
W. K. WoottersPicturing qubits
in phase space
Focusing particularly on one-qubit and two-qubit systems,
I explain how the quantum state of a system of n qubits
can be expressed as a real function—a generalized Wigner
function— on a discrete 2n � 2n phase space. The phase
space is based on the finite field having 2n elements, and its
geometric structure leads naturally to the construction of a
complete set of 2n � 1 mutually conjugate bases.

1. Introduction
On Charlie Bennett’s main webpage [1], one finds two
photographs: one of Charlie himself and the other of a
vortex created by a beaver dam. A vortex is a wonderful
example of a structure that maintains its form by not
holding on to its substance; it thrives because it
continually gives its material away.

Some summers ago I was supervising four
undergraduates in research projects in quantum
information theory, and together we drove down to the
IBM Watson Research Center for a day to talk with
Charlie. He took us to the Croton Dam, one of his
favorite places. As we sat there on the dam with the
sound of water in the background, we discussed quantum
information and wrote down quantum states on a large
pad of newsprint that Charlie had brought along. The
breeze was blowing a bit, and as always around Charlie,
ideas were swirling. We talked for hours. In the years that
have passed since that afternoon, traces of that experience
and traces of those ideas have surely been carried far out
into the world—who knows how far—in the lives of those
four students and the people they have encountered.
I offer this little story as one example of hundreds of
similar acts of sharing, through which Charlie Bennett has
had an influence on the world of science that could never
be captured by any reckoning based on cited publications.
It is a pleasure to dedicate this paper to him on the
occasion of his sixtieth birthday.

A spin- 1
2

particle is probably not a vortex, though there
may be some virtue in thinking of it more as a process
than a static object. But here I will not be adventurous
in that way. This paper is about qubits as normally
conceived, and I will use the spin of a spin- 1

2
particle

as my standard physical example of a qubit. We usually
express the quantum state of a system of qubits as a state
vector or density matrix. The main point of this paper is
to show how one can represent such a quantum state as
a real function on a phase space, not a continuous phase
space whose axes stand for position and momentum, but a
discrete phase space whose axes are associated with a pair
of conjugate bases for the finite-dimensional state space.
Much of the work I report here was done jointly with
Kathleen Gibbons, and many of the mathematical details
will be given in a paper which is currently in preparation.1

Here I want to lay out the overall contours of this phase-
space construction.

Discrete phase-space representations have been
proposed in a number of earlier papers [2–13]. The
particular representation to be described here is different
in ways that I discuss later. First, however, I would like to
motivate the work by posing what might seem to be an
unrelated problem, the problem of determining an
unknown quantum state.

2. State determination
Imagine a device whose output is a beam of spin- 1

2
particles. We do not know enough about the device to
predict the spin state of the particles that it produces.
They might all be in the spin-up state, for example, or
they might be completely unpolarized. We do, however,
assume that the device does not change its operation
significantly over time, so that we ought to be able to
describe the whole ensemble of particles by a single state
(possibly a mixed state) of a single spin- 1

2
particle. A

general spin state of a spin- 1
2

particle can be pictured as
a point either on the surface or in the interior of a unit
sphere. Points on the surface of the sphere are pure

Note: This paper is based on a talk presented in May 2003 at a symposium at the
IBM Thomas J. Watson Research Center in Yorktown Heights, New York,
honoring Charles Bennett on the occasion of his sixtieth birthday.

1 K. S. Gibbons and W. K. Wootters, “Discrete Phase Space Based on Finite
Fields,” in preparation.
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states, points in the interior are mixed states, and the
center of the sphere is the completely mixed or completely
unpolarized state. Our task is to perform a set of
measurements on the particles so as to determine which
point represents the spin state actually produced by this
mysterious device.

How do we proceed? Suppose we perform the
measurement “up vs. down” on the first hundred
particles that come our way. What do we get from these
measurements? We get a rough estimate of the vertical
height of the point that represents the state of the
ensemble, because the height is what determines the
probabilities of “up” and “down.” However, we do not get
a perfectly precise value of the height, because we have
performed only a finite number of trials and therefore still

have some statistical error. We know that we will have
to live with some statistical error, so we now turn our
attention to pinning the state down better along the
horizontal dimensions. In order to do this, we perform
measurements of spin along two other axes. (Of course,
we have to use new particles for these measurements.
The ones we have already measured hold no further
information for us.) If we call the vertical direction z, we
might let our two new measurements be measurements
of spin along the x and y directions. In this way we
can narrow the range of likely states to a small
region, typically in the interior of the sphere.

