A new load-balancing
strategy for the solution
of dynamical large-tree-
search problems using
a hierarchical approach

We describe a new load-balancing strategy, applied here to

the protein structure prediction problem, for improving the
efficiency of the hierarchical approach when dealing with
coarse-grained problems associated with large tree searches.
Unlike other load-balancing strategies that reassign load from
the heavily loaded processors to the lightly loaded or idle ones,
the proposed strategy changes the virtual communication tree
among the processors as the computational tree changes. The
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strategy incurs minimal overhead and is scalable.

1. Introduction

Many applications, such those found in combinatorial
optimization graph searching [1], protein threading [2],
and protein structure prediction [3-5], can be addressed
by searching through a large tree of possible solutions.
An often-cited example is the traveling salesman problem
[6], in which a salesman must find the shortest path that
connects a list of cities. The only way to solve the problem
exactly is to try every possible itinerary. However, as the
number of cities in the list increases, the size of the

tree and consequently the computing time explode
exponentially. In some cases, such problems are
computationally intractable because the trees they
generate become so large that their complete traversal

is practically impossible.

In order to solve such problems, one can use techniques
such as branch and bound that attempt to find the solution
(or a good approximation) while minimizing the number
of possible solutions investigated [7]. The technique
reduces the search space by dynamically pruning those
areas that are unlikely to generate a solution. For
example, in the traveling salesman problem, the cost
associated with visiting the cities decreases monotonically.
If a partial solution (a leaf of the tree) has been found
with a cost ¢, all of the partial itineraries with cost greater
than ¢ should not be pursued further.

The execution of a branch-and-bound algorithm
in parallel further accelerates the search process by
decomposing the tree (task) into different subtrees

(subtasks) that are assigned to the processors for
independent computation [8—12]. These computations are
nonuniform because it is impossible to predict a priori
the size and shape of the tree. An efficient approach for
dealing with these problems must be dynamic in order
to adapt to the changes occurring during computation.
Also, it must be scalable in order to compute more
subtrees in parallel when more processors are available.
Finally, it must produce partial results quickly and
spread those results to the system quickly so as to

avoid unnecessary computations on more unproductive
branches.

A number of strategies to deal with these programming
issues have been proposed [13-24]. The centralized
strategy is based on the master/slave approach, in which
the master processor keeps the tasks in a queue and hands
them to the slaves upon request [25]. Because the master
processor takes care of the distribution and coordination
of the tasks and gathering of the partial results, load
balancing and pruning are straightforward. The strategy
is easy to implement, but the master can become a
bottleneck as the number of slaves increases. In the
distributed approach, each processor is assigned a subtree
and handles its own queue of tasks [26]. However, because
the subtrees may have different sizes, a dynamic load-
balancing strategy becomes necessary to distribute the
load that can fluctuate with time across the processors.
Also, exchange of the results must be asynchronous
because of the uneven size of the subtrees. These
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procedures incur substantial overhead and are not easy
to implement [27, 28].

The hierarchical approach combines characteristics from
the centralized and the distributed approaches [29, 30].

In the hierarchical approach, a master assigns tasks to a
selected group of processors called the supervisors. Each
supervisor further partitions the assigned task into
subtasks and assigns the subtasks to its corresponding
group of workers. The supervisors gather the results from
the workers and send them to the master. To keep the
load balanced, the master and the supervisors assign

tasks upon request. The hierarchical approach presents a
scalable alternative to the centralized one while keeping
its simplicity. However, we discuss a type of problem in
which the hierarchical approach requires additional load
balancing in order to improve the efficiency of the parallel
implementation. Such problems occur when the master
runs out of tasks (because it reaches the last stage or
because the algorithm requires synchronization every
number of iterations) and it cannot assign work to

the supervisors requesting more. Consequently, those
supervisors and their corresponding workers remain idle
waiting for the busy ones to finish their work. Because the
size of the tasks is relatively large at the master—supervisor
level since they are coarsely partitioned at the higher level
of processors in the hierarchy, the strategy incurs a great
deal of idle time.

