
B. M. TerhalIs entanglement
monogamous?
In this paper I discuss some of the early history of quantum
information theory. By considering the question of whether
entanglement is “monogamous,” I illustrate Charles Bennett’s
influence on modern quantum information theory. Finally, I
review our recent answers to this entanglement question and
its relation to Bell inequalities.

Introduction
It was a pleasure to contribute to the May 2003 scientific
festivities at the IBM Thomas J. Watson Research Center
commemorating Charles Bennett’s sixtieth birthday.
I believe that I was there representing the younger
generation of quantum information theorists. Like John
Smolin and Ashish Thapliyal, who also did their Ph.D.
research at IBM, I can say that Charlie Bennett is my
“scientific father.” Not being at a university, Charlie has
never assembled a large group of doctoral students.
Nonetheless, I think that he has inspired many of us,
students, postdocs, and also senior researchers, many of
whom were present at the event. In some sense I would
say that we are all Charlie’s students. Figures 1– 6 show
the growing number of participants at the Quantum
Information Processing (QIP) conferences. The QIP
conferences were established to provide a venue for
computer science and algorithmic aspects of quantum
information processing. The first conference, called
“Algorithms in Quantum Information Processing,” was
held in 1998 in Århus, Denmark. (Photographs courtesy
of C. H. Bennett, I. L. Chuang, and G. S. Frandsen.)

Charlie’s influence in quantum information theory does
not limit itself to the direct effects of his scientific work—
quantum teleportation, quantum key distribution, and the
framework of entanglement manipulations, to name a few.
There seems to be a deeper thread running through
quantum information theory to which Charlie has
contributed considerably.

The fact is that quantum information is not a subject
that evolved yesterday, or after 1994, when Shor
discovered that large numbers could be factored efficiently
on a quantum computer [1]. It is quite a bit older than
that. For example, a few years ago I found a paper on
the subject written in 1976 by the Polish mathematical
physicist Roman Ingarden [2]. The title of the paper is

“Quantum Information Theory,” and the first few
sentences of the abstract go like this:

“A conceptual analysis of the classical information
theory of Shannon (1948) shows that this theory
cannot be directly generalized to the usual quantum
case. The reason is that in the usual quantum
mechanics of closed systems there is no general
concept of joint and conditional probability. Using,
however, . . . , it is possible to construct a quantum
information theory being then a straightforward
generalization of Shannon’s theory.”

This paper was published in the Polish journal Reports
on Mathematical Physics, which I found in the library at
the Thomas J. Watson Research Center a few years ago.
(Actually, when I recently wanted to have a look at this
paper again, it turned out that the library did not have the
journal anymore; unfortunately, it was discarded after a
recent cleanup!)

Ingarden was one of a group of physicists, many of
them in Eastern Europe and the former Soviet Union,
who were thinking about the intersection of information
theory, probability, and quantum physics in the 1960s and
1970s. The most notable member of this group may be
Alexander Holevo from the Steklov Mathematical Institute
in Russia, who is still very active in modern quantum
information theory. His 1973 result that n quantum bits,
or qubits for short, cannot carry more than n bits of
information [3] is frequently invoked in modern quantum
information theory.

Ingarden’s paper is one of the first attempts at building
a theory of quantum information analogous to Shannon’s
classical theory of information. He considers the problem
of transmitting classical information through a quantum
channel whose output is measured by fixed single-letter
projective measurements. Since input and output are then
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Figure 1

Participants at AQIP ’98 in Århus.

Figure 2

Participants in the hotel lobby at AQIP ’99 in Chicago.
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classical, Shannon’s expression of the classical capacity can
be applied directly.

So now it is an interesting question to consider in what
way modern quantum information theory is different from

the earlier work, and here, I believe, is where Charlie
comes in.

First, there is of course the difference in volume. A
search at the quantum physics archive at the arxiv.org Web

Figure 3

Participants in Montréal at QIP 2000.

Figure 4

Participants on the canal in Amsterdam at QIP 2001.
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site reveals that over the past years there have appeared
about 883 papers with the word information in the abstract
and about 597 papers with entanglement in the abstract,
and this probably understates the current output.