It is clear that if we restrict our attention to orthogonal
measurements, each represented by a pair of diametrically
opposite directions in space, in order to have any hope
of pinning down the state we need to use at least three
different measurements. That is, we need to break the
whole ensemble into at least three subensembles and
measure each of these subensembles along a different
axis. As long as the three axes are not coplanar, we will
eventually get an arbitrarily good estimate of the state.
But some non-coplanar choices are better than others:
The statistical error will be minimized if we use three axes
that are perpendicular to one another, such as the x, y,
and z axes as imagined above [14]. In this case the three
measurements are called “mutually conjugate,” meaning
that each eigenvector of one measurement is an equal
superposition of the eigenvectors of any of the other
measurements.2 If we choose the measurements in this
way, each different measurement gives us information that
is as independent as possible of the information provided
by the other measurements. A state-determination scheme
based on measurements in the x, y, and z directions is
pictured symbolically in Figure 1, where the measurements
are labeled X, Y, and Z. 3

Let us now consider the problem of state determination
for a pair of qubits. We imagine a device that produces a
beam of pairs of spin- 1

2
particles. For example, each pair

might consist of two distinguishable spin- 1
2

nuclei in the
same molecule. How might we go about determining
the state of one of these pairs? One can show that it is
sufficient to use the following nine measurements, each
performed on a different subensemble [18]: XX, XY, XZ,
YX, YY, YZ, ZX, ZY, ZZ. Here XY, for example, means
measuring the first particle of the pair along the x axis and
the second along the y axis. This scheme is illustrated in
Figure 2.

2 Normally I call such measurements “mutually unbiased,” but as a tribute to
Charlie on this occasion, I use the nomenclature that he prefers.
3 In this discussion I am assuming that each qubit is measured independently
and without reference to the results obtained from other qubits. A more efficient
approach—in the sense of reducing the number of qubits needed—would be to use
an adaptive scheme [15] or a holistic measurement of all the qubits together [16],
but I do not consider these more sophisticated strategies here. For a review of the
problem of quantum state reconstruction, see Reference [17].

Figure 2

Determining the state of a pair of qubits.
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In a certain sense, this nine-measurement scheme is not
as efficient as it might be. A general density matrix for a
pair of qubits requires 42 � 1 � 15 real parameters for its
specification. A general orthogonal measurement with four
outcomes (such as any of the nine measurements listed
above) provides 4 � 1 � 3 independent probabilities,
since the probabilities must sum to unity. Therefore, if
we restrict our attention to orthogonal measurements, we
need at least 15/3 � 5 such measurements to determine
the state. The above scheme thus uses more distinct
measurements than would seem to be necessary. We
should be able to get away with using only five distinct
measurements, and ideally these five measurements would
be mutually conjugate so as to minimize the statistical
error.4

We are thus led to an interesting question: Do there
exist five orthogonal measurements for a pair of qubits
that are all mutually conjugate? The answer is not at
all obvious, but it is known: Yes, there do exist such
measurements [14, 20 –22]. One set that satisfies all of
the imposed constraints is the following: XX, YY, ZZ,
plus two other measurements that are both closely
related to the Bell measurement. The Bell measurement,
named for John Bell, has the following eigenstates:

�1/�2���11� � �22�),

�1/�2���11� � �22�),

�1/�2���12� � �21�),

�1/�2���12� � �21�).

To obtain the last two mutually conjugate measurements
in our set of five, we rotate the second of the two spins by
120� around the vector (1, 1, 1)—in one direction or the
other—and then perform the Bell measurement. The
rotation cyclically permutes the x, y, and z axes. If the
rotation is in the direction z 3 y 3 x 3 z, I call the
resulting measurement the “belle” measurement, and
if the rotation is in the opposite direction, we get the
“beau” measurement. Thus our five mutually conjugate
measurements are XX, YY, ZZ, belle, and beau.

Of course one does not have to restrict one’s attention
to orthogonal measurements. A single generalized positive
operator valued measure (POVM) with the right number
of outcomes, performed on many members of the given
ensemble, could be used to determine the state just as
efficiently as our conjugate-measurement scheme. I am
focusing on the conjugate-measurement scheme mainly
because it will lead us to the phase-space picture that

I want to develop.5 But in fact mutually conjugate
measurements are also interesting in another context,
quantum cryptography. From the earliest work on that
subject, conjugate measurements for qubits have played a
special role [23, 24]—Steven Wiesner’s original paper is
titled “Conjugate Coding”—and more recently, conjugate
measurements in higher-dimensional state spaces have
likewise been applied to cryptography [25]. They have also
been used in a more general analysis of the principle that
underlies quantum cryptography, namely, the tradeoff
between gaining information and preserving the state [26].

