, but the packaging data
provides information on the chip pin circuitry and its logic
values. Therefore, some of the testbench initialization
effort is obsolete. The section on generating system
structure data from package design data discusses the
solution and how packaging design input is translated into
very-high-speed integrated circuit hardware description
language (VHDL).

There is one additional packaging component that
cannot be converted to HDL in the same way as the
others: the cable. The reason for this is a restriction in the
HDL. These design languages are defined in such a way
that they can represent only designs that follow a tree
structure. However, the nature of a cable is to break
the tree structure and to connect two arbitrary leaves
in the tree (Figure 1). To model a cable by the classical
approach would require a kind of flattening process. One
has to select the common node of the leaves that are
connected via the cable and merge the connection described
by the cable in all design files that lie between the node and
the two leaves for the connection. Figure 1 highlights all
of the design files that must be changed in that example.

To avoid having to change all of the files in the above
example, we developed a proprietary extension to VHDL 1

1 VHDL [3] is the hardware design language of choice within the IBM Systems
Group for pSeries* and zSeries* hardware development. To guarantee a smooth
and seamless system simulation model-build process, all extensions and features
described in the following sections are based on VHDL.

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

368

that is described in the section on Bugspray. This extension
is able to describe all cases in which the design hierarchy
cannot be mapped to a tree structure.

Finally, it is a very useful feature for the verification
engineer to be able to add virtual logic into the model.
This can be used for various actions, from implementing
some types of low-level checking to adding certain driver
capabilities. Also, it is a very useful feature for moving
certain portions of the testbench into the model via virtual
logic, particularly if the model is targeted for hardware
acceleration or emulation where interaction between the
testbench and the model must be minimized. With the
classical approach, there are two issues in adding virtual
logic. First, this can be done only by changing design
sources. Second, in order to use this feature efficiently, it
is often necessary to connect information from different
hierarchical levels. Merging this simulation-only logic into
the design source, as described for cables above, is just
not practical. The obvious solution, of course, is to use the
same concept we use to model cables. Thus, the solution
we describe in the Bugspray section below provides
verification engineers with new capabilities that can be
applied for multiple purposes.

Configurable system-simulation model build
The model build for system simulation has to deal with
a variety of factors defined by the given simulation
environment and the coverage of the system verification.
The simulation environment is based on the available
software simulators and several hardware accelerators
used as emulation engines. Such a heterogeneous
simulation environment requires different simulation
models. The model size is the important factor that
determines whether a model fits into a hardware
accelerator or whether the simulation speed is sufficient.
Figure 2 presents an overview of the various simulation
engines, possible model sizes, and achievable simulation
speed.

Because of the complexity of a high-end server, we must
also answer the following questions: Which parts of the
whole eServer are included in the system model? How
complete is the system model? Does the system model cover
all verification needs?

When verification starts, the first simulation model
represents the smallest system configuration, for example,
one CPU and a minimum of other chips— e.g., cache,
cache controller, and clock chips. The first model is always
a small one, because the verification environment is not
yet stable, which is also true for the logic design. Restricting
the error and debugging space is important for identifying
problems in a short time.

Other simulation models follow, e.g., a two-way processor
system, a system with a fully populated multichip module,
a two-processor-book system, and finally, a multiprocessor-

book system. All of these models can be configured with
or without I/O cards or chips and with more or less
memory.

When the model grows toward a multiprocessor-book
system, the available simulation environment and
verification tasks drastically influence the system
simulation model build; i.e., not all of the multichip
modules or cards can be fully populated. It must be
possible to build various simulation models in a flexible,
easy, and less time-consuming manner. If productivity
is a measurement, it is impossible to design the logic
descriptions (the system structures for these system

A cable is bridged across a tree-structured design hierarchy. The

highlighted boxes indicate design files that would have to be

changed in a classical approach to modeling.

Figure 1

cp0 cp1 io mem

chip1chip0mcm1

board0 board1card1card0

book3book1book1 book2

blockcblockbblockaunit2unit1

sys

mcm0

Cable

Comparison of the performance of simulation engines.

