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Ordinary crystallography deals with regular, discrete, static
arrangements in space. Of course, dynamic considerations—
and thus the additional dimension of time—must be
introduced when one studies the origin of crystals (since they
are emergent structures) and their physical properties such as
conductivity and compressibility. The space and time of the
dynamics in which the crystal is embedded are assumed to be
those of ordinary continuous mechanics. In this paper, we take
as the starting point a spacetime crystal, that is, the spacetime
structure underlying a discrete and regular dynamics. A
dynamics of this kind can be viewed as a “crystalline
computer.” After considering transformations that leave
this structure invariant, we turn to the possible states of
this crystal, that is, the discrete spacetime histories that can
take place in it and how they transform under different crystal
transformations. This introduction to spacetime crystallography
provides the rationale for making certain definitions and
addressing specific issues; presents the novel features of this
approach to crystallography by analogy and by contrast with
conventional crystallography; and raises issues that have no
counterpart there.

1. Introduction
Traditional crystallography enumerates and classifies the
regular arrangements of motifs in Euclidean space, where
by regular one means invariant with respect to a discrete
group of spatial isometries that contains as a subgroup the
Abelian group freely generated by three independent
translations, and by motif one means an arbitrary
geometrical figure in that space.

We recall that, starting with the 14 Bravais lattices
and keeping one point of the lattice fixed, one obtains
the 32 point groups [1]. If the latter are combined with
translations, one obtains the 230 space groups (ascertained
in 1891). The corresponding regular arrangements are
exhibited in all their technical glory in crystallography
manuals such as [1–3], and justified in a more abstract
mathematical fashion in tracts such as [4].

Besides purely geometrical data such as atom positions,
the motif may be augmentedby features that are not
strictly geometrical, such as charge, polarization, and
magnetic susceptibility, insofar as they are imagined to
be acted upon in some definite way by those isometry
transformations. (What is the mirror image of the south
pole of a magnet—north or south?—and why?) Here the
boundary that divides an a priori deductive exercise from
an inductive, experimental discipline becomes uncertain
and full of surprises, as shown by Altman’s admirable
essay [5]. In this sense, crystal classification is still a
somewhat open-ended enterprise.1

Though started as a specialized, stamp-collecting-like
discipline useful for organizing a collection of minerals,
crystallography eventually matured into a versatile tool of
scientific analysis, useful for inferring the size of atoms,
the shape of molecules, and the nature of chemical
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1 We give an example of this when we cover cellular automata and lattice gases in
Section 5.
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bonds. The deep emphasis on symmetry and covariant
transformations that permeates modern physics [6] owes
much to the successes of crystallography as a conceptual
discipline.

Finally, the aspect that ultimately matters in
crystallography is not a particular geometric lattice per
se, but certain functions (such as charge distributions)
defined on this lattice. Statistical mechanics and quantum
mechanics take this approach even further insofar as the
constructs with which they deal are linear combinations
(with real coefficients for statistical distributions and
complex coefficients for quantum states) of lattice
functions. While the functions themselves (or these
higher-order constructs) may not have any special
properties vis-à-vis the lattice, nevertheless they may
be expressible in terms of functions (e.g., eigenvectors
of lattice transformations) that each have particular
properties with respect to the lattice itself [7, 8]. In this
way, the host lattice becomes a key to describing the guest
functions in terms of coordinates that are most natural to
the given context. In general, this is really all that one
can hope for—and it is, as a matter of fact, quite a lot.

In this paper we ask four questions:

1. How is the concept of crystal naturally to be extended
if one adds a time dimension to the dimensions of
space? And what does it mean to add a “time”
dimension?

2. What kinds of regularity (strict, approximate, or
emergent) are relevant when the repeated motifs are
no longer static tiles but dynamic function– composition
constructs made out of signals and events, and thus the
whole regular arrangement represents a kind of computer?

3. What functions— on this lattice computer explicitly
“unfurled” in spacetime—are legitimate computational
histories? How do these histories transform when the
lattice coordinates are transformed? What properties
of these histories are left invariant?

4. Does the uniformity group of the computational
histories coincide with that of the underlying
computational lattice? Or can the latter be augmented
by new, emergent symmetries? In this context, certain
tradeoffs between periodicity of structure and of
function surprisingly follow from mere computability
arguments.

We shall see that it makes sense to speak of spacetime
crystallography even before introducing a metric (the one
on which to base the isometries). In fact, the Minkowski
metric itself does not have to be independently postulated,
since it naturally emerges from computational lattices
having a special discipline (essentially, having no more
neighbors than the minimum required for a given number
of dimensions). In this context, Lorentz invariance can
be interpreted as an effective functional equivalence of
different but related computational structures. By its more
abstract lines of inquiry, this paper complements Norman
Margolus’s more phenomenological survey of crystalline
computation [9].

2. A disclaimer
As we’ve seen, by regular one means invariant with respect
to a discrete subgroup of isometries of the underlying space.
This means that the issue of spacetime crystallography,
formally speaking, revolves around which metric should be
used when ordinary space is augmented by time. Now, the
pre-relativistic Galilean metric keeps space and time in
separate compartments; thus, an isometry of Galilean
space–time is a combination of space and time operations
that separately leave space and time distances unchanged.

But, aside from combinations of pure space isometries
and pure time isometries (the latter consist just of
translations and reflections), the only new isometries
yielded by uniting space and time are glide reflections
(with translation along time and reflection about a
hyperplane parallel to time) and screw rotations (with
advancement along time and rotation about a time axis).
All counted, the family of Galilean crystals is but a trivial
extension of that of Euclidean crystals.

On first sight, the Minkowski metric

ds 2
� dt 2

� �dx 2
� dy 2

� dz 2� (1)

may give one hope of further enlarging one’s
crystallographic “stamp collection.” In fact, this metric
yields a new class of isometries—the so-called Lorentz
boosts—which perform hyperbolic (as contrasted to
circular) rotations on the combined spacetime (Figure 1).

(a) Circular rotation of a spatial lattice (4� from the solid to the 

hollow lattice). If the rotation were continued for a quarter turn, as 

indicated by the dashed arrow, the transformed pattern would come 

to coincide with the original one. (b) Hyperbolic rotation of a 

space–time lattice with velocity parameter     =  1/2. As    increases, 

as indicated by the dashed arrows, the transformed pattern will 

never overlap the original one.
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Unfortunately, except for a few reflections, the group of
Lorentz boosts has no nontrivial discrete subgroups. If we
keep rotating the lattice of Figure 1(a), it will come to
coincide with the original lattice more than once for every
turn; on the other hand, if we keep Lorentz-boosting the
lattice of Figure 1(b), it will never come to coincide with
the original lattice. Thus, we do not break any new ground
with Minkowskian crystals.

From the viewpoint of strict isometries, then, spacetime
crystallography is but a marginal annotation to ordinary
crystallography. Beyond those already offered by the
latter, new rewards from the subject must be sought in
other directions.