It is thus of interest to determine how many mutually
conjugate measurements one can find in a general N-
dimensional state space. The question is really about
mutually conjugate bases, since the eigenvalues that
one might assign to the outcomes of a measurement
are not relevant either for state determination or for
cryptography. Two orthonormal bases are mutually
conjugate if, given any vector �v� from one of the bases
and any vector �w� from another one, the magnitude of
the inner product, �	v�w��, has a fixed value independent
of the choice of vectors—in fact this value must be 1/
N
in order for the vectors to be normalized. The following
facts represent our current state of knowledge about
the problem of finding mutually conjugate bases.6

1. In a complex vector space of N dimensions, there can
exist at most N � 1 mutually conjugate bases [27, 28].
This is interesting because for state determination, the
minimum number of orthogonal measurements needed
is also N � 1, this being the ratio of the number of
parameters required to specify a state and the number
of independent probabilities one obtains from each
measurement: (N 2 � 1)/(N � 1) � N � 1.

2. If N is a power of a prime, then there do exist N � 1
mutually conjugate bases. Moreover, a number of
methods have been devised for constructing such
bases in this case [14, 20 –22, 29].

3. For every N that is not a power of a prime, it is not
known whether N � 1 such bases exist. This is true
even for N � 6.

One interesting feature of the discrete phase space
construction described in this paper is that it provides
a novel way of generating a complete set of mutually
conjugate bases in N dimensions when N is a power of a
prime. Before we get to that construction, though, let us

4 This notion of “efficient,” i.e., using as few distinct measurements as possible,
is perhaps a bit artificial, though one can imagine that there may be some
experimental advantage in achieving this sort of efficiency. If the issue is only
to minimize the number of qubits measured, one can do just as well with a
very large number of distinct measurements [19].

5 Actually, it is conceivable that the same phase-space picture can be used to find
an optimal generalized measurement for state determination— optimal, that is, if
each pair of qubits is to be measured independently of the other pairs—since the
number of points of phase space is the same as the number of outcomes that a
generalized measurement would have to have in order to be good for state
determination. But this is a problem for future research.
6 At least, these facts represent the current state of knowledge of physicists whose
work on the problem I am familiar with. There is always the possibility that
somewhere in the mathematics literature one might find a paper that holds more
answers.

IBM J. RES. & DEV. VOL. 48 NO. 1 JANUARY 2004 W. K. WOOTTERS

101



review briefly the best-known phase-space representation
of quantum states of continuous systems, the Wigner
function.

3. The Wigner function and quantum
tomography
Let � be the density matrix of a quantum particle moving
in one dimension. The Wigner function W(q, p) is an
alternative representation of the quantum state of such
a particle [30]. It is defined by

W�q, p� �
1

�� � 	q � x���q � x� exp�2ipx/�� dx, (1)

where q and p are the position and momentum of the
particle; so the Wigner function is a real function on
ordinary phase space. The integral of the Wigner function
over all of phase space is unity, as it would be for a
probability distribution, but the Wigner function is not
a probability distribution: It can take negative values.

There is, however, an interesting respect in which the
Wigner function does act like a probability distribution.
Consider any two parallel lines in phase space, described
by the equations aq � bp � c and aq � bp � c�, where
a, b, c, and c� are real constants. One can show that the
integral of the Wigner function over the infinite strip
of phase space between these two lines is equal to the
probability that the operator aq̂ � bp̂ will be found to
take a value between c and c� [5, 31]. In other words,
the integral of the Wigner function over any direction
in phase space yields the correct probability distribution
for an operator associated with that direction. Here a
“direction” is defined by a complete set of parallel lines.
Such sets of lines will be important for our discrete phase
space as well, and we will call them “striations” of the
phase space.

The Wigner function has many other special properties
[32], of which I will mention just one: translational
covariance. Let � be an arbitrary state of our one-
dimensional particle, and let W be the corresponding
Wigner function. The state �� defined by

�� � exp
i�q0 p̂ � p0q̂�/��� exp
�i�q0 p̂ � p0q̂�/��

represents the result of translating � by a displacement
q0 in space and boosting its momentum by an amount p0 .
When the state is displaced in phase space in this way, the
Wigner function follows along as one expects it should:
If W� is the Wigner function associated with ��, then

W��q, p� � W�q � q0, p � p0�.

When we generalize the Wigner function to discrete
systems, we will insist on an analog of this translational
covariance.