Figure 2

Accelerator

Accelerator cluster

Cadence

CoBALT**

Software simulator

Maximum simulation performance (cycles per second)

1

10

100

1000

S
y

st
e
m

 c
a
p

a
c
it

y

(t
h

o
u

sa
n

d
s

o
f

g
a
te

s)

1041 10 102 103 105 106

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

369

configurations) manually. What source can be used to
derive the data for the system structures?

As an example, Figure 3 shows a system structure from
the viewpoint of package design. As shown in the figure, this
server system consists of chips, multichip modules, cards,
and a system board. The modules, cards, and system board
connect the chips and build the system structure, which
represents the complete and fully populated system.
Given this fully populated system structure, the task
of building different simulation models is reduced to
the task of depopulating a given structure.

Depopulating a system structure using VHDL
“configuration”
The VHDL hardware design language [3] supports a
feature called configuration that perfectly performs
the task of depopulating a given design structure.
Configuration is one of the structural modeling features
of VHDL. Structural VHDL is used to describe the
connections between components. In our case, we use
VHDL to describe the connections between chips, multichip
modules, cards, and the system board. The VHDL
description of each of these components consists of
an entity and an architecture. The entity describes the
interface, i.e., the inputs and outputs of that component.
The architecture instantiates other components and
describes their connections. Configuration binds these
component instantiations to an entity/architecture pair
or to another configuration.

VHDL configuration is applied to modules, cards, and
boards (Figure 3). Each of the chips is used as a kind
of black box; that is, the chips are pre-compiled to an
intermediate data format that can be used “as is” during
system model build. Figure 4(a) is an example of a VHDL
description for a multichip module. Port maps and other
connecting signals have been omitted in order to provide
a short and clear example.

The VHDL configuration file for this multi_chip_module
may look like Figure 4(b). With the configuration file shown
in Figure 4(b), the architecture arch of the entity mcm

is configured with a clock chip, whose entity is called clock

and its architecture called arch, and this entity/architecture
pair is bound to instance CLK of the component clock_chip.
The same is valid for the instance PU0: pu_chip.

The instance PU1, component pu_chip, is bound to a
different entity/architecture pair, and the architecture is
called dummy. This architecture may not represent the
whole functionality of a “real” processor chip, but may
instead represent a version with some stripped-down
functionality to accommodate model size limitations.

The instance PU7, also component pu_chip, shows one
more possibility of a configuration. Instead of specifying
an entity/architecture pair, the statement open is used.
That means that nothing is plugged into the socket for
PU7, and the inputs and outputs for this instance remain
open.

For the cache chips, a different notation is used. Instead
of separately specifying each instance of the cache chip on
the multi_chip_module, the statement all is used to
express that all instances on the multi_chip_module

are populated with cache chips.
The next hierarchy that has to be configured is the

processor book, whose configuration file may look like
Figure 5. The configuration proc_book_config shows
another detail of VHDL configuration: As already
mentioned, configuration binds component instantiations
to an entity/architecture pair or to a configuration. The
binding to a configuration, i.e., mcm_config, is used for
the instance mcm0: mcm on the processor book. This
makes it possible to build up a hierarchy of configuration
files. Accordingly, the memory card, the I/O card, and
the board can be described with configuration files.

In summary, VHDL configuration provides the flexibility
to

● Bind all instances of a component to one
entity/architecture pair, i.e., the all statement.

● Bind each instance of a component to a different
entity/architecture pair.

● Plug in nothing, i.e., bind an instance of a component
to open.

● Bind an instance of a component to another configuration.

Example of a system structure.

Figure 3

I/O card

I/O chip

Memory card

PU chip
Clock

chip

Cache

chip

Multichip

module

Processor

book

System board

Slot p1 Slot p2Slot p0 Slot p3

Slot i0

Slot m0
Slot m1

Socket

mcm0

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

370

Figure 4

(a) Sample VHDL description for a multichip module. (b) Sample configuration file for the multichip module described in (a).