In this paper, we present a new load-balancing
technique that improves the efficiency of the hierarchical
approach when dealing with coarse-grained problems
associated with large-tree searches. Unlike other load-
balancing techniques that reassign work from the heavily
loaded processors to the lightly loaded or idle ones, the
proposed technique reassigns workers from the idle
supervisors to the busy ones so that they can finish their
job more rapidly. The technique incurs minimal overhead
and it is scalable.

This paper is organized as follows. In Section 2 we
present an example of the class of tree-search applications
we want to address—the protein structure prediction
problem. In Section 3 we describe the hierarchical
approach for parallelization of such problems. In Section 4
we present a load-balancing strategy for improving the
efficiency of the hierarchical approach when it is used in the
context of coarse-grained problems, and discuss some
performance results. Finally, in Section 6 we provide some
conclusions.

2. A case study: The protein structure prediction
problem

Proteins are molecules composed of a string of amino
acids that fold into complex three-dimensional topologies
(tertiary structure). The amino acid sequence and its
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aqueous environment give rise to energetic forces which
guide the formation of the tertiary structure of the protein
that in turn determines its function. Assuming that the
tertiary structure occurs at the global minimum of the
free-energy surface, the problem can be formulated as a
global minimization problem. However, finding the global
minimum of the energy surface is a challenging task,
because the energy surface presents many low-lying

local minima whose number is assumed to grow
exponentially with the number of amino acids in

the sequence [31, 32].

The potential energy function used is the AMBER
(Assisted Model Building with Energy Refinement)
molecular mechanical force field [33], which is based upon
the Cartesian coordinates of the n atoms of the protein.
The position of the atoms may be described by parameters
b,, the distance between the ith atom and a designated
neighboring atom, 6, the bond angle formed by a
sequence of three bonded atoms, and y, a dihedral angle
formed by a sequence of four bonded atoms. Typically,
force fields represent bonds and angles as harmonic
distortions, dihedrals by a truncated Fourier series, and
nonbonded interactions via Lennard-Jones and Coulomb’s
law for electrostatic interactions between point charges.
The AMBER function is defined as

#bonds #angles
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The first three terms represent the bonded interactions,
and the final terms represent the nonbonded interactions.
The nonbonded interactions occur between every pair (i, j)
of atoms and depend on the distance r, between the pair
of atoms, and on their charges ¢, and q;- The terms with
zero subscripts pertain to equilibrium values.

To introduce a stabilizing force for forming hydrophobic
cores, a solvation term, E_ . . has been added that
accounts for hydrophobic effects [34]. It is represented
by a sum of M Gaussians, viz.,

Wi

e le M r.—c\
Esolvation = E E Ehk exp[ - ( : k) :|’
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where the sums over i and j are over the aliphatic carbon
centers, and each of the Gaussians is parameterized by
position ¢,, depth 4, and width w,.
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Our protein structure prediction method consists of two
phases [3]. Phase 1 generates good initial configurations
that are low-energy local minima. Phase 2 improves
the initial structures by performing small-scale global
minimizations in various subspaces of the space of torsion
angles of the protein. The small-scale global optimizations
use the stochastic method of Rinnooy-Kan and Timmer
[35], which is general in the sense that subspaces of
arbitrary dimension can be explored. However, in practice,
the amount of work required to reach the theoretical
guarantee is prohibitive for large subspaces. Thus, we
usually select a subspace size of 6 to 12 variables. Our
method selects a local minimizer from a list of minimizers
and a subset of coordinates and performs a small-scale
global minimization on that subset using the selected
coordinates as variables while keeping the remaining ones
temporarily fixed at their current values. The small-scale
optimization produces a number of local minimizers in the
subspace of chosen coordinates. Configurations are ranked
in terms of their energy value, and the best refers to the
lowest energy value. A number of those conformations
with low energy values are selected for local minimizations
on the full variable space. The new minimizers obtained
from the local minimizations are merged into the current
list ordered by energy value. The process repeats iteratively,
as follows:

(1) For some number of iterations:
(a) Select a configuration and small subset of
parameters to improve:
Select a local minimizer to improve from the
list of full-dimensional local minimizers.
Select a subset of variables.
Small subproblem global optimization:
Apply a global optimization algorithm to the
energy of the selected configuration with only
the selected parameters as variables.
(¢) Full-dimensional local minimization:
Apply a local minimization procedure, with all
of the parameters as variables, to the lowest-
energy configurations that resulted from step
(b), and merge the new local minimizers into
the list of local minimizers.