The second difference, however, is more fundamental.
In the modern theory of quantum information, we speak
of quantum systems in the hands of Alice and Bob and
Eve—these names first made their appearance in

cryptography in the 1970s. We say things such as “Alice
sends Bob a qubit and forgets what she did,” “Bob does
a measurement and tells Alice,” and “Eve does a random
unitary transformation on her half of the Einstein–
Podolsky–Rosen (EPR) pair.” Even though this seems
very casual, it is, at least to the reader familiar with
quantum information jargon, crystal clear what is meant
in these situations.

Figure 5

Participants in front of the IBM Thomas J. Watson Research Center at QIP 2002.

Figure 6

Participants in the Mathematical Sciences Research Institute (MSRI), Berkeley, at QIP 2003.
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In the earlier work, we are more likely to see
descriptions such this one from a paper by G. Lindblad
in 1973 [4]:

“The map TA�W 3 W extended to B(H) is a special
case of an expectation in the operator algebra B(H),
i.e., a linear map from B(H) into a von Neumann
subalgebra satisfying T � I � I where I is the identity
operator.”

This example illustrates the fact that the earlier work
on the subject was first of all grounded in mathematical
physics and less well connected to a world in which
we may actually send quantum systems around, do
measurements, and transform states. What has changed
since the 1960s and 1970s is not that we have actually seen
Eve do a random unitary transformation on her half of an
EPR pair, but somehow we have started to dream and
imagine that it would happen some day. Somehow, people
at IBM Research and elsewhere started to think about
irreversibility, physics, and information. And those people,
most particularly Charlie Bennett, preferred to think
about quantum information in a more conceptual, intuitive
way. The goal was to ask simple questions which could
have profound nonintuitive answers, e.g., in quantum
teleportation, and in this way we started to understand
how quantum information is different from classical
information.

The new language in which the questions were posed
was one of action and operation. A prime example is
Charlie’s question, “What happens when we throw in an
EPR pair?” in the discussion that led to the discovery of
quantum teleportation. This operational point of view,
i.e., asking how quantum information and entanglement
can be used and manipulated for quantum information
processing, has been extremely fruitful, and I believe that
Charlie Bennett has played a key role in its success.

Is entanglement monogamous?
Turning to the title of this paper, I consulted our modern-
day oracle, the search engine Google**. When I googled
“entanglement monogamous,” I got 215 hits in 0.02
seconds, and as you may expect, a fair number of them
were unrelated to science. Here are the first three:

● “. . . You can’t become entangled simply by talking on
the telephone. Entanglement is monogamous—the more
entangled Bob is with Alice, the less entangled he can
be . . .” at qpip-server.tcs.tifr.res.in/ ˜qpip/HTML/
Courses/Bennett/TIFR2.pdf.

● “. . . this idea doesn’t fit with the traditional view of
monogamous societies, Siva . . . The technique has the

added bonus of improving the entanglement of pairs that
pass . . . ” at www.dhushara.com/book/upd3/2002a/
28apr01/nsapr.htm.

● “. . . My monogamous wonderful forever relationship has
fallen apart . . . are trying a polyamorous relationship
but it will be long distance and with minimal
entanglement. . . . ” at www.cavegirl.org/polyhell.html.

The first quote is taken from a set of lectures that
Charlie gave at the Tata Research Institute in India.
These few phrases suggest exactly what I mean with
the question “Is entanglement monogamous?”. Is
entanglement indeed a property that one can have with
only one person or quantum system, or can one share it
with many? I would like to consider an example taken
from political life. There are two opinions that were
considered relevant early in 2003. A person was either for
the U.S. invasion in Iraq or against it. It is clear that it
did not take much for the President to convince most
people in the United States to be pro-war. And if
President Bush had been against the war, quite likely
most of the American people would have been against it.
In this sense, a classical bit of correlation—to be or not
be against the war in Iraq— can at least in principle be
shared by an unlimited number of people.