Multi_chip_module:

ENTITY mcm IS
 PORT(
 !!--- Interface to other components:
 !!--- inputs...
 !!--- outputs...
);

ARCHITECTURE arch OF mcm IS
 COMPONENT clock_chip PROT (...) END COMPONENT;
 COMPONENT pu_chip PORT (...) END COMPONENT;
 COMPONENT cache_chip PORT (...) END COMPONENT;

BEGIN
 !!--- instantiation of other components and their connections
 CLK: clock_chip
 Port map(
 !!-- connections of clock chip(instance CLK) with
 !!-- multi_chip_module signals
);
 PU0: pu_chip
 Port map(
 !!-- connections of clock chip(instance PU0) with
 !!-- multi_chip_module signals
);
 PU1: pu_chip
 Port map(
 !!-- connections of pu chip(instance PU1) with
 !!-- multi_chip_module signals
);
 !--!instantiations PU2 ... PU6 will follow here
 ...
 PU7: pu_chip
 Port map(
 !!-- connections of pu chip(instance PU7) with
 !!-- multi_chip_module signals
);
 CA0: cache_chip
 Port map(
 !!-- connections of cache chip(instance CA0) with
 !!-- multi_chip_module signals
);
 CA1: cache_chip
 Port map(
 !!-- connections of cache chip(instance CA1) with
 !!-- multi_chip_module signals
);
END arch;

CONFIGURATION mcm_config OF mcm IS

 FOR arch

 FOR CLK: clock_chip USE entity clock (arch); end for;
 FOR PU0: pu_chip USE entity cpu (arch); end for;
 FOR PU1: pu_chip USE entity cpu (dummy); end for;
 ...
 ...
 FOR PU7: pu_chip USE open; end for;
 FOR all: cache_chip USE entity cache (arch); end for;

 END FOR;

END mcm_config;

(a)

(b)

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

371

Each structural component of the system model consists
of two files: the VHDL structure for that component and
the VHDL configuration file for that component. Figures 4
and 5 show that VHDL configuration allows a given
system structure to be populated (or depopulated). The
configuration files accompany the system structure files.
These system structure files, which contain all of the
packaging design work, remain untouched. VHDL
configuration provides the flexibility of adopting
simulation models to the various verification aspects
without affecting the sensitive system structure data
from packaging design.

In addition, the VHDL configuration files are small and
easy to read and give a quick overview of a structural
component or the whole system. All of the structural
data for a system are available in packaging design.
As a consequence, all VHDL structures for the system
components and the accordingly fully populated
configuration files can be derived from packaging
data. Figure 6 shows a general model-build process
with structural data from packaging design.

With a fully populated system configuration, the task of
manipulating a system structure is reduced to the task of
changing some statements in a given configuration file.
This manipulation can be done manually or by a
program.

Generating system structure data from package
design data
For the logical verification of a system, the chips and their
signal interconnects across the packaging components
are modeled for logic simulation. As mentioned in the
previous section, it is mandatory that the overall chip
signal interconnects be described in hierarchical VHDL
that reflects the complete system package design
(chip–module– card– board– cables).

General process description
Chip designs for eServers are commonly described in
VHDL. Package design methods and tools, however, are
locally (more or less) different. Package designers are
using Cadence** graphical design tools, but there are
several varieties of these: the Concept** tool, which is
used mainly for cards and boards; the Composer** tool,
which is used for chip design and also for MCM design;
and the Allegro** tool, with which all physical package
design is created. In several IBM development
laboratories, local processes had previously been
developed to provide (human-readable) very-large-scale
integrated models (VIMs) 2 out of the Cadence data
repositories. These VIMs could be used outside Cadence
for processes such as system timing or simulating special
functions, for example, shift chain handling.

Traditional chip-level design verification did not include
package design (with the possible exception of the MCM
structure), so there was no significant requirement to
provide package design data in a form that would allow an
easy inclusion into the logical system verification process.
Therefore, when defining the process to create VHDL
from package design data, it appeared to be useful to
build upon the VIMs that could be generated by the local
tools. This would also decouple the package design data
extraction from the translation to VHDL and model-build
processes.

The first process that was implemented was the
translation of VIMs to VHDL. Once it had been proven
to work properly, the local tools to create VIMs were
replaced by new programs. The package-design-to-VHDL
process now consists completely of new programs.