(b

~

(2) After a number of iterations:

Cluster local minima and test for convergence:
Cluster the list of local minimizers via pairwise
RMSD, and if the stopping criteria have not
been met, repeat the iterative procedure with
a new list of local minimizers containing the
lowest-energy minimizer from each cluster.

After a number of iterations, the list of local minimizers
are clustered via pairwise root mean squared deviation
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(RMSD) evaluations and ordered by energy value within
each cluster. A new list is formed with the lowest-energy
minimizer from each cluster, and the iterative procedure
starts again with this new list. The algorithm is considered
to have converged when it finds no change in cluster
number and no further lowering of energy in the lowest-
energy cluster.

Computationally, the problem can be viewed as a search
through a huge tree of possible solutions for which the
root of the tree corresponds to the primary sequence of
amino acids; a subtree consists of an initial minimizer and
all of the minimizers generated from it by applying a
global optimization on a small subspace followed by a
local minimization over the entire space; and the leaves
correspond to the local minima. Clustering corresponds to
a synchronization point, and it has the effect of pruning
the tree of possible configurations. Researchers have
estimated that to solve the protein structure prediction
problem by traversing the entire tree would take 107 years
for an average-sized protein of 100 amino acids [36]!

In order to make the search through this tree possible,
our method creates configurations that are low-energy local
minima and uses them as the roots of the tree. Thus, the
tree that must be traversed is significantly smaller than
the one that begins with the extended sequence of amino
acids. However, since the amount of computational time
needed for proteins of realistic size remains high, the use
of parallel computers becomes a necessity. In fact, our
current runs on the IBM SP* computer at the NERSC
(National Energy Research Scientific Computing Center)
facility at Berkeley, California, require the use of many
processors for many hours and even weeks to converge.
Our method is highly but not straightforwardly parallelizable.
The main problems are how to partition the load and
keep it balanced, considering that the work is dynamically
generated and its computational time unknown, and how
to efficiently gather partial results generated without
jeopardizing the scalability of the code. In the next sections
we describe an approach to deal with these issues.

3. The hierarchical approach

We assume a task-parallel model of computation in which
a task corresponds to the execution of a node of the tree.
Each task may generate other tasks. Because the tree

is usually very large and traversing it completely is
computationally impossible, it is important to use partial
results generated to guide the search to the most
promising areas.

A hierarchical approach provides such complex
applications as tree searches with a natural programming
paradigm for their implementation on large systems. It
assigns subtrees to different groups of processors, allowing
one to maintain the information updated without incurring 155
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significant communication overhead. The system is divided
into three different categories of processors and two levels
of work, each dealing with different types of tasks and
granularities. In the first category, a master processor keeps
the global information updated, assigns coarsely divided
tasks to a selected group of processors called the
supervisors, and collects the partial results. In addressing
the protein structure prediction problem, the master

has a list of initial configurations created in Phase 1 and
assigns one configuration to each supervisor for global
minimization in a subspace. The master maintains the list
of updated local minimizers and distributes them to the
supervisors upon request. Each supervisor partitions the
assigned task into subtasks and assigns the subtasks to its
corresponding group of workers. In the protein example,
the global optimization task involves different subtasks
such as sampling over the parameter space, selecting
sample points to be starting points for local minimizations,
and performing the local minimizations themselves. The
supervisors assign those subtasks to the workers and then
gather the results. Also, the supervisors can participate in
the execution of the subtasks. When the assigned task is
complete, the supervisors send a number of the best
energy structures found to the master. The supervisors
control the work of their workers and manage the local
information in their group but have no knowledge about
the computation in other groups. Finally, in the third
category are the workers that perform smaller subtasks
assigned by the supervisors and report the results to their
supervisors. To keep the load balanced, the master and
the supervisors assign tasks upon request. Synchronization
at the end of each task is avoided because the sizes of the
tasks vary.