3. So what is ordinary crystallography?
After a brief interlude with the outward shape of
crystalline objects (“diamonds are forever”), classified by
the point groups mentioned above, crystallography quickly
moves on to the main theme, namely, the structure and
properties of indefinitely extended crystalline materials
(for example, “Quartz cleaves along certain planes and is
piezoelectric when squeezed in certain directions”). How
do the 230 space groups mentioned in the Introduction
come about? Why that many and no more?

Consider a generic repetitive pattern such as that
of Figure 2(a) (for simplicity, let us stick with two
dimensions). Out of that pattern one can easily identify
the lattice that gives the underlying two-dimensional
spatial-repetition “beat” [Figure 2(b)] and the repeated
motif itself [Figure 2(c)].

The central concept in all of this is the family of
parallel displacements, or translations, that move the
whole pattern into superposition with itself and thus leave
it invariant. These translations form a group in the
mathematical sense. In our case, it is a free Abelian group
of two generators, illustrated in the form of a Cayley
graph in Figure 3.

The quotient of Euclidean space with respect to this
group (that is, what is left of Euclidean space if one
identifies any two points that coincide up to a translation)
is a finite, wrapped-around version of Euclidean space,
namely, a two-dimensional torus. With this identification,
the pattern turns into a single copy of the motif,
“wrapped” on the torus.2

The above properties characterize a crystal. That is, a
crystal may be defined as a collection of points, or pattern,
in Euclidean n-space that is left invariant by a free
Abelian group generated by n independent translations.
For classical crystallography, this leaves the combinatorial
puzzle of determining what other isometries besides those
translations leave the pattern invariant as well.

Since the pattern, as transformed by one of these
additional isometries, must map into itself and thus keep
obeying the original translation invariances, the task boils
down to examining the automorphisms of the free Abelian
group and determining which of them correspond to
further isometries of the pattern (such as reflections,
rotations, and glides). For the latter, one must seek the
“greatest common symmetries” between the symmetries
of the bare lattice3 and those of the motif.

In a nutshell, a crystal is a pattern of points in
Euclidean space that displays at the very least the
symmetries of the parallelepiped (a parallelogram in

2 To form the torus, note that the right edge of Figure 2(c) will be “glued” to the
left one in a straightforward way, while the top edge will be shifted leftward before
being glued to the bottom edge, so that the two interrupted vertical strokes will
match. Compare the lapping of the boxes in Figure 2(a).

3 These depend in a nontrivial way on the relative lengths and angles of the
generators, which are classified in three dimensions by the 14 Bravais lattices and
the seven crystal systems.

(a) Two-dimensional repetitive pattern. (b) The lattice that captures 

its two-dimensional spatial repetition period. (c) The repeated 

motif itself (enlarged). The origin and shape of the box that 

delimits the motif are arbitrary, provided that such a box tiles the 

plane with the periodicity of the lattice itself.

Figure 2

(a) (b) (c)

Cayley pattern of the translation group of a pattern like that of 

Figure 2. The a and b vectors denote the two generators; the dots, 

the elements of the group. (Lengths and angles are irrelevant to 

the Cayley graph itself, but have been chosen to suggest the 

correspondence with the original pattern.)

Figure 3
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Figure 3) and may enjoy additional ones thanks to
degeneracies of the lattice4 seconded by symmetries in
the motif itself.

In this paper we argue that, as a criterion for agreeing
whether a transformation of a spatially extended pattern
leads to “essentially the same pattern”—and thus as a
defining criterion for “crystal”—the concept of isometry
can be usefully replaced by one that is simpler and more
general, namely, isology, or “equality of computational
structure” (see the subsection on isologies in Section 5).
From the latter, one may obtain distance—and thence
isometry—as a derived, emergent concept in the
context of distributed computation obeying a special
discipline.

4. Distributed computation
Before turning to crystalline computation, we devote a
section to some prerequisite material on distributed
computation.

Function–composition graphs
Computation is the exercise of function composition in a
context in which building blocks and interconnection rules
are specified once and for all, so that the originality of
the construction lies not in the introduction of novel
components but in obtaining the desired behavior by
combining only the given ones—though in as large a
number as desired.

As blocks to be interconnected, we consider functions
of the form f�X 3 Y in which both the domain X and the
codomain Y are finite Cartesian products of sets of the form
X � X1 � X2 � . . . � Xh and Y � Y1 � Y2 � . . . � Yk ,
so that the mapping x �f y takes the form

� x1, x2, · · ·, xh� �
f

� y1, y2, · · ·, yk�. (2)

That is, the result of f, as well as its argument, will be a
finite ordered collection of variables (a “tuple”) rather
than a single variable. Though the component sets
themselves (X1 , X2 , etc.) may be arbitrary, in what follows
we are interested only in finite sets.

When using functions whose output is a single variable,
function composition yields a tree that can easily be
linearized, as when one writes

(a � b) � (c � d) for

a b c d

�

�

� .

On the other hand, when functions have more than
one output, function composition yields a more general
function– composition graph, that is, a directed graph
(compare Figure 5) in which a variable is associated with
each arc, or signal, and a function is associated with each
node, or event.5

Thus, a mapping such as Equation (2) is indicated in
graphic form as in Figure 4, and an entire function–
composition scheme as in Figure 5. Note that, besides
the usual graph-theoretic understandings, the signals
that impinge on an event are assumed to be indexed
according to their position in the input or output tuple
of the corresponding mapping, so it makes sense to
speak of, say, “input signal number 2” irrespective of the
name of the variable associated with it, as indicated in
Figure 4(b). Because of this, signals must be appropriately
routed so as to connect the right signal not only to the
right node but also to the right input or output slot of the

4 For instance, two independent length parameters may happen to have identical
values, or an angle may turn out to be a small multiple of a turn such as 60� or
90�.

5 In graph-theoretic parlance, the function– composition graph is labeled by
functions and colored by variables.

(a) Event representing the mapping of Equation (2). Note that 

input and output ports are intrinsically numbered according to the 

order of the input and output components of the mapping in 

Equation (2), as indicated in (b), irrespective of the names used 

for input and output variables.

Figure 4
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Function–composition graph corresponding to the system rep-

resented by Equation (3). Note that signals y and x cross over so 

as to reach node f as, respectively, first and second input, as 

specified by the first of the two equations. The dot represents a 

fan-out node, as explained in the text. 

Figure 5

y

r

z

x

s

f g

T. TOFFOLI IBM J. RES. & DEV. VOL. 48 NO. 1 JANUARY 2004

16



node (to this end, note, for instance, the crossover of the x
and y signals in Figure 5).

A mapping such as (2) can be thought of as an equation
relating its input and output variables. The system of
simultaneous equations

� � y, x� �
f

z

� x, z, r� �
g

�s, x�
(3)

yields the function– composition graph of Figure 5.