2 The VIM API is described in principle by the Chip Hierarchical Design System
Technical Data Standard (CHDStd) API [4]. This work was done as a
collaboration between IBM and si2 (see http://www.si2.org/).

Figure 5

Simple configuration file for a card.

CONFIGURATION proc_book_config OF proc_book IS

 FOR arch

 FOR mcm0: mcm USE configuration mcm_config; end for;
 FOR m0: memory USE entity mem (arch); end for;
 FOR m1: memory USE open; end for;
 FOR i0: io_card USE entity io_card (arch); end for;

 END FOR;

END proc_book_config;

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

372

Process details
The package-design-to-VHDL process consists of two
steps (Figure 7):

1. The export task (extracting the packaging design data
to VIMs: Grand Central).

2. The processing task (manipulation and translation to
VHDL: Black Forest).

The first step of the new process (Grand Central)
extracts the design data from the files that are input
directly to Allegro: either the packager transfer files
for designs in Concept or the third-party netin files for
designs provided in other ways, or also similar reports
(netlist format) out of Allegro. Designs from Composer
would probably use third-party netin files, but this has to
be defined in detail. For some MCMs, netlist reports from
Allegro are provided that no longer contain the logical pin
names of the chips, so an information file is required for
every chip that must correlate logical pin names to physical
pins (pindata, typically also used for MCM design tasks)
and also for the MCM I/O pins if the pin signal names
are different from the connected (MCM internal) net
signal names.

All of these translation processes can use additional
information by means of a control file. An example would
be to add information on the type of logical function of
a component (e.g., resistor, capacitor, logic integrated
circuit).

In the second step, the data (stored as VIM files)
resulting from Grand Central or from Black Forest on
designs lower in the hierarchy has to be processed
(manipulated) for the translation to VHDL system
simulation structures. The manipulation actions are
controlled by means of a control file that uses a keyword-
values scheme. There are some basic manipulations
necessary to fulfill the requirements that the simulation
model build puts on the simulation structure VHDL:

1. Preparation of the contents (the components or parts
on an MCM, card, or board and their interconnects)
for simulation. This includes removal of all parts that
are generally excluded from simulation, such as
mechanical parts, thermal sensors, or power-supply
parts, as well as unconnected wires (signals without any
connection). It also includes the handling of special
function wires, such as connections to power planes
(voltage or ground). All other information not needed
for simulation (e.g., geometrical data) is also removed.

2. Establishing the correct hierarchy for the whole
structure (i.e., system, board, or card, etc.). All physical
connectors (card connectors, cable connectors) must be
resolved into the corresponding card I/O pins in the
card VIM and into corresponding part references in
the board (or card) VIM containing the slot connector.
These constructs can then be smoothly translated into
a hierarchical VHDL. For connections that violate the

Sample model-build process.

Figure 6

. . .

. . .

.

. . .

Chip 2

Chip 1

Chip n

Precompiled chip data VHDL

structures

VHDL compiler

Other model build programs

System model

VHDL

configuration files

Board

structures

Board

config.

MCM, card

structures

MCM,

card

configs.

Packaging design

The package-design-to-VHDL process with its two steps: the

Grand Central and Black Forest processes.

Figure 7

Cadence

Concept**

Cadence

Allegro**

Cadence

Composer**

Grand Central

Packager

transfer files

Allegro netlist

report file

Third-party

netin files

Pindata files

VIMs

Black Forest

VHDL

Control file

Top VIM

Control file

Configuration

For next upper

hierarchy level

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

373

hierarchy, a special construct is used (see the section
on Bugspray).

3. Resolving the logical function of capacitors and
resistors: Only capacitors that are connected to at least
one power-supply signal and resistors between power-
supply signals are deleted. Capacitors and resistors
between logical signals (“serial” case) are treated as a
piece of wire. Resistors connected to a power-supply
signal on one side result in a resistive drive to high
or low in VHDL.