The hierarchical approach presents a scalable
alternative to the centralized approach while keeping its
simplicity. In fact, as the number of processors grows,
new layers can be added to the hierarchy to prevent
the supervisors and/or the master from becoming
communication bottlenecks. However, some
synchronization may be necessary during the computation,
either to gather the final results at the end of the
computation or to gather partial results for every number
of iterations. In those cases, upon reaching a specific
number of iterations, the master stops assigning work.
Therefore, because the task times are unpredictable and
usually long, some supervisors and their workers may be
idle until other supervisors and their workers complete
their jobs. The idle time the supervisors and their
workers accumulate after running a number of such
synchronization points becomes a considerable percentage
of the total execution time. In the next section, we
present a load-balancing strategy that minimizes this
idle time.
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4. A new load-balancing strategy

We propose a load-balancing strategy that reassigns
workers to new supervisors as they become idle. Thus,
instead of reassigning tasks, the proposed strategy
reassigns workers from the idle supervisors to the busy
ones. Our approach changes dependencies in the hierarchy
rather than transferring load, so that busy supervisors will
have a larger number of workers assigned to them to
complete their tasks in less time. The hierarchical
approach makes it easy and cost-efficient to reassign
processors to new supervisors by letting the idle
supervisors reassign their workers.

When the master reaches a synchronization point,
it sends a message to the supervisors that contact it in
search of more work. The message that the master sends
to the idle supervisors contains a list of the supervisors
that are still busy. Upon receiving this message, the idle
supervisor splits its workers among the busy supervisors.
The busy supervisors may accept the offer or not,
depending on the number of workers they already have
and the amount of work to do. To avoid a situation in
which a worker is assigned to a supervisor that becomes
idle before accepting it, the former supervisor waits for an
acknowledgment message from its worker before deleting
it from its list. Another undesirable situation may occur
when only one supervisor remains busy. Assigning all of
the workers to the busy supervisor will have the same
undesirable consequences as using the master/slave
approach, with the busy supervisor becoming a bottleneck.
To avoid such a situation, a maximum limit is set on the
number of idle workers a busy supervisor can accept. This
number usually depends on the computer and the total
number of processors used. If the busy supervisor is
offered more processors than the maximum number it can
handle, the supervisor measures the amount of work to be
done (this may be measured by the number of tasks in the
queue). If this amount appears to be relatively large, the
busy supervisor may split its task into two subtasks and
assign one subtask to the central scheduler so that this
task can be subdivided among the idle supervisors. At this
point, the supervisor may or may not release some of its
extra workers to their previous supervisors depending on
whether or not they have been assigned jobs. Figure 1
outlines the hierarchical approach using the proposed
load-balancing strategy.

We ran two experiments on the IBM SP computer at
NERSC in order to examine the effectiveness of the load-
balancing strategy. In the first experiment, we compared
the hierarchical approach without and with the new load-
balancing strategy using 19, 34, 68, and 127 processors.
We designated the approach that does not use the new
load-balancing strategy as the static approach, while
the one that uses the new load-balancing strategy was
designated as the dynamic approach. In all cases, we kept
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The master:

while (iteration does not reach synchronization point)
Select a task from the queue of tasks.
Assign the task to an idle supervisor.
Put the new tasks generated by the supervisors in the queue.
Update the queue of tasks according to the results found so far (pruning).

end while

if (synchronization point is reached and all supervisors are finished)
Send STOP message to all supervisors.

else

Send IDLE message to each supervisor that requests work.

end if

The supervisors:

while (receiving new task from master)

Perform the task.

Divide the task into smaller subtasks.
Schedule the workers to perform the subtasks.

Gather results from workers.
Send results to the master.

end while

if (IDLE message is received from the master)

Reassign workers.
Update list of workers.

else if (STOP message is received from the master)

Send STOP message to workers.

end if

The workers:

while (receiving new tasks from supervisor)

Perform subtask.

Send results to supervisor.
if (new supervisor is assigned)

Update supervisor ID.
end while

Hierarchical algorithm using a dynamic approach.

the amount of work fixed to a certain number of iterations
(i.e., the number of nodes of the tree that were expanded
was fixed). For those runs, we kept the starting number

of workers per supervisor fixed to eight and varied the
number of supervisors. Thus, as a function of processors,
we used 2, 4, 7, and 14 supervisors, respectively. Note that
if the dynamic algorithm is used, the number of workers
varies dynamically because they are reassigned during the
computation to keep the work balanced.