Fan-out
Note the appearance in Figure 5 of a fan-out node for x,
denoted by a dot. This is an instance of an n-fan-out
function of the form X 3

In Xn , which takes x as an
argument and returns n copies of x as a result:

x �
In

� x, · · · , x�.
(4)

n

The fan-out node is not specified in (3) by an explicit
equation, but arises from the fact that x appears there as
an argument in two places. A more explicit (and physically
more realistic) way of representing this situation is to treat
the branches of the fan-out node as two new variables, u
and v, and add to (3) a third equation relating u and v
to x,

�
�u, y� �

f
z

�v, z, r� �
g

� x, s�

x �
I2

�u, v�

. (2�)

By using convention (2�) for (3), one obtains a one-to-
one function– composition scheme [10] in which no more
than one input variable is identified with any given output
variable (intuitively, any branching of signals can take
place only at an actual node). Accordingly, the fan-out
node in Figure 5 may be rewritten more explicitly as
u x

, reflecting the third equation of (3). Whether

such a convention is used tacitly or explicitly,
it is clear that, without loss of generality, any
function–composition scheme can be assumed to be
one-to-one. A consistent reminder of this convention is
given by the number of arrowheads— one for each
variable.6 In what follows, we always treat fan-out
explicitly as a node.

Partial order and distributed dynamics
In (2), any of the output variables may be said to be later
than (denoted by “�”) any of the input variables. In a
function– composition scheme, the meaning of later can be
transitively extended: If there is an intermediate variable
q such that r � q and q � p, then r � p. If, because of
the structure of the function– composition scheme, the
relation later, besides being transitive, also happens to be
antisymmetric (intuitively, if the future, unlike Figure 5,
does not feed back into the past), then this relation
establishes what is called a partial order [11] among the
variables.7 In graph-theoretical terms, signal q is later than
p if they are distinct and there is a directed path in the
graph beginning with p and ending with q. The relation
“later than” is a partial order when the directed graph is
acyclic, that is, has no loops. We call such an acyclic
function– composition graph a causal network.

The partial order discussed here naturally extends to
nodes; a node is later than its input signals and earlier
than its output signals. Thus, in Figure 5, x � g � r.

What we want to stress here is that, just as the total (or
linear) order . . . , qt�1 , qt , qt	1 , . . . established among the
variables qi by the recurrence relation

qt	1 � �qt (5)

allows us to view this relation as the transition function of
a dynamical system, so the partial order between signals
of a causal network allows us to view this network as a
dynamical system. In the first case we have a concentrated
system (in which variables do not have an attribute or
index denoting “place”). We may call a value of qt the
state of the system at time t; from this state, the transition
function � produces the next state, i.e., a value for qt	1 .
An entire sequence of values for . . . , qt�1 , qt , qt	1 , . . .

(as distinguished from the sequence of variables8)
satisfying (5) is called a history of the system.

In the second case we have a distributed dynamical
system governed by local interactions.9 Though analogous,
the picture here is somewhat more complex than for
concentrated systems10 and is discussed in some detail
below.

In a distributed system we distinguish between global
state—the state of the entire system through a given
spacelike cut (see below)—and the state of one or more
localized components of the system, which we may call
local state.

6 For example, in Figure 5 there are three arrowheads around the fan-out node,
indicating three distinct variables, even though their values are asked to coincide
by the third equation of (2�).

7 It is a matter of taste whether the relation that defines a partial order is required
to be reflexive or irreflexive. We opt for the latter—that is, a variable is never later
than itself.
8 Here we are confronted with a common type of language ambiguity, in which the
state of a system at time t� may mean either the variable qt , as distinguished from,
say, qt	1 , or a particular value (a constant chosen from its state set) assigned to
that very variable in certain circumstances. We will be careful to resolve this
ambiguity when the context does not provide sufficient clues.
9 Though the system may extend indefinitely in some abstract “space,” each
node of the causal network receives inputs from only finitely many nodes.
10 There is an obvious parallel between concentrated and distributed dynamical
systems on one hand and ordinary and partial differential equations on the other.
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If the system is viewed as synchronous, as the cellular
automaton specified by the recurrence relation

qt	1; x � f�qt; x�1, qt; x, qt; x	1� (6)

and expressed in graphic form [see Figure 10(a) in Section 5],
one can still speak of “the system’s global state at time t,”


· · · , qt; x�1, qt; x , qt; x	1, · · ·� , (7)

i.e., the collective state of the entire collection of variables
whose first index has value t. This collection itself will be
called the (spacelike) cut of the system at time t. Intuitively,
a cut is the act of taking a cross section through the
network at time t, and the global state is the result of
examining this cross section (cf. Footnote 7). In a similar
way one can speak of the next global state at time t 	 1,
etc. In other words, though a cellular automaton is a
distributed system, it is viewed as operating in Galilean
space–time (see Section 2), where space and time can be
treated separately and its global states are still totally ordered.

In general, however, a distributed dynamics may not
have a global (or synchronous) time naturally associated
with it, and the system may better be viewed as
concurrent,11 as in the example of Figure 6. There it is
inessential—for the orderly generation by some computing
device or algorithm of signals obeying the indicated
functional relationship—whether event f is evaluated
before or after g in terms of some absolute clock. All that
matters is that both be evaluated earlier than event h
to provide the latter with the required input signals, and

later than event k to receive from it the required output
signals. It is in this sense that the partial order has a
natural interpretation in terms of a concurrent dynamics.
Note that in Figure 6 we no longer have any use for
separate time and space axes such as those of Figure 10,
shown later; the orientation in spacetime, that is, the
direction of causal effects, is explicitly given for each
signal.

Borrowing terminology from special relativity, two
distinct signals are in a timelike relationship if one is later
than the other, spacelike if not. (If two signals coincide,
by convention they are both in a timelike and spacelike
relationship.) A global cut is any maximal collection
of mutually spacelike signals. The partial order existing
between signals naturally induces a partial order between
global cuts; i.e., global cut P is later than Q if they are
distinct and any signal of P that is not identical with one
of Q is later than some signal of Q. In Figure 6, the
dashed line ACB (and similarly ADB, AEB, and AFB)
is a global cut through the system, since all of the signals
intercepted by it are mutually spacelike, and no more can
be added; their collective state thus represents a global
state for the system. On the other hand, the dashed line
ACZ is not spacelike, since it intersects two signals, p
and q, of which one is later than the other; the signals
intercepted by it do not form a global cut. Global cuts
ADB and AEB are both later than ACB and earlier than
AFB, but neither is earlier or later than the other. As
mentioned in Footnote 7, when no confusion is possible,
we may say global state for global cut.

Figure 6 illustrates how, in spite of having access to
multiple evolution paths, a concurrent dynamics always
leads to the same functional dependency between a global
state and a later one. State ACB may progress to AFB by
first going through local transition function f (and thus
passing through state ADB), or first going through g (and
thus passing through AEB). What qualifies the dynamics
as concurrent is that the two trajectories commute, as
shown in the following diagram:

ACB 3 ADB
2 2

AEB 3 AFB
.

Intuitively, though state AFB can be reached from ACB in
two different ways, the subsequent evolution of AFB is
independent (“has no memory”) of which trajectory had
been followed before.

