
M. B. RuskaiSome bipartite
states do not
arise from
channels
It is well known that the action of a quantum channel on
a state can be represented, using an auxiliary space, as the
partial trace of an associated bipartite state. Recently, it was
observed that for the bipartite state associated with the optimal
average input of the channel, the entanglement of formation is
simply the entropy of the reduced density matrix minus the
Holevo capacity. It is natural to ask if every bipartite state can
be associated with some channel in this way. We show that the
answer is negative.

Background

Recently, Matsumoto, Shimono, and Winter (MSW) [1]
pointed out an important connection between the channel
capacity and entanglement of formation that allows
one to draw some conclusion about the additivity of
the latter from that of the former. There has also
been speculation that the additivities of channel
capacity and of entanglement of formation are
equivalent. A connection between the additivity
of entanglement of formation and the multiplicativity
of the p-norm measure of purity has also been given
by Audenaert and Braunstein [2].

In view of this it is natural to ask whether every
bipartite state �AB can be associated with a channel in
the sense of MSW. In particular, is its reduced density
matrix, �A , the optimal average output of a channel
whose capacity is related to the entanglement of
formation of �AB , as described in [1]? We give a more
precise formulation of this statement and show that
the answer is negative.

Recall that a state is represented by a density matrix �,
i.e., a positive semidefinite operator with Tr� � 1. The
Von Neumann entropy of � is S(�) � �Tr� log �. By an
ensemble E � {� i , � i}, we mean a set of density matrices
� i and associated probabilities � i . By a channel �, we
mean a completely positive, trace-preserving (CPT) map.
The Holevo capacity of the map � is

CHolv��� � sup
E �S������ � �

i

�i S����i��� , (1)

where the supremum is taken over all ensembles
E � {� i , � i} and � � ¥ i � i� i . The optimal average
input is the state �opt � ¥ i � i� i associated with the
ensemble which attains the supremum in (1). The
optimal average output is then �(�opt).

The key to the MSW construction is the following result
of Stinespring [3], which was subsequently used by
Lindblad [4] in his work on relative entropy.

Theorem 1
Given a CPT map � on B(H), one can find an auxiliary
space HB, a density matrix �B, and a unitary map UAB on
HA R HB such that

���� � TrB�UAB
† � � �BUAB�, (2)

where TrB denotes the partial trace and we have identified H
with HA.

Although we are interested in the case in which � is a
density matrix, representation (2) is valid for all operators
in B(H). When �(�) � ¥k Ak

†�Ak , it is easy to construct
a representation of the form (2), as discussed in Section
III.D of [5]. In fact, UAB

† � R �BUAB is the block matrix that
has the form ¥ jk Aj

†�Ak R � j�	k�.
Given a bipartite state �AB on HA R HB , its

entanglement of formation (EoF) satisfiesNote: This paper is dedicated to Charles H. Bennett on the occasion of his sixtieth
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EoF��AB� � inf � �
k

�kS�TrB�k� � 
�k�k� ensemble with

�AB � �
k

�k�k� . (3)

Although it is customary to define the EoF using
ensembles for which all �k are pure states, there is no loss
of generality in allowing the presence of arbitrary states.

Theorem 2 (MSW)
Let � be a CPT map with a representation HB , �B , UAB

as in Theorem 1. The Holevo capacity of � satisfies

CHolv��� � sup 
S�TrB�AB� � EoF��AB��

�AB � UAB
† � � �BUAB} , (4)

where � is a density matrix on H � HA. Moreover, the state
�̃AB which attains this supremum satisfies TrB�̃AB � �(�opt),
where �opt is the optimal input of �.

It follows immediately that for the state �̃AB ,

EoF��̃AB� � S����opt�� � CHolv���. (5)

It is thus natural to ask the following.