But now consider a scenario in which President Bush
and Secretary of Defense Rumsfeld start out in an
entangled state containing both opinions:

1

�2
��PRO WAR�Bush � �PRO WAR�Rumsfeld

� �AGAINST WAR�Bush � �AGAINST WAR�Rumsfeld);

(1)

i.e., as a superposition of two states: One is a state in
which Bush and Rumsfeld are both pro-war and the other
is a state in which both, unlikely though it may seem, are
against the war. In this example, the amplitudes for both
states are equal, but we may adjust them; say we assign an
arbitrarily small amplitude of �� to the no-war state in
order to make it resemble the real situation more closely.
When both opinions are measured, we find that the two
always agree, and the purely classical correlation that is
found can again be shared freely.

The Bush–Rumsfeld state is a pure entangled state.
(I am taking the liberty of following current trends of
renaming well-established concepts for political reasons;
thus, I do not call this an EPR pair.) This implies that there
is no quantum state shared by three parties, Bush, Rumsfeld,
and someone else (say, Joe Smith) such that when we
remove Joe we get the Bush–Rumsfeld state and, at the
same time, the total three-party state would not change
if Joe and Rumsfeld were interchanged. The reason is
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simple. Let us represent pro-war by a 0 and anti-war by a
1. The first requirement implies that since the
Bush–Rumsfeld state is pure, the state for three parties
must be a state for Joe alone in tensor product with the
Bush–Rumsfeld state:

�Joe’s state� �
1

�2
��0�Bush � �0�Rumsfeld � �1�Bush � �1�Rumsfeld).

(2)

But then it is clear that there is no symmetry between Joe
and Rumsfeld; Joe is unentangled with Bush, whereas
Rumsfeld is maximally entangled. This simple observation
is the basis for Charlie’s phrase “Entanglement is
monogamous”; unlike partners or opinions, entanglement
cannot be freely shared.

So now here is a question a modern quantum
information theorist typically would ask him/herself. First,
what is this observation good for, and second, is it true
for all entangled states?

It turns out that this property of entanglement is
essential in quantum cryptography. In 1984 Bennett
and Brassard proposed a protocol for quantum key
distribution, a way of letting two people, Alice and Bob,
share a set of random perfectly correlated bits about
which no one else has any information [5]. In other
words, Alice and Bob want to establish a “monogamous
correlation.”

Now, given the arguments above, it is clear that if
Alice and Bob were to share an entangled state, like the
Bush–Rumsfeld state, they would be finished. They would
measure and get the same random bit, and no one would
know what they got.

Following this line of reasoning, Lo and Chau showed
in 1999 [6] how Alice and Bob can proceed in order to
obtain (something close to) a set of entangled states, and
in this way they proved the security of an entanglement-
based quantum key distribution scheme. The work by
Lo and Chau was the stepping stone on which Shor and
Preskill [7] in 2000 built their security proof of Bennett
and Brassard’s 1984 scheme.

The relation between the establishment of secrecy or
a “monogamous” correlation between parties and the
transmission of quantum information or entanglement has
recently been investigated by Igor Devetak at IBM and A.
Winter in Bristol. The basic idea is that coherent versions
of schemes to establish secret random bits lead to optimal
protocols that achieve the quantum capacity of a quantum
channel [8] or lead to optimal one-way entanglement
distillation protocols [9].

Shareability for general states
Let us now turn to the question of whether all entangled
states are monogamous; more precisely, are mixed

entangled states necessarily monogamous? A first example
of a mixed entangled state that is is not monogamous but
shareable (the term is from Ben Schumacher) can be
found in the 1996 paper by Bennett et al., “Mixed State
Entanglement and Quantum Error Correction” [10]. A
noisy quantum channel is constructed in the following
way: With probability 1/2, the input to a qubit channel
is transmitted unchanged to Bob. In that case, the
eavesdropper Eve has a completely random qubit. And
with probability 1/2, Eve gets the qubit that Alice sends and
Bob gets a completely random qubit. If Alice sends half
of a maximally entangled state to Bob, then one can show
that the state for Alice and Bob by itself is still entangled.
At the same time, the total state that includes Eve’s part
is always symmetric with respect to Eve and Bob, and so
Eve is equally entangled with Alice. This is an example of
shareable noisy entanglement. The shareability directly
implies that the one-way distillable entanglement of the
state is zero, and similarly the secret key that can be
distilled by one-way communication is zero.