4. Signal direction (IN, OUT, INOUT) is essential for
simulation but has no real meaning in package design
(except for graphical pin places, left or right), so that
the correct direction for each signal has to be defined
from the bottom leaves in the hierarchy (the chips),
and then propagated up to the MCM, card, and board,
in such a way that the rules from the VHDL compiler
and the simulation model-build tools are not violated.

5. Translation into VHDL. The translation is done one
design (VIM) at a time. This means that there is a
VHDL for an MCM, or a card, or a board, etc. The
VHDL files (or the compiled form, the dadb-protos)
for the chips/components/parts are assumed to be
available. This translation includes the generation
of a configuration file—a set of fully populated
configuration statements for the item being translated
(e.g., for all chips on an MCM). The compiler resolves
all references across the hierarchy. This implies that
the process has to be applied bottom-up. To be able
to process parts on the next higher level, a special
VIM, called DEF VIM, which defines the part I/O, is
generated for every design that is processed (e.g., an
MCM DEF VIM when processing an MCM with its
contained chips to be used when processing the card
where the MCM is to be mounted).

Remarks
Both processes, Black Forest and Grand Central, have
been implemented as C-code that runs as a client program
of the simulation database, dadb, and makes use of its
application program interface (API). This was the natural
consequence of the plan to see this conversion as a task
performed by the simulation people. They use an IBM-
proprietary cycle simulator for their verification tasks,
and the model build for this simulator is based upon the
mentioned simulation database, dadb. The principles
behind that simulator and its simulation database can
be found (as a brief description) in [5].

Much checking is performed prior to translation, which
aids in finding problems in the packaging design, such as
nets with no source/no sink or part pins that are referred
to on a card but do not exist in the part definition.

Package designers do not follow conventions for
identifiers as rigidly as chip designers usually do.

Therefore, it is necessary to provide some information in
the control file, which can be a lot of work: identify types
of parts (e.g., resistor, capacitor), identify power-supply
signals (e.g., VDD, GND). Another task is to identify parts
that are not necessary for simulation, although they have
a logical behavior.

Until recently, package design was logically verified
mainly by eye inspection of graphics or lists such as the
netlist reports mentioned above. With this new process, it
is possible to automatically incorporate the package design
into the simulation model directly from the design data,
which is either input to physical design or generated in
physical design. This—and the fact that no manual data
manipulation takes place (with the exception of the
generation of the control files for the process)— ensures
not only that the logical functions on the chips of an
eServer system are verified, but also that the exact
interconnections of all of the signals from and to the
logic chips across all modules, cards, and boards
(including cables) are verified.

Manipulate the system structure: Bugspray
The first part of this paper describes a feature of package
design data that is not supported by VHDL: the need to
model cable connections that cross hierarchical boundaries
(Figure 1). VHDL was designed to specify structural
hardware models using a strict hierarchy. Components can
communicate with other components only via signals that
are bound to the ports of the components.

As Figure 1 demonstrates, a cable (signal) connection
between ports of chip0 and cp1 would require additional
ports on components board1, card0, and mcm1. Finally, on
the sys level, a signal would connect the newly created
ports of the topmost components board1 and card0.

Thus, the strict hierarchy constraints of VHDL force the
creation of artificial ports on components that do not have
corresponding physical pins. This requirement has two
disadvantages:

1. Components now possibly have ports that represent
physical pins and virtual ports that are necessary only
to facilitate the cross-hierarchy signal flow through
cables. The important property of logical-to-physical
correspondence of the HDL is violated.

2. As hierarchy-crossing cables are added during the
design process, constant HDL maintenance is necessary
on all components of a hierarchy tree inside which lie
the targets of such cable connections. Packaging data
for different levels (e.g., card, MCM) typically has
different owners. The insertion of these cables creates
many additional interdependencies and slows down
change management.

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

374

Bugspray
Bugspray is a proprietary language extension to VHDL
that was designed originally to serve as a mechanism to
add nonphysical specifications for the verification process
to the HDL model. Bugspray annotations are coded as
formalized comments inside VHDL, which makes them
invisible for standard VHDL parsing.