Figure 2 compares the time required to complete 14
iterations using the static and dynamic algorithms for the
analysis of 1POU, a protein with 70 amino acids. Although
the times for ten processors, i.e., eight workers, one
supervisor, and one master, were the same (dynamic
reallocation of workers is not possible with a single
supervisor), the dynamic approach shows significant
gains if larger numbers of processors are used. Note that
synchronization points for these tests occurred only at the
end of the computation. Thus, more significant differences
between the static and dynamic approaches should be
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expected when further synchronization points are included
in the computation. This experiment also indicated good
scalability of the dynamic approach, with execution times
decreasing with the number of processors until reaching a
certain limit that could not be improved without further
refinement of the granularity of tasks. Also, note that
Figure 2 compares execution times obtained by using an
already efficient hierarchical approach that keeps the
processors busy most of the time with an even more
efficient approach that keeps processors busy all of the
time. Thus, although the overall speedup shown does

not appear to be impressive, the actual gains in the

total execution times were significant.

The second experiment further explored the scalability
of our algorithm at the supervisor level by increasing the
number of supervisors as well as the number of minimizers
expanded for each run while keeping the initial number of
workers per supervisor fixed at eight. Thus, unlike the
previous experiment, for every set of one supervisor and
eight workers added, we increased the size of the tree to
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Execution times for the static and dynamic approaches using
different numbers of processors. Adapted from [5] with permission.

Table 1 Execution times for increasing numbers of
processors and nodes.

No. of No. of No. of nodes Execution time
SUDErviSors — processors expanded (hr)
14 127 27 3:52
18 163 35 3:53
22 199 43 3:51
26 235 51 3:54
30 271 59 3:53
34 307 67 3:56
38 343 75 3:55
42 379 83 3:57

search. Our goal was to show that the algorithm allows one
to explore more of the tree by adding more processors
without losing performance.

We started with 14 supervisors with eight workers each
(i.e., 127 processors). For each run, we incremented the
number of supervisors by 4. Thus, the next run consisted
of 18 supervisors (i.e., 163 processors); the following run
consisted of 22 supervisors (i.e., 199 processors), etc., until
we reached a total of 42 supervisors (three times the original
number of supervisors used in this test). The execution
times for all of the runs are shown in Table 1. The times in
all cases remained within five minutes of the initial time.

5. Conclusions

We have discussed the parallel implementation of a type

of tree-search problem that is extremely difficult to solve.
Its solution requires a branch and bound algorithm to prune
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the unproductive branches of the tree. The hierarchical
approach assigns subtrees to different groups of processors,
allowing the work to be partitioned efficiently and information
to be updated without incurring significant communication
overhead. The system can be divided initially into three
different categories of processors and two levels of work,
each dealing with different types of tasks and granularities.
The approach is scalable. In fact, as the number of processors
increases, new categories can be added to the hierarchy to
avoid communication bottlenecks.

We have implemented an efficient load-balancing
strategy that reassigns idle workers to busy supervisors,
thus changing the virtual communication tree among the
processors as the computational tree changes. This is
highly efficient because rather than moving tasks and
incurring significant bookkeeping overhead, the idle
supervisors communicate only their workers’ IDs to
the busy ones. The busy supervisors, in turn, need only
update their table of workers. This is an important feature
because tree searches usually require efficient strategies
that allow the code to quickly finish the calculation of
the nodes of the tree in order to more rapidly prune the
unproductive branches—to avoid unnecessary computation
and to focus on the most promising areas of the tree.

In order for this load-balancing strategy to be highly
effective, the granularity of the tasks assigned to the
supervisors must be large. In our protein structure
prediction application, a task consisted of taking a
configuration and a subspace and performing a global
optimization in that subspace using the configuration as
a starting point. The global optimization was followed
by full-dimensional local minimizations performed on a
number of the minimizers found. Depending on the size of
the protein, we adjusted some parameters, such as the size
of the subspace and the number of iterations of the global
optimization algorithm, so that the tasks required hours to
complete. Because the completion times for such tasks
may differ substantially, the chances of having all of the
supervisors complete their tasks concurrently are small,
and the gains for using the load-balancing strategy may
be very high.
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