Question 3
Given a bipartite state �AB on HA R HB, is there a CPT
map � on B(HA) such that TrB�AB is the optimal average
output state of � and

EoF��AB� � S�TrB�AB� � CHolv���? (6)

We show that the answer to this question is negative.
Our counterexample is based on a result in [6] and [7]

which comes from the fact that when � � ¥k �k�k ,

S��� � �
k

�k S��k� � �
k

�k H��k, ��, (7)

where the relative entropy is defined as

H��, �� � Tr��log � � log ��. (8)

Theorem 4
Let � be a CPT map with optimal average input �opt. Then,

CHolv��� � sup
�

H�����, ���opt��. (9)

It follows as an immediate corollary that if E � {�k , �k}
is any optimal ensemble for the channel �, then
H[�(�k), �(�opt)] � CHolv(�) is independent of k; i.e.,
the optimal average output is “equidistant” in the sense
of relative entropy from all outputs �(�k) in the ensemble.

Counterexample
An affirmative answer to Question 3 above would imply
that if the ensemble {�k , ��k�	�k �} is optimal for
EoF(�AB), then {� i , TrB ��k�	�k �} would be an optimal
output ensemble for the corresponding map �. It would
then follow from the equidistance corollary to Theorem 4
that

H��k, �A� � �S��k� � TrA�k log �A � C, (10)

where �k � TrB ��k�	�k � and C is a constant that is
independent of k. (In fact, C is the Holevo capacity of �

if such a channel exists.) We next present an example of
a bipartite qubit state which does not satisfy (10).

It may be that counterexamples to (10) can already be
found in the literature on entanglement. However, we take
advantage of a result of Wootters [8] to construct a rather
simple qubit counterexample that does not require
extensive numerical computation. In [8], Wootters
obtained an explicit formula for the EoF of a bipartite
qubit state using a quantity designated as the concurrence.
Moreover, he showed that the EoF could be achieved
using an ensemble of at most four pure states ��k�	�k �,
for which S(TrB ��k�	�k �) � EoF(�AB). Thus, for such
an ensemble, (10) holds if and only if

TrA��TrB��k�	�k�� log �A� (11)

is independent of k. We can assume without loss of
generality that �A is diagonal, with eigenvalues 1

2
(1 � x).

Then Tr � log �A depends only on the diagonal elements
of � which can be written as 1

2
(1 � d). In fact,

Tr� log �A �
1 	 d

2
log

1 	 x

2
	

1 � d

2
log

1 � x

2

� log 2 �
1

2 � log �1 � x 2� 	 d log
1 	 x

1 � x� , (12)

which depends linearly on d for a fixed value of x not
equal to 0. Thus, when �A 
 1

2
I, (11) is independent of k

if and only if all �k � TrB ��k�	�k � have the same diagonal
elements. However, we also know that S(�k) � EoF(�AB)
is independent of k, which implies that all �k have the
same eigenvalues. Thus, all of the reduced density
matrices TrB ��k�	�k � must have the form

1

2 �1 	 d e i
k t
e �i
k t 1 � d�

for some fixed value of t. It is not hard to find an example
for which this does not hold.

Let ��0� � (1/�2)(�00� � �11�) and ��3� � (�z R I)��0�

� (1/�2)(�00� � �11�) be the indicated maximally
entangled Bell states, and

�AB �
5
8

��0� 	�0� 	
1
16

��3� 	�3� 	
1
4

�01� 	01� 	
1
16

�10� 	10�. (13)
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The reduced density matrix is �A � TrB� � 1
2

(I � 3
16

�z)

 1

2
I. One can show that the optimal EoF decomposition

of (13) has the form �AB � ¥k�1
4 �k ��k�	�k �, with

��1� � a0 ��0� � a3 ��3� so that �1 � TrB(��1�	�1 �) is
diagonal in the basis �0�, �1� (i.e., t � 0 in the matrix
above). However, the remaining �k are superpositions
which contain Bell states ��k� and the product states
�01�, �10� in a form which necessarily yields a reduced
density matrix �k that is not diagonal. By the discussion
above, this implies a negative answer to Question 3.

To actually find the entanglement of formation and
optimal decomposition of �AB , let

�̃ �
5
8

��0�	�0� 	
1
16

��3�	�3� 	
1
4

�10�	10� 	
1
16

�01�	01� (14)

be the density matrix with all spins flipped. The
concurrence 
 can be expressed in terms of the
eigenvalues of (�� �̃ ��)1/2. Following Wootters [8],
one finds


 �
5

8
�

1

16
�

1

8
�

1

8
�

5

16
.