If signal q is in a timelike relationship with p, then it
belongs to its light-cone. Using standard terminology from
lattice theory, any signal q that is later than a signal p is
an upper bound for it. The collection of all upper bounds
for p (the principal upper ideal generated by p) may be
termed the forward part of the light-cone of p or its

11 This term is preferred to asynchronous, as the latter is often associated with
nondeterministic behavior.

Causal network. The dashed line ACB is a spacelike cross section 

through the system, and the collection of signals intercepted by it 

forms a global cut for the system; the collection of their values is, 

correspondingly, a global state; similarly for ADB, AEB, and 

AFB. On the other hand, the dashed line ACZ is not a spacelike 

cross section because it intersects two signals, p and q, of which 

one is later than the other.

Figure 6
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fore-cone (see Chapter 9 in [12]), and similarly for the
principal lower ideal, or past-cone, of p. One can similarly
speak of upper and lower bounds of a set P of signals,
and thus of the fore-cone and past-cone of P.

5. Crystalline computation
We may now proceed with our approach to
crystallography founded on concurrent computational
dynamics. Our goal is to characterize an autonomous,
indefinitely extended, uniform computational structure
that can play the role of a crystalline computational
medium.

The “digital physics” hypothesis
Regardless of whether our physical world is at bottom
a digital computer,12 certain features of physics that in
textbooks are given as postulates can instead be derived as
natural consequences of intuitively simpler premises, e.g.,
by assuming that the observed continuous dynamics is an
emergent one, having as a microscopic substrate a digital
computational process.13

In the context of this assumption, to match the evident
spatial and temporal uniformity—at least on a tangible
scale— of physical law, one may presume that the
underlying circuit itself has a regular structure.
Alternatively, one may imagine that the circuitry itself is
random, but with statistical properties that are uniform
on that scale; uniformity would then be only an emergent
feature. To reconcile the discreteness in space, time, and
state of the underlying digital circuitry with the apparent
continuity, on a tangible scale, of physical law, one may
demand that circuit features—wires and gates— be much
finer than that scale, so that continuity in this respect
would again be an emergent feature.14 Of course, in the
case of random circuitry and emergent uniformity, circuit
elements would have to be even smaller, to leave room
for the necessary statistical averaging.

Our arguments in this paper should not be construed as
an attempt to garner evidence for some form of “digital
physics” hypothesis. It is one thing to maintain that the
mathematical form of a certain aspect of physics has
“emergent” painted all over it, and it is another thing to
suggest what precise microscopic combinatorial dynamics
it could emerge from. For an analogy, think of the central

limit theorem. Almost any distribution, if iterated (i.e.,
convolved with itself) a large number of times, yields in
the limit the normal distribution. Therefore, whenever we
experimentally encounter a normal distribution, we may
legitimately conjecture that (a) this distribution is not
primary, but is emergent with respect to some underlying
microscopic distribution. However, the very reasons that
make this conjecture extremely likely make it extremely
unlikely that (b) any specific microscopic phenomenon will
be the one actually underlying the observed macroscopic
behavior. In other words, in arguments of this kind,
certainty about (a) is bought at the expense of a
proportionate uncertainty about (b). For example, when
we show below that Lorentz invariance naturally emerges
from a simple computerlike substrate, all we are doing is
making a plea for the extreme genericness of Lorentz
invariance rather than suggesting an explanatory
mechanism for it.

Isologies, or computational isomorphisms
A basic concept in ordinary crystallography is that of
the distance r (P, Q) between two points P and Q. An
isometry is a mapping 	 from pattern A to pattern B that
preserves distances, i.e., such that, for any two points P, Q
of A,

r �	�P�, 	�Q�
 � r �P, Q� . (8)

We would like to introduce analogous, but more general,
concepts useful for showing that two causal networks
(rather than just two patterns of points) are essentially
the same.

The portion of network consisting of all of the events
w between u and v (that is, v � w � u) and all of the
signals incident to them is called the (closed) interval
between u and v, denoted [u, v] [11]. Figure 7 contrasts
(a) the segment (or collection of points) [u, v] between

12 A scramble to establish priority for this speculation [13–15] would be a bit silly,
not only because there is as yet no direct evidence for it, but also because it is one
of the most obvious conjectures that may come to one’s mind [16, 17] (and, as a
referee pointed out, it is also a rather vague one).
13 For example, concurrent computation naturally suggests, as we’ve seen in Figure 6,
that space and time may be coupled as an indivisible whole, as in Einsteinian
relativity, rather than just as the Cartesian product of two independent entities
[Figure 10(a)], as in Galilean and Newtonian mechanics.
14 As an alternative, if the circuit is a regular lattice, one may imagine that, even if
the lattice spacing is coarse, the state of the system may be a linear superposition
of lattice states, so that by continuous interpolation between two discrete lattice
states one may obtain intermediate states spanning a continuous group of
translations [18], just as a continuum of spin states may be obtained, in quantum
mechanics, from the linear superposition of just two states.

(a) The interval [u,   ] in Euclidean space is the “stretch of space” 

between u and   . (b) The interval [u,   ] in a causal network is the 

“stretch of hardware” later than u and earlier than   .

Figure 7
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two points u and v in Euclidean space with (b) the
interval (or collection of events and associated signals)
[u, v] between two events in a causal network. If we
imagine the length of a segment to represent, as it were,
the “amount of space” between its endpoints, then
d(u, v) � d(u�, v�) if there is an equivalent amount
of space between u and v and between u� and v�.
In a similar way, we say that interval [u, v] is equivalent
to [u�, v�], or [u, v] � [u�, v�] if there is an isomorphism
in terms of function– composition structure (events and
signals incident to them) from one to the other, i.e.,
there is an equivalent stretch of computational machinery
between u and v and between u� and v�.

Finally, corresponding to the concept of isometry, we
define an isologic transformation of a causal network, or
isology, to be a mapping of the network to itself that takes
closed intervals into equivalent closed intervals; this means
that, up to a relabeling of signals and events, the two
networks correspond to identical function–composition
schemes and represent, in that sense, identical computers.

Isologic translations
In an isometry, the images P�, Q� of points P, Q that are
near to one another are, by construction, themselves near
to one another. However, to go to P�, point P may move
a different distance than Q to Q�. In a reflection, for

instance, a point moves by an amount proportional to
its distance from the plane of reflection. A translation
(parallel transport) is a special kind of isometry in
which all points move by the same amount. A set of n
translations are independent if none can be expressed
as a linear combination of the remaining n � 1.

The same term, translation, may be used for an isology
in which every event moves by the same local recipe; if,
say, the way to go from event p to p� is by following
the hth output signal of the starting node to some
intermediate node, and then the kth output signal of this
node to the destination node, the same directions must be
employed to go from q to q�. In the case of isologies, n
translations are independent if none can be expressed
as a linear combination with integer coefficients of the
remaining n � 1.

Invertible causal networks
A causal network is invertible if all of the mappings from
global states to global states induced by its function–
composition structure are invertible. A causal network
turns out to be invertible if all of its nodes are invertible
functions. This is proved by an argument similar to the
one that connects an extremum principle to an Euler–
Legendre equation [19], or global minima to local
minima in dynamic programming. That is, one can go
from one space cut to a later space cut by making the
space cut go over (from “before” to “after”) one node at
a time; thence the necessity and the sufficiency that each
single node be invertible. Therefore, in causal networks,
structural invertibility, determined by inspection of local
hardware, and functional invertibility, which is a relation
between global states, go hand in hand. However, see
Section 6.