We can use the relation between the Wigner function
and actual probability distributions as the basis of a
method for determining the quantum state of our one-
dimensional particle, assuming that we are given a large
ensemble of such particles all described by the same
density matrix �. For each direction in phase space, that
is, for each striation, we perform on a subensemble the
measurement associated with that striation. Such a
measurement can always be represented by an operator
of the form aq̂ � bp̂, and the observed probability
distribution for that operator gives us the integral of W
along the given direction. From the integrals of W over
every direction, it is mathematically possible to reconstruct
W itself. The process is closely analogous to medical
tomography and is in fact called quantum tomography
[31, 33]. Once we have found the Wigner function, we
have found the state of the particle, because the Wigner
function is an expression of that state. However, if one
prefers the density matrix, one can find it via the inverse
of Equation (1):

	q1���q2� �� W�q1 � q2

2
, p� exp
ip�q1 � q2�/�� dp.

Of course, in real life we cannot literally perform the
infinite number of measurements required by this scheme,
but we can estimate the state by performing a large but
finite number of measurements.

On first sight, quantum tomography may seem
impractical because one does not know how to measure
a general operator of the form aq̂ � bp̂. But there is a
special case for which such measurements are very natural,
namely, the case of a harmonic oscillator. As the quantum
state of a harmonic oscillator evolves in time, its Wigner
function simply rotates rigidly around the origin of phase
space, at least if the relative scale of the position and
momentum axes is chosen in the right way. Thus, to
measure the operator associated with some skew direction,
we can simply allow the system to evolve for the right
amount of time and then measure the position. Since a
mode of the electromagnetic field can be regarded as a
harmonic oscillator, quantum tomography is particularly
suited to finding the quantum state of such a mode, and
indeed, quantum tomography has mostly been used in
quantum optics.

Notice the similarities between the tomography just
described and the method of state determination for one
or two qubits described in Section 2. In both cases we use
a set of orthogonal measurements which are sufficient for
reconstructing all of the parameters of the density matrix.
If fact, it even turns out that the measurements used in
the continuous case are all mutually conjugate: That is,
each eigenstate of the operator aq̂ � bp̂ yields a uniform
distribution of the value of a�q̂ � b�p̂, as long as (a, b)
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and (a�, b�) define different directions in phase space.
The most glaring lack of similarity between the two cases
is that in the continuous case the measurements arise
naturally from the phase-space description of the particle,
whereas in the discrete case there is no such description,
and the measurements are constructed by other means.
The rest of this paper is motivated by the following
questions: Can the measurements that we used for
determining the state of one or two qubits be obtained
from a phase-space description of the system? And if so,
can this construction be generalized to larger systems?
As we will see, the answer to both questions is yes.

4. Phase space for a single qubit
Let us consider first the case of a single qubit, imagined as
a single spin- 1

2
particle. I will take the horizontal axis of

phase space to represent the z component of spin, which
takes the two values 1 and 2. The vertical axis will
represent the x component of spin, its two values being
3 and 4. Thus the phase space consists of exactly four
points, as shown in Figure 3(a).

In order to make sense of the notion of a “line” in the
discrete phase space, and the notion of “parallel lines,”
we want to be able to write down algebraic equations
involving the phase-space variables. So, in addition to
associating with the axes the physical states shown in
Figure 3(a), we also want to associate with these axes two
variables q and p, analogs of position and momentum, that
take numerical values. I will let these numerical values be
0 and 1, interpreted as elements of the binary field �2.
That is, addition and multiplication of the values of q and
p will be mod 2. This way of labeling the phase space is
shown in Figure 3(b).

A line in this phase space is the set of points that
satisfies a linear equation, aq � pb � c, where a, b, and c
also take values in �2. For example, the equation q � p � 0
defines the line consisting of the two points (0, 0) and
(1, 1). It is parallel to the line defined by q � p � 1,
which consists of the points (0, 1) and (1, 0). In fact, there
are exactly three sets of parallel lines in this phase space,
that is, three striations, and these are shown in Figure 4.
As in the continuous case, each striation will be associated
with a measurement, and each line in the striation will be
associated with a particular outcome of the measurement.
Shortly we will define a Wigner function on this phase
space, which will represent an arbitrary spin state by four
real numbers, one for each point in phase space. The
Wigner function will have the property that its sum over
any line is equal to the probability of the measurement
outcome associated with that line.

We are thus led to the following question: What
measurement— or, more properly, what orthogonal basis—
are we to associate with each striation? In labeling the
axes, we have implicitly associated bases with the

horizontal and vertical striations: The vertical lines are
associated with the states �1� and �2�, and the horizontal
lines are associated with the states �3� and �4�. So all
that remains is to associate a basis with the diagonal lines.
The reader is likely to be able to guess what basis we will
assign to these lines, but I want the structure of the phase
space to pick out this basis for us, as if we could not
guess it. (The construction will be more impressive in
the case of two qubits, where it is harder to guess the
measurements.)