There are Bugspray annotations that serve as directives
to collect simulation coverage information and verification
assertions. The benefits of these features are briefly
described in [2] and are not covered in this paper because
the focus here is on the simulation of packaging design
data. The coverage and assertion mechanisms use the
same infrastructure specified below, but are otherwise
completely independent.

Bugspray also supports the instantiation of virtual
components called Bugspray modules. A Bugspray
module is basically a VHDL entity/architecture with some
extensions, again encoded in formalized comments. Just
like any VHDL entity/architecture, a Bugspray module has
input and output ports. It is instantiated into a target
design, the design entity/architecture in which its input
ports are connected to design signals [Figure 8(a)].

When a Bugspray module is used to collect simulation
coverage information or to specify verification assertions,
the output ports of the module have predefined semantics
to support that functionality. For example, every assertion
drives an output port whose logic value indicates whether
the corresponding assertion has been violated. In a
simulation model, all fail ports of all Bugspray modules
are connected via a Boolean OR expression, driving a
single fail signal, which indicates whether any assertion
has been violated. Concentrating all fail information to
a single master fail signal allows a testbench to very
efficiently check whether the design had any assertion
violations during simulation.

Figure 9(a) illustrates one of two ways to instantiate
a Bugspray module inside a target design. A stylized
comment with a special start indicator (--!!) inside the
VHDL architecture specifies the name of the Bugspray
module to be instantiated. When the VHDL compiler is
called with the command line option that invokes Bugspray
processing, the --!! comments are recognized, and
an instance of my_bugspray (with an instance name
matching the name of the Bugspray module) is created
inside the architecture.

Figure 9(b) shows the VHDL for the corresponding
Bugspray module. The module shows the standard VHDL
entity, architecture, and port declarations. Note the output
port fails, which is interpreted by the model-build software
in the special way described above.

Inside the architecture there is a section of stylized
comments delimited by the keywords bugspray and end

bugspray. Inside this section, the compiler finds the
target design into which this module is to be instantiated.

Figure 9(a) shows the mode in which we instantiate a
bugspray module directly inside the target design. While
this method lets the designer clearly hook in Bugspray
checker modules directly, it has the disadvantage that any
addition of a Bugspray module requires a change in the
source file of the target design. To support a Bugspray
annotation mode that leaves design source files untouched,

(a) Bugspray module instantiation. (b) Bugspray module connec-

tions that tunnel through the VHDL hierarchy. (c) Bugspray

module with driver output connections.

Figure 8

logic

logic logic

logic

logic

c1

c2

a

b

logic

c1

c2

a

b

d1

d2

x

y

Target design

Target design

Target design

Bugspray

module

Bugspray

module

Bugspray

module

Bugspray

module

(a)

(b)

(c)

sig

Instantiation

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

375

the VHDL compiler also accepts a simple list of Bugspray
modules. The bugspray design: specification inside the
Bugspray section of the module anchors the module in the
correct target design.

Every instantiation of a module requires that it specify
which signals are to be connected to the input ports of
the module. This is done inside the INPUTS . . . END

INPUTS section in Figure 9(b). This is syntactically similar
to a VHDL port map in that we require a list of formal
ports associated with the actual signals in the target
design. All design signals are visible by name in exactly
the same way as they would be if the Bugspray module
had been instantiated directly inside the target design.

Figure 8(b) shows a special feature available for
port maps of Bugspray modules. The target design in
this example has a component hierarchy inside, with
component c2 instantiated inside c1. The Bugspray port
allows the user to access signals not only from inside the
target design, but also anywhere inside the component
hierarchy that is anchored by the target design.

Conceptually, this puts the author of a Bugspray module
in a hierarchical name scope with visibility to all signals
from the target design downward. If a module port

(a) Target design VHDL annotated with an instance of a Bugspray

module. (b) Example 1 for a Bugspray module. (c) Example 2 for a

Bugspray module.