Crystalline computers
We are now coming to the conclusion of our “reasoned
definitions” journey. A causal network is closed if the
underlying partial order has no maximal or minimal
element. In a closed network, there are no “dangling”
signals; every output of an event is an input to another
event, and vice versa. A causal network is a causal lattice
if every subset of signals has an upper bound and a lower
bound.15 Intuitively, given any subset of signals, there is a
signal that is later than all of them and one that is earlier
than all of them. Thus, in a causal lattice, any two (or
more) signals, even if widely separated, will eventually
share some history in the remote future and did share
some history in the remote past.

A crystalline causal network— or, depending on the
viewpoint, a crystalline computer or a computational
crystal—is a closed causal lattice M such that

15 In lattice theory, this property is one of several kinds of completeness [11].

Examples of computational crystals: (a) Lattice gas having a very 

simple structure. (b) One-dimensional cellular automaton with a 

two-node primitive unit cell. (c) Highly symmetric two-dimen-

sional lattice gas; the two-node unit cell shown here is not primitive.

Figure 8
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1. M admits of a free Abelian group of isometries, G,
generated by d 	 1 independent translations.

2. The quotient of M with respect to G, M/G, is a finite
function– composition network.

We call d the number of spatial dimensions of M, and
M/G its unit cell. As in the case of ordinary crystals, the
group G, and consequently the unit cell M/G, are not
unique. A primitive unit cell is one that is “as small as
possible,” i.e., no proper subset of it is itself a unit cell.
Also, primitive unit cells are not unique.

Figure 8 shows some computational crystals; Figure 9
gives some counterexamples.

Cellular automata and lattice gases
Tradition reserves a special role to two kinds of crystalline
computers, namely cellular automata and lattice gases,
both having an enormous literature—see representative
references in [20]; also, see [13] for an astounding
amount of high-quality material, unfortunately not cross-
referenced in a standard way to the extant literature.

Cellular automata have been given countless definitions,
all more or less equivalent, and we do not try to give the
perfect one here. All that matters is that they are viewed
as synchronous function– composition schemes, as in (7),
and use fan-out junctions to distribute the output of
each designated transition function event at time t to
the events that depend on it at time t 	 1, as illustrated
in Figure 10(a).

Lattice gases have been extensively used as models
reduced to the bare essentials of various aspects of
physics. Lattice-gas fluid dynamics [21] has become a
veritable industry. Though there is practical agreement
over basic concepts, precise definitions are rare, ad hoc, or
contradictory. We suggest a simple definition that in our
opinion captures the essential nature of a lattice gas: A
lattice gas is a crystalline computer for every node of which
the input set and the output set are of equal cardinality.
Thus, even though a lattice gas need not be invertible
(that is, conserve information), it must formally conserve
“amount of state,” that is, number of states in going from
left to right of the clause of the form g�X 3 Y that
accompanies the definition of the transition function g
of any node [Figure 10(b)]. Equivalently, even though
the number of input signals and output signals impinging
on an event need not be the same, the product of the
numbers of available states of all input signals must equal
that of the numbers of available states of all output
signals. A corollary of this is that a lattice gas must do
without fan-out nodes.

Space and time tradeoffs for the unit cell
Figure 8(c) illustrates a very versatile type of crystalline
computing structure used, for instance, in the Hardy–

de Pazzis–Pomeau (HPP) model of hydrodynamics [22] and
in Ising spin models [23]. It is also used for the delightful
Critters rule introduced by Norman Margolus [9]. We use
this rule to illustrate how the type of crystal (that is, which
space group, or, in our case, spacetime group, it belongs
to) can be affected by how much of the dynamics the
isometries are allowed to “know.”

Let each arc be a binary signal, with states 1 (particle)
and 0 (hole). The Critters rule is best described by the
following progression. Note that at each of the three
stages we have an invertible rule:

● Stage 1. No interactions are turned on. Particles in the
four channels of Figure 8(c) go straight through a node
without seeing one another.

● Stage 2. The HPP interaction is turned on. Two
particles colliding head on (i.e., coming from two
opposite input channels) scatter off at 90� from the
original directions and come out through the other two

Counterexamples to Figure 8. Causal network (a) is not a crystal-

line computer because its primitive unit cell is infinite! (In fact, G 

is the one-generator Abelian group that shifts the network one row 

up, and M/Q is a horizontal strip containing an infinity of different 

nodes, ... f  g  h ....) In (b), the network is not closed, because it has 

external inputs. In (c), the network is not a lattice, because there are 

signals that have no common past or future history.

Figure 9
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channels. This is the mechanism that, in the long run,
equalizes pressure in all directions.

● Stage 3 (the Critters plug-in). We turn on one more
kind of interaction. First, if a third particle in addition
to the two of Stage 2 converges on a node, it will
bounce back instead of going straight through the
node. Second, on leaving the node, all 0s turn into 1s
and vice versa (this, at least, was Margolus’s original
formulation).

Note that the rule as given above is the same at every
event (the primitive unit cell consists of a single event).
On the other hand, the state of the system flashes back
and forth; at every step, areas with a majority of 0s turn
into a majority of 1s and vice versa. Particles are not
conserved on an individual step basis.

An alternative formulation of the rule replaces Stage 3
with the following:

● Stage 3�. (The exchange between 1s and 0s on exiting
a node is not performed.) On even steps (imagine
spacetime to be checkered into even and odd events),
the middle of three particles bounces back as in the
original Stage 3. However, on odd steps it is not the
middle one of three particles that bounces back, but the
middle one of three holes. In other words, particles and
holes take turns at interpreting the bounce back
directive.

The two versions of the rule commute and are, in this
sense, essentially isomorphic. However, the primed variant
has the advantage that it conserves particles at every step,
just as Stages 1 and 2 do, and so has a smoother and more
natural visual evolution. The price paid for this is that the

original version has a straight “cubic”16 crystal structure
with a primitive unit cell consisting of one node, while
the variant has a “body-centered cubic” structure with a
primitive unit cell consisting of two nodes. Intuitively, the
variant has weakened a time-translation symmetry into a
glide-reflection symmetry in which the glide is actually
along the time direction and the reflection is not in space,
but within an internal “isospin-like” space, that is, the
finite state set consisting of just particle and hole.

Emergent properties
From the crystallographic group of an ordinary crystal
one can derive some general structural constraints that
its macroscopic properties must obey. Essentially, these
properties must be at least as symmetric as the unit cell,
and possibly more so. Thus, for example, in a crystal
where no two axes are equivalent, the parametric surface
representing thermal expansion in different spatial
directions can be as “bad” as a triaxial ellipsoid, but no
worse. In quartz, which belongs to the trigonal group, the
parametric surface representing compressibility must be
invariant for 120� rotations about the main axis, but to
predict whether this surface will remain unchanged upon
inversion of the axis (it doesn’t, as shown in Figure 11
[24]), one must know more about the atomic arrangement
in the unit cell.