The crucial concept for fixing the remaining basis is
the concept of a translation in the discrete phase space.
A translation is simply the addition, mod 2, of a vector

Figure 3

(a) Labeling the phase space with physical states. (b) Labeling the 

phase space with abstract variables q and p taking values in the 
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Figure 4

The three striations of the 2 � 2 phase space.
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(q0 , p0) to each point in phase space. Note that, according
to our physical interpretation of the axes, translating by one
unit in the horizontal direction—that is, adding the vector
(1, 0)—amounts to interchanging 1 and 2 while leaving
3 and 4 unchanged. Physically, these changes correspond
to a rotation of the spin by 180� around the x axis, which
is represented mathematically by the unitary operator �x ,
one of the Pauli matrices. We therefore associate a unit
horizontal translation on phase space with the operator
�x on state space, and we refer to this operator as H, the
horizontal translation operator. [The operator �x exp(i�),
with an arbitrary phase �, would work just as well. For
definiteness we choose � to be zero.] Similarly, a unit
vertical translation must be associated (up to an overall
phase factor) with the operator �z , which we call V. These
two unitary operators are analogous to the operators
exp(iq0 p̂/�) and exp(�ip0 q̂/�), which effect translations
in the continuous phase space.

We will want our Wigner function to be translationally
covariant, like the continuous Wigner function. For
example, given a Wigner function W that represents some
spin state �, if we change � by applying H, we want W to
change by a horizontal translation; that is, we want the
values of W to be swapped in horizontal pairs. In order to
achieve covariance for this particular translation, that is,
the horizontal translation, we insist that the basis that
we associate with the horizontal lines be the basis of
eigenvectors of H. But these eigenvectors are �3� and
�4�, which, not surprisingly, we have already decided
to associate with the horizontal lines. So translational
covariance does not tell us anything new about the
horizontal lines.

The requirement of translational covariance does give
us something new, however, when we apply it to the
diagonal lines. In phase space, the diagonal lines are
invariant under a combined vertical and horizontal
translation. Therefore, the basis we associate with the
diagonal lines is the basis of eigenvectors of VH. But
VH � �z�x � i�y , and the eigenvectors of this matrix
are the states associated with the spin directions “into
the paper” and “out of the paper.” Notice that we would
have arrived at these same states if we had multiplied our
translation operators in the opposite order: HV � �i�y .
So these states constitute our third basis, which we
associate with the diagonal lines. Thus, we started with
two conjugate bases, along the z and x directions, and our
construction automatically produced a third conjugate
basis, along the y direction.

There remains one ambiguity to clear up before we can
define the Wigner function for a single qubit. Though our
construction with translation operators tells us what basis
to associate with the diagonal lines, it does not tell us
which basis vector to associate with each line. There are
two choices which are equally natural. Let us arbitrarily
associate the �1 eigenstate of �y with the line {(0, 0),
(1, 1)}; then the �1 eigenstate is associated with the line
{(0, 1), (1, 0)}. Once this choice is made, the Wigner
function of any spin state is determined by the
requirement that its sum over any line be equal to the
probability of the measurement outcome associated with
that line. I will not go into the detailed construction here,
but simply give several examples of Wigner functions of
particular states (Figure 5).

The negative number in the last example is the most
negative value possible for our one-qubit Wigner function.
Note that the sums over lines are legitimate probabilities;
for example, in each case the sum of W over the two
points (0, 0) and (1, 1)—that is, the lower left and the
upper right—is the correct probability of finding the
particle with its spin pointing in the positive y direction.

The essential features of this phase-space description
of a single spin- 1

2
particle were proposed independently

by Feynman [4] and the author [5] in 1987, and a similar
though not identical construction had been worked out a
year earlier by Cohen and Scully [3]. So the 2 � 2 phase
space has been around for a while. However, the
generalization to two qubits presented in the following
section is new.

5. Phase space for a pair of qubits
The state space for a pair of qubits has four dimensions,
so I will take the phase space for this system to be a 4 � 4
array of points. Imagining the qubits as spin- 1

2
particles,

I will associate the points of the horizontal axis of phase
space with the states �11�, �12�, �21�, and �22�. The
vertical axis will represent the conjugate basis consisting of

Figure 5

Wigner functions of particular states.
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�33�, �34�, �43�, and �44�. This labeling of the axes
is shown in Figure 6(a).