Figure 9

ENTITY target_design IS
 PORT(...);
END target_design;

ARCHITECTURE arch OF target_design IS
 SIGNAL a: std_ulogic_vector(0 to 7);
 SIGNAL b: std_ulogic;
BEGIN
 --!! bugspray module : my_bugspray;

END arch;

ENTITY my_bugspray IS
 PORT(in1 : IN std_ulogic_vector(0 to 1);
 in2 : IN std_ulogic;
 fails: OUT std_ulogic_vector(0 to 0)
);
END my_bugspray;

ARCHITECTURE arch OF my_bugspray IS

 --!! bugspray design : target_design;

 --!! INPUTS
 --!! in1(0 to 1) => a(5 to 6);
 --!! in2 => b;
 --!! END INPUTS;
 --!! end bugspray;

BEGIN
...
END arch;

ENTITY my_bugspray IS
 PORT(in1 : IN std_ulogic_vector(0 to 1);
 in2 : IN std_ulogic;
 fails: OUT std_ulogic_vector(0 to 0)
);
END my_bugspray;

ARCHITECTURE arch OF my_bugspray IS

 --!! bugspray design : target_design;
 --!! INPUTS
 --!! in1(0 to 1) => c1.a(5 to 6);
 --!! in2 => c1.c2.b;
 --!! END INPUTS;

 --!! end bugspray;

BEGIN
...
END arch;

(a)

(b)

(c)

Example 3 for a Bugspray module.

Figure 10

ENTITY my_bugspray IS
 PORT(in1 : IN std_ulogic;
 in2 : IN std_ulogic;
 out1: OUT std_ulogic;
 out2: OUT std_ulogic;
 out3: OUT std_ulogic;
);
END my_bugspray;

ARCHITECTURE arch OF my_bugspray IS

 --!! bugspray design : target_design;

 --!! INPUTS
 --!! in1 => c1.a;
 --!! in2 => c1.c2.b;
 --!! in3 => sig;
 --!! END INPUTS;

 --!! DRIVER OUTPUTS
 --!! out1 => d1.x;
 --!! out2 => d1.d2.y;
 --!! out3 => sig;

 --!! end bugspray;

BEGIN
 out1 <= in1; out2 <= in3; out3 <= in2;
END arch;

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

376

has to be connected to a signal inside a hierarchically
nested component, a hierarchical naming scheme, which
uses component instance names as prefixes, is used
to disambiguate the name of the signal. Figure 9(c)
shows an example of the syntax. The use of hierarchical
target signal names allows a user to tunnel through the
component hierarchy of the design without forcing explicit
ports on the design components.

Bugspray driver outputs
Bugspray support to instantiate virtual components and
the signal tunneling feature created a solid base to
support the special needs required by packaging data
specifications, especially cross-hierarchy cables, as
described above.

We extended the Bugspray features by adding user-
definable output ports that are allowed to drive signals
inside the target design. The same signal scope rules apply
to these driver output signal port maps as were established
for the input ports, specifically the capability to tunnel
through the design hierarchy without requiring explicit
ports.

The Bugspray module in Figure 8(c) reaches into
components c1 and c2 to connect signals to input ports.
The module now also has driver output ports that connect
to signals on three different levels of the component
hierarchy, including a tunneling access into components
d1 and d2. The model-build software connects driver
outputs in such a way that any original source that was
connected to the target signal is replaced by the signal
coming from the Bugspray module, e.g., signal sig in
Figure 8(c). Figure 10 shows the corresponding VHDL
for this example.

To summarize, the special needs of packaging data
representation and simulation required some proprietary
extensions to the VHDL language with the Bugspray
mechanism. While the overwhelming part of a Bugspray
module is still written in VHDL, an organic, VHDL-style
extension has been implemented that lets a user define
virtual, simulation-only components and connections that
cross hierarchies, such as the cross-packaging cables in the
hardware.

Concluding remarks
In this paper we have described a methodology that
enables the verification team to build simulation models
based on packaging design data in an efficient, flexible,
and less error-prone way.

A correct and complete model structure is the basis for
extensive logic verification. This is achieved by generating
the structural model data directly from packaging design.
This process generates the data for the whole system
structure.

VHDL configuration provides the efficiency and
flexibility to derive, in a nondestructive way, different
system structures from this complete structure for the
various needs of the verification team. With an additional
tool, called Bugspray, cross-hierarchical connections and
additional logic can be inserted into the system structure.
This flexibility can be used to cover special needs in
system simulation model build.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cadence Design
Systems, Inc.