Let

h� x� � �
1 	 x

2
log

1 	 x

2
�

1 � x

2
log

1 � x

2
. (15)

Then, proceeding as described in [8], one finds

EoF��AB� � h�	1 � 
 2� � h
	231

16 � � 0.1689 � 0.9745

� h
 3

16� � S��A�.

The optimal ensemble has weights

�1 � 0.1527, �2 � �3 � �4 � 0.2824

associated with the projections for the following pure
states:

��1� � 0.8101��0� 	 0.5863��3�;

��2� � �0.7870��0� 	 0.1087��3� 	 0.5432�01�

	 0.2716�10�;

��3� � 0.7870��0� � 0.1087��3� 	 0.5432e i�/3�01�

	 0.2716e �i�/3�10�;

��4� � �0.7870��0� 	 0.1087��3� � 0.5432e �i�/3�01�

� 0.2716e i�/3�10�.

One can easily verify that the diagonal elements of
�1 � TrB��1�	�1� are not equal to those of �k � TrB��k�	�k�
for k � 2, 3, 4. One can also compute the reduced
density matrices �k and infer that �1 is diagonal in the
basis �0�, �1�, but the others are not. Alternatively, one

can observe that if a reduced density matrix is diagonal in
the basis �0�, �1�, then any purification must have the form

��� � a�0� � ��1� 	 b�1� � ��2�, (16)

with ��1�, ��2� orthogonal. By rewriting

��2� � �0.4796�00� � 0.6333�11� 	 0.5432�01�

	 0.2716�10�

� ��0� � �0.4796�0� � 0.5432�1�) 	 �1� � �0.2716�0�

� 0.6333�1�),

one sees that �2 does not have the form (16) with
orthogonal ��k�. The actual reduced density matrices have
the form

�1 �
1

2 �I 	
	231

16
�z� � �0.9750 0

0 0.0250� ,

�k � � 0.5251 e i
k 0.4743
e �i
k 0.4743 0.4749 � ,

with 
2 � �, 
3 �
�

3
, 
4 � �

�

3
.

Remarks on representations
In the canonical method of constructing a representation
of the form (2), the reference state �B is pure, and dB ,
the dimension of HB , is equal to the number of Kraus
operators. Then the lifted state �AB � UAB� R �BUAB

† ,
for which �(�) � TrB�AB has rank at most d � dA , the
dimension of the original Hilbert space. This is clearly
a very restricted class of bipartite states. Moreover,
generically, dB � d, since many maps require the
maximum number d 2 of Kraus operators. Thus, the
canonical representation yields only bipartite states
that are far more singular than typical states.

Some maps �(�) can be represented in the form (2)
using a mixed reference state �B . Indeed, given a mixed
bipartite state �B and unitary operator UAB , (2) can be
used to define a channel �. Unfortunately, relatively little
is known about such mixed-state representations. It has
been suggested that one might be able to represent a
channel � in the form (2) using a space of dimension
dB � d if mixed states are used. However, this is known
not to be true in general [9, 10].

Now suppose that a qubit channel � can be represented
(possibly using a mixed reference state �B) in the form (2)
using an auxiliary qubit space HB so that dB � 2. Then
the argument given before (11) can be used to show that
for the optimal input distribution {�k�k},

Tr���k� log ���opt� , (17)
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must be independent of k. One can easily check that
the three-state examples given in [11] do not have this
property. Most non-unital qubit maps for which the
translation of the image of the Bloch sphere lacks
symmetry also violate (17). This implies that such
channels require an auxiliary space with dB � 2. One
expects dB � 4, consistent with the fact that such maps
also require four Kraus operators. This gives another,
somewhat indirect, proof that some CPT maps require
an auxiliary space with dB � d.

It would be of some interest to characterize the maps
which admit mixed-state representations with dB � d, as
well as the bipartite states corresponding to the optimal
average output.
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