As in the case of a single qubit, we also want to label
the axes with variables q and p that take numerical values.
The choice of the numerical values is perhaps the most
novel feature presented in this paper: q and p will take
values in the four-element field �4, whose elements I will
write as {0, 1, 
, 
2}. We thus get the labeling shown in
Figure 6(b). The arithmetic of �4 is the only commutative,
associative, and distributive arithmetic on four elements in
which both addition and multiplication have inverses [34].
This arithmetic is defined by the following relations:

1 � 1 � 
 � 
 � 
 2
� 
 2

� 0,

1 � 
 � 
 2,

�
��
 2� � 1.

Notice that it is not the same as arithmetic mod 4. In
arithmetic mod 4 there is no multiplicative inverse, because
there is no number by which we can multiply 2 to get 1.

The arithmetic of the four-element field actually makes
some physical sense for our pair of spin- 1

2
particles.

Consider, for example, a horizontal translation by the
field element 1. This translation interchanges the first
two columns (0 7 1) as well as the last two columns
(
 7 
2). According to the labeling in Figure 3, this
permutation corresponds to interchanging 1 and 2 for
the second particle (while keeping 3 and 4 unchanged),
and leaving the first particle entirely unaffected. Physically
this corresponds to rotating the second particle by 180�

around the x axis. All of the other translations on this
phase space, defined by adding other vectors under
the addition rules of �4, similarly have simple physical
interpretations. From these interpretations we can directly
write down unitary translation operators corresponding to
the phase-space translations. For example, the translation
mentioned above—a horizontal translation by the field
element 1—is associated with the unitary operator I R �x .
We call this operator H1 , the subscript indicating the field
element by which we are translating. For this two-qubit case
there are four basic translation operators, which I list here:

H1 � I � �x ,

H



� �x � I,

V1 � I � �z ,

V



� �z � I. (2)

All other translations can be obtained as combinations of
these four. For example, translating by the vector (1, 
2)
can be decomposed into a horizontal translation by 1,
a vertical translation by 
, and a vertical translation
by 1 (since 
2 � 1 � 
). This translation is therefore
associated with the unitary operator H1V



V1 � �i�z R �y .

(As before, the order of multiplication of the H’s and V’s
affects only the overall phase factor; this is not significant
for any of what follows.)

As in the case of a single qubit, the notion of a striation
is crucial to our construction. Again, lines are defined as
the solutions to linear equations, and two lines are parallel
if they can be represented by equations that differ only in
the constant term. One finds that in the two-qubit phase
space there are exactly five striations, which are shown in
Figure 7. Though the lines may not look like lines, notice
that the usual rules about parallel lines in a plane hold in

Figure 7

The five striations of the 4 � 4 phase space.

Figure 6

(a) Labeling the 4 � 4 phase space with physical states. (b) 

Labeling the same phase space with the variables q and p which 

take values in   
4
.
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this space as well: If two lines are parallel, they have no
point in common, and if two lines are not parallel, they
have exactly one point in common. These rules follow
from the fact that arithmetic in a field is so well-behaved,
particularly that multiplication is invertible. If we had
defined our lines on the basis of mod 4 arithmetic—this
arithmetic produces “wraparound lines”—it would have
been possible for two distinct lines to have two points
in common.

In order to define a Wigner function, we need to
associate an orthogonal basis with each striation. To see
how this association is done, let us consider as an example
the fourth striation listed in Figure 7. Notice that each
line of this striation is invariant under translations
by the vectors (1, 
), (
, 
2), and (
2, 1). These
translations are associated with the unitary operators
H1V



, H



V



V1 , and H



H1V1 , respectively. Therefore,

we want the basis vectors that we assign to these lines
to be eigenvectors of all three operators, if that is
possible. One can check that these three operators
commute with one another, so it is indeed possible to
find simultaneous eigenvectors. Moreover, this criterion
picks out a unique basis, which can be expressed in the
standard representation, in which

�z � �1 0
0 �1� and �x � �0 1

1 0� ,

viz.,

1

2 �
1
1
i

�i
� ,

1

2 �
1
1

�i
i
� ,

1

2 �
1

�1
i
i
� ,

1

2 �
1

�1
�i
�i
� . (3)

One can verify that this is the “belle” basis described
in Section 2. In the same way, one finds that the bases
associated with the other four striations are precisely
the other mutually conjugate bases listed in Section 2.
In the order in which the striations are listed in
Figure 7, the corresponding bases are ZZ, XX, YY,
belle, and beau. So the measurements we imagined
using for state determination do come from a phase
space, just as they do in the continuous case.