References
1. H. Kohler, “Design of a Multichip Module Containing a

12Way S/390 Microprocessor Subsystem,” presented at the
Ninth Annual IEEE International ASIC Conference, 1996.

2. J. M. Ludden, W. Roesner, G. M. Heiling, J. R. Reysa,
J. R. Jackson, B.-L. Chu, M. L. Behm, J. R. Baumgartner,
R. D. Peterson, J. Abdulhafiz, W. E. Bucy, J. H. Klaus,
D. J. Klema, T. N. Le, F. D. Lewis, P. E. Milling, L. A.
McConville, B. S. Nelson, V. Paruthi, T. W. Pouarz, A. D.
Romonosky, J. Stuecheli, K. D. Thompson, D. W. Victor,
and B. Wile, “Functional Verification of the POWER4
Microprocessor and POWER4 Multiprocessor Systems,”
IBM J. Res. & Dev. 46, No. 1, 53–76 (January 2002).

3. IEEE Standard VHDL Language Reference Manual, IEEE
STD 1076-1993, IEEE Press, New York, 1993.

4. The Chip Hierarchical Design System Technical Data
Standard; see http://www.si2.org/index_ files/
si2_ publications.htm#CHDStdThe_Chip_ Hierarchical_ Design/.

5. J. Darringer, E. Davidson, D. Hathaway, B. Koenemann,
M. Lavin, J. Morrell, K. Rahmat, W. Roesner, E.
Schanzenbach, G. Tellez, and L. Trevillyan, “EDA in IBM:
Past, Present and Future,” IEEE Trans. Computer-Aided
Design 19, No. 12, 1476 –1497 (December 2000).

Received September 22, 2003; accepted for publication

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 H.-W. ANDERSON ET AL.

377

November 3, 2003; Internet publication April 6, 2004

Hans-Werner Anderson IBM Systems and Technology
Group, IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (anderson@de.ibm.com).
Mr. Anderson is an Advisory Engineer in the eServer zSeries
Processor Development Group. In 1985, he received his Dipl.-
Ing. degree in electrical engineering from the Technical
University of Stuttgart. He joined IBM in 1985 and works on
chip physical design, logic simulation, and verification tools.

Hans Kriese IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (hkriese@de.ibm.com). Mr. Kriese
is an Advisory Engineer in the eServer zSeries Processor
Development Group. In 1973, he received a diploma in
physics from the University of Tuebingen. He joined IBM in
1973 and works on logic and packaging design entry, logic
simulation, and verification tools.

Wolfgang Roesner IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (wolfgang@us.ibm.com).
Dr. Roesner is an IBM Distinguished Engineer. He is the
technical leader for System Group verification tools
development, and the verification methodology leader for the
next-generation server. He received his Dipl.-Ing. and Dr.-Ing.
degrees from the University of Kaiserslautern in 1980 and
1983, respectively. Dr. Roesner developed simulators and
hardware design languages at IBM in Boeblingen, Germany,
later joining the POWER processor development team,
where he co-developed the TexSim simulation system.
His verification tools have been used on all IBM CMOS
microprocessor projects, and since 1996 he has been
responsible for the strategy of verification tools development.
Dr. Roesner has received three IBM Outstanding Achievement
Awards and one IBM Corporate Award for development in
hardware design language processing and simulation.

Klaus-Dieter Schubert IBM Systems and Technology
Group, IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (kdschube@de.ibm.com). Mr.
Schubert is a Senior Technical Staff Member in the Hardware
Development organization in the Boeblingen laboratories. He
received his M.S. degree in electrical engineering in 1990
from Stuttgart University. He subsequently joined IBM in
Boeblingen and has been responsible for hardware verification
of multiple S/390* systems. He was the technical leader for
the hardware verification of the z900 2064 system and is
currently responsible for the system verification including
the VPO activities for all eServers including the z990 system.
Mr. Schubert holds three patents and has received two IBM
Outstanding Technical Achievement Awards for his work on
zSeries verification.

H.-W. ANDERSON ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

378