It is not hard to find other examples of such states; in a
recent paper [11], we have done so. One considers the
following optimization problem.

Problem 1
Given � on HA R HB1

, is there a symmetric extension of ��

to HA R HB1
R HB2

such that

TrB2
�� � �, TrB1

�� � �? (3)

Under some reformulation, this optimization problem
can be written as a semi-definite program which either
returns a symmetric extension �� or returns the answer
that there are no feasible solutions for the program,
implying that there is no symmetric extension. One can
generalize the problem to multiple parties; one requires
that � be symmetrically extendible to systems B2 , . . . , Bn

in the sense that the extension �� be invariant under
any permutation of the parties B1 , . . . , Bn . A weaker
symmetry requirement on �� is one that states that the
original density matrix � should equal the reduced density
matrix �ABi

derived from �� for all i. All features discussed
in the next section hold for both notions of symmetric
extension.

The last but perhaps most interesting property of
shareable mixed entanglement lies in its relation to
violations of Bell’s inequalities; at least, this is how I
started to think about this notion.

Bell inequalities
In the 1960s John Bell formulated an inequality that must
be obeyed by any theory that is classical and local [12]. As
it turns out, local measurements on entangled quantum
states may violate his inequality. In particular, we know
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that for every pure entangled state there exists a Bell
inequality that is violated.

However, as with the notion of shareability, one may
also ask whether mixed entangled states violate Bell
inequalities. This question has some history, starting with
work by Reinhard Werner showing that there exist states,
now called Werner states, which are entangled but do
not violate Bell inequalities for any number of local
measurement settings [13]. Despite the large body of
work on Bell inequalities, no clear-cut criteria have been
developed to decide whether a state does or does not
violate some Bell inequality.

The problem is first that in order to find a violation, a
possibly infinite number of settings and measurement
choices should be considered, which is not feasible.
Second, it is a hard computational problem to enumerate
all Bell inequalities for a given setting; this corresponds to
enumerating the facets of some highly symmetric polytope.

Conversely, there have been no constructive methods
for formulating local hidden variable models for states,
if they exist. Such a thing would be quite desirable. As
it turns out, there is a very nice relation between the
shareability of entanglement and the existence of a local
hidden variable model. The correspondence is the
following.

Theorem 2 [11]
Let � be a density matrix on a Hilbert space HA R HB1

. If �

has a symmetric extension �� on HA R HB1
R . . . R HBm

,
then there exists a local hidden variable description of �

when Alice has an arbitrary number and Bob has m possible
measurements.

The intuitive picture behind this theorem is simple. The
proof of the theorem rests on three observations. First,
if � has a symmetric extension ��, then Bob may do
his measurements MB1

, . . . , MBm
on ��; that is, he

does measurement MBi
on the space HBi

. Since �� is
a symmetric extension of �, the joint probabilities of
outcome for some MAj

and MBi
are the same as for �.

Second, Bob’s m measurements on �� can be viewed as
one large measurement MB1

� MB2
� . . . � MBm

. Third,
it is known that there always exists a local hidden variable
description of measurements on a quantum state when
one of the two parties has only one measurement.
Therefore, the measurements on �� have a local hidden
variable description from which we can deduce the local
hidden variable description of the original measurements
on �.

Before I finish, I would like to return to the title of this
paper and say that Charlie was right, as usual, that all
entanglement is monogamous in an asymptotic sense.
An entangled mixed state may have extensions to some
number of parties, but are there entangled mixed states

that can be extended to a infinite number of parties? The
answer is no. There is a theorem that states that only
unentangled states have infinite symmetric extensions.

Theorem 3
(Fannes–Lewis–Raggio–Schumacher–Verbeure–Werner)
[14, 15]
A quantum state � on HA R HB1

is unentangled or
separable if and only if � has symmetric extensions �� on
HA R HB1

R . . . R HBn
for all n � 2, 3, . . . .

Concluding remark
In conclusion, let me say that I hope to have conveyed
some of the flavor of the questions and answers in
quantum information theory and Charles Bennett’s role
in this exciting area of research.

**Trademark or registered trademark of the Google
Corporation.
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