Let us recapitulate the steps by which we obtain an
orthogonal basis from each striation:

1. Two conjugate bases are chosen at the beginning
to be associated with the vertical and horizontal
striations.

2. From this assignment, one derives a set of unitary
operators on state space that correspond to the
translations of phase space.

3. Each striation defines a set of phase-space translations
that preserve the lines of that striation.

4. The simultaneous eigenvectors of the corresponding
unitary operators constitute the basis that we associate
with the given striation.

This procedure raises a number of questions, mostly
having to do with its potential generalization to other
dimensions. Will it always happen that all of the
translation operators associated with a given striation
commute with one another? Will the number of
striations always be equal to the number of orthogonal
measurements one needs for state determination? And
if every striation does generate a definite orthogonal
basis, are the bases associated with different striations
guaranteed to be conjugate? I address these questions
in the following section. For now, I would like to
return to the definition of the Wigner function for
a pair of qubits.

Even though we now have a definite correspondence
between striations of the phase space and bases for the
state space, we have not yet specified which vector in each
basis goes with each line of the corresponding striation.
As in the single-qubit case, there is no unique way of
choosing this assignment. However, the choices are not
completely arbitrary. Consider, for example, the first line
of the fourth striation shown in Figure 7. It consists of the
points (0, 0), (1, 
), (
, 
2), and (
2, 1). To this line, we
can assign any of the four “belle” basis vectors listed in
Equation (3). But once we choose one of these vectors,
there is no further choice involving that particular
striation and that particular basis. This is because the
other lines of that striation can be obtained by translating
the first one. We can therefore use the following rule:
If line �2 is obtained from line �1 by a translation T,
the basis vector we assign to �2 should be obtained from
the basis vector assigned to �1 by the unitary operator
associated with T. Indeed, one can show that this rule
must be followed if the resulting Wigner function is to
be translationally covariant.1 So overall, there is some
arbitrariness in the assignment of basis vectors to
lines, but not as much arbitrariness as one might have
expected.

Once every line in phase space has been assigned a
state vector from the appropriate basis, the definition of
the Wigner function W is determined: It is determined by
the requirement that the sum of W over any line in phase
space is equal to the probability of the measurement
outcome associated with that line. In order to obtain a
definite Wigner function, I choose the correspondence
between lines and state vectors shown in Figure 8.

1 K. S. Gibbons and W. K. Wootters, “Discrete Phase Space Based on Finite
Fields,” in preparation.
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These three choices fix the assignments of vectors
to lines for the last three bases—YY, belle, and
beau—and therefore fix the definition of the Wigner
function.

With these choices, the Wigner function can be worked
out for any two-qubit state,1, 7 some examples of which are
shown in Figure 9. Again, one can check that the sums
over lines make sense. For example, the sums over lines
make sense. For example, the sum over the first vertical
line in each case is the probability of finding the pair in
the state �11�.

To return to the problem of state determination, we see
that tomography for a two-qubit system is very similar to
tomography for a continuous system. Each “direction” in
phase space, as defined by a striation, is associated with
a measurement, and the collection of measurements
obtained in this way is just sufficient to determine the
state of the system. It is interesting that, in a paper on
reconstructing the state of discrete quantum systems,
Asplund and Björk discuss the use of mutually conjugate
bases and refer to these bases as being like different
directions in ordinary phase space [35]. The above
construction based on the four-element field shows, at
least for two qubits, that this analogy is indeed quite apt.

6. Generalization to other dimensions
To what extent can the above phase-space representations
be generalized to state spaces of other dimensions? First,
it is crucial to our construction that the axes be labeled
by the elements of a field, with its invertible addition and
multiplication. Now, it is a fact that there exists a field
with N elements if and only if N is a power of a prime,
and in that case, there is essentially only one field possible
[34]. So our construction does not apply directly to every
quantum system, but it does apply to a system of n qubits,
since the dimension then is N � 2n , which is a power of
a prime. When the phase-space axes are labeled by the
N-element field, it is not hard to show that the number
of striations is N � 1, exactly the number of orthogonal
bases needed for state determination.