In an analogous way, one may wonder about dynamical
properties within a spacetime crystal. I cannot forget the
sense of elation I felt when I discovered not only that
a certain cellular automaton I was playing with—the
Toffoli–Margolus gas, or TM [25]—supported well-formed
density waves,17 but also that these waves propagated at
the same speed in all directions (rotational invariance!)
even though the cellular automaton was built on a square
lattice. Unfortunately, for both HPP and TM gases, it
turned out that while the velocity was direction-
independent, the viscosity (and thus the wave attenuation)
was not. It was left to Frisch and collaborators (see [26]
and references therein) to determine what kinds of
spacetime lattices in two and three dimensions would
guarantee rotational invariance for all of the tensors
relevant to low-Reynolds-number fluid dynamics.

Crystalline computation, invertibility, and
computability
The intimate connections among crystalline computation,
invertibility, and computability have been discussed in
[20, 27] and, more recently, [28 –30]. Here we give a brief
summary.

Even though cellular automata are causal networks,
for historical reasons an invertible cellular automaton is
defined as one for which bijections are only required

16 “Cubic” in the sense of two dimensions in space and one in time.
17 I had stumbled on lattice-gas hydrodynamics independently of [22].

The compressibility of quartz as a function of spatial direction. 

Reprinted with permission from [24]. © 1977 Elizabeth Wood.

Figure 11
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between “public” global cuts, disregarding the ancillary
states temporarily created by the fan-out nodes for
“internal distribution” purposes.18

This concept of invertibility differs from the one we
defined in the section on invertible causal networks
above; we may say that an invertible cellular automaton
is functionally invertible in a global sense, but it is not
obvious whether it is also structurally invertible in a local
sense as a causal network. An interesting question is
whether an invertible cellular automaton can be rewritten
isomorphically as a standard causal network with no fan-
out, namely, as an invertible lattice gas. In 1990, Toffoli
and Margolus [20] conjectured that this is the case, and
the conjecture was proved ten years later by Durand-Lose
[29]. But even though the existence of such a lattice gas
is thus affirmed, there is, in general, no effective way to
construct it!

What is of interest is the nature of the difficulty. It
turns out that, in contrast to ordinary physics, the
backward light-cone of an invertible cellular automaton
may have a different shape and width than the forward
cone, and this width is, in general, not effectively
computable on the basis of the forward dynamics. As a
consequence (via a relatively recent theorem by Kari [28]),
the lattice-gas crystal that isomorphically reproduces the
behavior of an invertible cellular automaton may have a
much coarser structure (in terms of primitive unit cell
size) than the cellular automaton itself—and no effective
bound is, in general, available for the coarseness ratio. We
may thus have the paradox of an invertible crystalline
computer whose functional behavior can be described in
terms of a very small primitive unit cell, but whose
physical implementation, surprisingly, may require an
(unboundedly) larger primitive unit cell! In sum, structure
and function may make very different demands on the
fineness of the spacetime crystalline structure.

6. Lorentz transformations and relativity
The Lorentz transformation is a mapping of spacetime
taken for the moment to be a (1 	 1)-dimensional
Euclidean space indexed by Cartesian coordinates x and t,
into itself. Using appropriate units for x and t, the family
of Lorentz transformations is given by

� x� �
x � �t

�1 � � 2

t� �
t � �x

�1 � � 2

. (9)

The so-called velocity parameter � may be interpreted as
the velocity of the primed frame with respect to the rest
frame.

A Lorentz transformation becomes an isometry if the
Euclidean distance r between points P0 � 
t0 , x0� and
P1 � 
t1 , x1�, which satisfies

�r�P0 , P1�

2

� �t1 � t0�
2

� � x1 � x0�
2,

is replaced by the pseudo-Euclidean distance s, which
satisfies

�s�P0 , P1�

2

� �t1 � t0�
2

� � x1 � x0�
2

(note that a plus sign has been turned into a minus sign).
As defined so far, a Lorentz transformation merely
involves kinematic quantities, i.e., points in space
and time. In addition to transforming space and time
coordinates, it automatically induces transformations on
all kinematic quantities, such as velocity, acceleration,
frequency, spatial density, and spatial frequency (wave
number); however, the corresponding transformations
of dynamic quantities—such as mass, energy, pressure,
charge, and electric field—associated with those points in
spacetime are not automatically prescribed. An extension
of the Lorentz transformation to those quantities is not
a matter of pure logic but must be based at least in part
on experiment [5].

The nontrivial aspect of the matter is that indeed there
exists an extension of the Lorentz transformation to
dynamic quantities, and this extension yields, in addition
to the isometries mentioned above, invariance of all
physical laws under the transformation. As a matter of
fact, this set of correspondence rules, called special
relativity, is valid only in the limit of very low matter/energy
density, i.e., almost empty space. To deal satisfactorily
with the general case, one must have recourse to a more
complex, nonlinear theory, namely, general relativity.

All of this may sound quite arbitrary, something that
perhaps has to be learned and accepted (after all, that is
the way the world works), but in which there is nothing
really to be understood. On the contrary, we would like
to show that relativity makes a lot of intuitive sense if
imagined to emerge from a crystalline computer substrate.

A simple substrate
Perhaps the simplest kind of crystalline computer is a
lattice gas having the structure of Figure 8(a). The
primitive unit cell consists of a single event with two
inputs and two outputs. As suggested by the different line
thicknesses, the state set of the right-going signals may
differ from that of the left-going signals. In what follows,
we graphically simplify the picture of this crystal by using
dots instead of circles for events and the same line
thickness for all signals. Also, even though the causal

18 More precisely, the global cuts that are retained are those which intersect
signals only immediately after a designated transition function node and
immediately before the corresponding fan-out node. The ancillary signals that
come immediately after a fan-out junction and immediately before a transition
function event are never taken into account when invertibility is an issue [30].
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network extends indefinitely, we draw only a small portion
of it.

Figure 12 depicts a Lorentz transformation of the
crystal. We assume that the transformation affects the
position of nodes and arcs thought of as inhabiting
spacetime, but not their intrinsic attributes, i.e., the
state sets and functions attached to them as in (2).

Relations (9) become less forbidding when expressed
in more natural coordinates (namely, in place of t and x,
the generators c	 and c� of the crystal lattice). In those
coordinates, a Lorentz transformation simply stretches the
lattice by a certain factor 
 along the c	 generator19 and
shrinks it by the same factor along c� . A stretch of 
 � 2

corresponds to � � 2/3. In Figure 12, we stretch by 
 � 3/2,
giving � � 5/13. The picture makes evident the hyperbolic
nature of the Lorentz transformation; specifically, while
spacetime shapes are altered, all spacetime volumes,
including that of the unit cell of the crystal, remain
unchanged.