Moreover, whenever the dimension is a power of a
prime, it turns out that there is a systematic way of
labeling the axes with field elements so that the above
construction always works. That is, the translation

operators associated with a given striation commute with
one another and define a unique basis of eigenstates, and
the bases thereby derived are guaranteed to be mutually
conjugate (see Footnote 1). Thus, this phase-space
construction provides a new method of generating a
complete set of mutually conjugate bases whenever the
dimension N is a power of a prime. It is closely related to,
and indeed is inspired by, the methods of Bandyopadhyay

7 An algorithm for generating the Wigner function of any two-qubit state— given
the choices specified in the text—is the following. Let � � (q, p) be any point in
phase space. The Wigner function evaluated at � will be W� � (1/4)tr�A� , where
� is the density matrix and A� is a matrix associated with the point �. The A
matrix associated with the origin is

A�0,0� � � 1 �1�i�/2

�1�i�/2 0 � R � 1 �1�i�/2

�1�i�/2 0 � .

Any other A� can be obtained from A(0,0) via the translation operators:
A� � U�A(0,0)U�

† , where U� is the unitary operator corresponding to a
translation by the vector �, as in Equation (2).

Figure 8

Choice of correspondence between lines and state vectors.
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Examples of Wigner functions for two-qubit states.
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et al. [21] and Lawrence et al. [22]. For example, our
translation operators appear in these earlier constructions,
though not as translation operators per se. Our method is
distinguished from these others in that it is based on
phase space and is explicitly geometrical.

Note added in proof
Since this paper was submitted, independent work along
very similar lines, focused primarily on generating
complete sets of mutually conjugate bases, has been
presented by Pittenger and Rubin [40].

7. Discussion
The phase-space representation presented in this paper
follows many other papers on discrete phase spaces. As
I have said earlier, Feynman proposed the 2 � 2 phase
space we are using for a single spin- 1

2
particle [4]. He

was interested in the concept of negative probability and
asked whether some or all of the mysteries of quantum
mechanics could be rendered more intelligible if we could
make sense of such probabilities. Discrete phase spaces
for higher-dimensional quantum systems have been
proposed by a number of authors. In the formulations
of Cohendet et al. [6], Galetti and De Toledo Piza [7],
Leonhardt [9], and Wootters [5], one sees manifestations
of certain number-theoretic issues that arise when one
tries to generalize the Wigner function to discrete systems.
The work of Cohendet et al., for example, applies only to
systems with an odd-dimensional state space. My own
earlier work, as well as that of Galetti and De Toledo
Piza, applies most naturally to systems for which the
dimension N of the state space is prime, though one can
also apply it to any composite value of N by treating each
prime factor separately. Leonhardt, who introduced
a systematic, phase-space approach to finite-state
tomography, finds problems with even-dimensional state
spaces that he avoids by making his discrete phase space
a 2N � 2N grid when N is even. Other approaches use an
N � N phase space for arbitrary N but do not insist on
any special properties associated with striations other than
those defined by the two axes [10, 12]. A discrete Wigner
function adapted particularly to quantum optics was
introduced by Vaccaro and Pegg [8] (see also the review
by Miranowicz et al. [36]), and a Wigner function
applicable whenever the configuration space is a finite
group of odd order has been developed by Mukunda
et al. [13]. Recently various authors have used both the
Wigner function of Reference [5] for prime N [37], and
Leonhardt’s 2N � 2N formulation generalized to all N
[11], to analyze quantum information processes such as
Grover’s search algorithm and teleportation.

The work I have described here follows most naturally
from Reference [5] and is essentially a generalization of
that paper from the primes to the powers of primes. This

new work is also more systematic than Reference [5] in
that it brings out the choices one needs to make in
defining a discrete Wigner function. Further details
about these choices, and about how many truly distinct
definitions are possible, are spelled out in the work
referenced in Footnote 1.

As the authors of References [11] and [37] have already
shown, there is some value in using phase space to visualize
the effects of quantum information processing. I am
hoping that the Wigner function described here will have
its own advantages in this respect. Another possible
application is in the foundations of quantum mechanics.
Hardy [38] and Spekkens [39] have recently proposed toy
models of quantum mechanics that facilitate the study of
certain foundational issues. Our discrete Wigner function
appears to provide a natural framework in which to
express these toy models and relate them to standard
quantum mechanics. For example, in both Hardy’s and
Spekkens’s models, a “toybit” has exactly four underlying
ontic states, which could be taken to correspond to the four
points of our one-qubit phase space. Moreover, these models
allow exactly six pure epistemic states, which correspond
to the six one-qubit Wigner functions in which two of
the four values are 0 and the other two are 1

2
.

For many purposes, it is useful to have a way of
picturing quantum states. Discrete Wigner functions allow
such picturing in that they require us to imagine only
three dimensions: two for phase space itself and one for
the value of W. I have to admit that as a picture, a
discrete Wigner function will never be as graceful as,
say, a Bennett photograph, but it may give us a new
perspective on some of the remarkable things that Charlie
and others have shown can be done with qubits.
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