Because these are merely lattice coordinate
transformations and do not affect the graph–theoretical
properties of the causal lattice, it is clear that the
function– composition scheme itself remains unchanged.
At a macroscopic level, however, one does not have access
to the individual signals and their individual microscopic
interactions at the nodes, but only to macroscopic
averages of signal states, and thus one must try to
formulate macroscopic dynamical laws that express
how these averages evolve as well as how they Lorentz-
transform. And, because the discrete lattice coordinates
are no longer directly accessible, these dynamical laws and
transformations must be expressed in terms of continuous
spacetime coordinates.

For example, even though one cannot resolve a unit cell
in a macroscopic view, nonetheless the spacetime density
of events is left invariant by a Lorentz transformation;
moreover, even though one may not be able to directly
count the number of events contained in a certain portion
of spacetime history, one may make use of the knowledge
that this number is invariant.

To more clearly trace the connection between the
underlying digital computation and the emerging
continuous dynamics, we proceed gradually from the
microscopic view to the macroscopic one. Given a
crystalline computer that appears like Figure 8(a) in its
rest frame, let us consider two copies of it, one Lorentz-
boosted by 
 � �2 and the other by 
 � 1/�2.
Intuitively, this corresponds to the same crystalline
substrate being employed as a computer by two users,
Alice and Bob, one moving at a speed of 1/3 with respect
to it and the other at a speed of �1/3, each expressing
time and space coordinates with respect to his or her own
reference frames. Even though the crystalline substrate is
one, to Alice and Bob it looks, respectively, like the left
and right of Figure 13 (arrows and dots must be imagined
like those of Figure 12), and has different computational
properties (for instance, certain left-traveling tokens may
move at different speeds in the two frames); from a
macroscopic viewpoint, Alice and Bob see two different
materials.

Relativity
Let us now consider a specific computation taking place
on a crystalline substrate, i.e., a particular solution of
the recurrence relations associated with the function–
composition scheme; this may also be thought of as a
trajectory, or a history, of the system. The computation

19 The direction of the c	 generator in spacetime corresponds to the speed of light
rightward, while that c� corresponds to the speed of light leftward.

Two views of the computational substrate of Figure 8(a). Alice 

(a) is traveling at a velocity of 1/3, and Bob (b) at �1/3. They see 

materials having different textures. (Even though the geometry of 

the two lattices happens to be identical up to a reflection about a 

vertical axis, the function at each node is not.)

Figure 13
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is given different descriptions by the two users if the
variables involved in it (no matter whether microscopic
or macroscopic) are indexed by their time and place of
occurrence in each user’s spacetime frame (rather than
by some absolute labeling scheme).

Besides this difference in the way the two users depict
the same computation, it is in the nature of a computer
that, with different initial conditions, it will give different
computations to the same user. A most important question
in the present investigation—the “only” question, one may
say with little risk of exaggeration—is the following:

● Let Alice see initial state p0 evolve into final state p1

under the action of a certain dynamics �. To Bob, who
differs from Alice by a Lorentz transformation �, this
looks20 like a certain state q0 evolving into q1 .

● Can we find a different initial state r0 for Alice that
will look to Bob just like p0 looks to her, and that, in
particular, will evolve into a final state r1 that will look
to him just like p1 looks to her?

Intuitively, imagine the substrate to be a computer and
the initial conditions to represent a “program” that makes
that computer show a certain animation movie to Alice.
Bob, being a Lorentz-scrambled version of viewer Alice,
sees the movie all scrambled. Can we suitably reprogram
the computer, that is, run a different program on it, so
that it will let Bob, in spite of being Lorentz-scrambled,
effectively see an unscrambled movie?

As one may expect, the answer to the above question is,
in general, negative.21 The two main stumbling blocks are
as follows:

1. The system state set may be too poor to provide a
counterimage, under a Lorentz transformation, to an
arbitrary state; in the terms of the above question, to
provide an appropriate r0 for every q0 . Special relativity
is, in this sense, a statement about the richness of
dynamical states in physics.

2. The Lorentz-transformed viewer in general experiences
a transformed, and thus different, dynamics, �� (as
explained in Figure 13). Even if we have found a state
r0 that looks like p0 to Bob, nonetheless, while state r0

evolves into r1 under the dynamics � of Alice—and the
Lorentz-transformed state of the latter is p1—state p0

evolves for Bob into ��( p0), not p1 � �( p0)!

Both obstacles may be literally smoothed out by taking
a macroscopic view and letting a lot of detail wash out by
averaging and blurring. On that scale, the variables that

have retained significance are usually continuous ones,
offering plenty of room for state interpolation (cf. Point 1
above). By the same token, on a macroscopic scale
computational power tends to become fungible between
different computer architectures, so that only the raw
amount of computing power matters. Because, as we have
already remarked, the number of events or primitive
interactions—and thus, raw computing power—is
conserved by a Lorentz transformation, other distinctions
between � and �� (cf. Point 2 above) become less
important.

The fungibility approach is discussed at greater length
in [31]. In the next section, we prove that, for crystalline
computers satisfying a certain rather weak condition,
Lorentz invariance is attained in the limit as the density
of computational tokens goes to zero (in which case, of
course, the computing medium is grossly underutilized).

Invariance by rerouting
Let us again take a lattice gas like that of Figure 8(a) and
require that f satisfy the following condition:

Among all possible states for the right-going signal
as well as for the left-going signal, there must be a
distinguished state such that, when this state appears
at one of the inputs, the state at the other input is
propagated through unchanged.

If such a state, which we may call the vacuum state,
exists, signals will travel freely through the “vacuum.”
What this means is that a token (any non-vacuum state)
has no way to sense that it is going through a node unless
the other channel carries a token as well. Even though all
tokens travel at light speed all of the time, they have no
way of knowing how much ground they cover, nor can
they tell elapsed time, nor be deflected unless they
undergo a collision with another token. In a vacuum,
tokens are in a state of suspended animation, as it were.

In the figures that follow, a thin stroke denotes an arc
carrying the vacuum state; a thick stroke denotes an arc
carrying any token. Note that, with the vacuum-state
condition, a fresh token cannot be created out of the
vacuum. As for token destruction, if f were noninvertible,
a token might be annihilated in a collision; merely to
simplify the following discussion, we assume that f
is invertible, and thus no tokens are destroyed. As a
consequence of token conservation, thick lines proceed
straight and uninterrupted regardless of the details of
collisions, as in Figure 14(a); the actual state along a
thick line may of course change from one arc to the
next. For our purposes, the only relevant consequence of
the vacuum-state condition is that certain of the straight
lines that make up the grid are singled out— once and for
all, as a function of the initial state22—as token-carrying20 When we say that Alice “sees” a state p, we mean that p is the description she

gives to a certain state. If this “looks” like q to Bob, that means that q is Bob’s
description of the same state.
21 Indeed, what relativity does is celebrate the fact that this question has a positive
answer for our physics.

22 For instance, the collective state of the signals entering the diamond from below
in the figure.
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lines, while the others are effectively suppressed. In a
similar way, the nodes at the intersections of the thick
grid lines are singled out as non-vacuum events (and are
distinguished by a larger dot in the figure); all other nodes
are effectively suppressed. We thus obtain a reduced
function– composition graph which contains only thick
lines and in which the distance between parallel lines has
been normalized to one signal hop. This reduced graph
conveys all of the functional dependency between states

except for the original spacing between non-vacuum lines.
The latter information is, in the present circumstances,
decoupled from token-sequencing information and, from
a macroscopic viewpoint, carries very little intelligence
value—as we shall see in a moment.

Suppose now that Bob wants to observe a computation
that must look to him just like what Alice sees from her
viewpoint. What initial state do we have to set up for this
purpose? We should lay the thick grid of Figure 14(a) as
a template on top of that of Figure 13(b) and try to set
Bob’s initial signals to match the template. We attempt
to do so in Figure 14(b).

All of the right-going lines of the template find a
matching line in Bob’s grid, since the latter contains all
of Alice’s right-going lines and as many more, because of
the Lorentz contraction (for lines of that direction, Bob’s
grid has twice as fine a pitch as Alice’s). Unfortunately,
because of the accompanying Lorentz “expansion” for the
spacing of left-going lines, Bob’s grid has half as many
lines in that direction, and some of the template left-going
lines (those marked “3” and “11”) have no match at all
in Bob’s original grid. This is a case of Obstacle 1 in
Section 6 under relativity.

Thus, we cannot always have an exact correspondence
between a computation in Alice’s grid and one in Bob’s.
However, as long as the lines that carry tokens are very
sparse, the ones that carry a token and cannot be placed
where the template would want them can, most of the
time, be moved one position over to an available
vacuum “slot.” For instance, compared with
Figure 15(a), line 3 has been moved to position 4
in Figure 15(b). Note that the functional dependency
between all tokens has remained the same— only
the spacing of some of the thick lines (but not their
relative order) has changed.

Occasionally, both lines of Bob’s grid that are closest to
the position demanded by the template, such as lines 10
and 12 in Figure 14(b), are already token-carrying ones,
and the idea of pushing 12 to 14 to make room is not
viable because the latter as well is also already busy with
tokens. But we can push signal 10 to line 8, making room
for placing 11 in 10, and so forth. . . . The probability that
longer-range adjustments will be needed goes down
rapidly with range size.

Note that all we are doing, by pushing these “wrinkles”
around until they find a “crack” to settle in, is slightly
changing the spacetime position of certain data— but not
the data themselves, their sequencing, or their functional
dependency. And this positional error is not amplified as
the computation proceeds—neither exponentially nor even
linearly; it just remains constant and thus tends to vanish
as one moves to a macroscopic view.

(a) The original computation, copied here for convenience. (b) 

The same logic evolution, but with small adjustments in the 

spacetime placement of certain signals made necessary by pitch 

differences between the original lattice and the Lorentz-boosted 

lattice. Signal 3 has been moved to line 4, and signals 10 and 11 

respectively to 8 and 10.

Figure 15
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(a) A computation in a portion of a lattice gas having a dis-

tinguished vacuum state. The picture reports the existence of non- 

vacuum states or tokens (thick lines), but not their nature, which 

is irrelevant here. Tokens arrange themselves on straight, un-

interrupted lines. The larger dots indicate interactions between 

tokens. (b) An attempt to fit the “same” computation in the 

Lorentz-transformed lattice of Figure 13(b). In this lattice, lines 3 

and 11 cannot find host signals in the precise required positions.

Figure 14

t t '

(a) (b)

x x'

161514131211109
8

7
6

5
4

3
2

1
0

161514131211109
8

7
6

5
4

3
2

1
0

T. TOFFOLI IBM J. RES. & DEV. VOL. 48 NO. 1 JANUARY 2004

26



To sum up, we have exhibited a crystalline computing
medium that is computation-universal23 and exhibits
Lorentz invariance in the limit as the density of tokens
goes to zero. (This latter “fine-print” provision also
applies, as we have seen, to ordinary special relativity.)

Emergence of the Minkowski metric
It should not come as a surprise that something like the
Minkowski metric (1) emerges from a spacetime crystalline
dynamics like that just discussed. Our message, again
(see the digital physics discussion in Section 5), is
not that there must be a lattice computer underneath
relativity, but that the mathematical form of relativity
makes the latter a prime candidate for an emergent
feature.

In a lattice such as that shown in Figure 8(a), and using
as units the dimensions of the unit cell, let us count all of
the possible spacetime paths leading from the origin (0, 0)
to a point (t, x), as in Figure 16. No matter what path is
chosen, t represents the number of computation steps
along the path and x the overall displacement of the
result from the origin. Since

h �
t � x

2
and k �

t � x

2
,

the number of these paths is given by the binomial
coefficient

N�t, x� � �
t

t � x

2

t � x

2 � .

Now, for t �� 0 and x �� t, that is, for a large number
of computational steps and for a modest displacement
from the origin, we have

t 2
� x 2 � t 2

ln N

t
. (10)

The left-hand side of (10) is the squared Minkowski
distance as in (1) (here we are considering a single spatial
dimension). The right-hand side is t 2 , that is, the squared
raw causal distance (number of computational steps
between origin and destination), which is independent of
the displacement x, corrected by a factor that gives the
efficiency of these computational steps in the spacetime
direction from (0, 0) to (t, x). This efficiency is measured
in terms of the average amount of choice at every step
[31], that is, the log of the number, N, of possible
trajectories divided by the number of steps t. (In the
extreme case x � t, that is, for a “computation” that
proceeds on a light-wave front, there can be no “side talk”

between the different portions of the front; thus, a single
trajectory is available at every point, the amount of choice
is zero, and the computation grinds to a halt.) In other
words, in the approximation considered here, (10) can be
seen as a prosthapheresis formula—a device in which a
product is replaced by a difference. The right-hand
side of (10) appears to be intuitively more meaningful,
while the left-hand side is computationally more
convenient.

7. Conclusions
By recasting crystallography on a somewhat deeper
and more generic foundation—a foundation based
on constructs originating from distributed digital
computation— one obtains a discipline that requires less
and gives more. The fundamental topological concept is
taken to be the partial order naturally induced by function
composition, rather than the Euclidean metric as
customary; the latter, when needed, can be obtained as an
emergent construct, together with the pseudo-Euclidean
metric of relativity.

Because the time aspect is made an integral part of
the theory, not a separate plug-in, one can deal with
concurrent, rather than just sequential, dynamics, either
fundamental or emergent; describe spacetime unit cells
in more general terms than merely spatial unit cells to
which some time depth has been added; and deal with
connections between regularity, on one hand, and effective
computability on the other.

In sum, one obtains a more versatile, as well as
conceptually simpler, tool, able to go beyond the needs
of just mineralogy or materials science.

23 The reduced graph is certainly capable of being computation-universal, since it
is a lattice gas which has an arbitrary number of states (even after subtracting the
vacuum state), and for which the transition function f can be chosen arbitrarily.

A few of the forward-directed spacetime paths from (0, 0) to (t, x) 

drawn on the lattice of Figure 8(a).

Figure 16
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