
N. D. MerminCopenhagen
computation:
How I learned
to stop worrying
and love Bohr
To celebrate the 60th birthday of Charles H. Bennett, I
1) publicly announce my referee reports for the original dense
coding and teleportation papers, 2) present a very economical
solution to the Bernstein–Vazirani problem that does not even
hint at interference between multiple universes, and 3) describe
how I inadvertently reinvented the Copenhagen interpretation
in the course of constructing a simple, straightforward, and
transparent introduction to quantum mechanics for computer
scientists.

1. Preface: Present at the birth
David DiVincenzo, Patrick Hayden, and Barbara Terhal
[1] have designated me the “midwife of teleportation”
in recognition of my having written a favorable referee’s
report on the discovery paper [2] and having advised the
editors that the proposed terminology made sense. Though
this honorific raises vexing biological questions— can
something with six fathers and no mother be brought forth
by a midwife?—I accept the title with pride. As midwife it
seemed appropriate for me to read my referee’s report at
the Bennett sixtieth birthday symposium, attended, as it was,
by all six fathers. I reproduce it here too, since it shows
me to have had a taste for Copenhagen computation
(about which more below) even before Chris Fuchs [3]
got to work on me.

Referee’s Report: Bennett et al., “Teleporting . . .”
LZ4539

This is a charming, readable, thought-provoking
paper. It presents a novel application of EPR
correlations. The character of the quantum state
(how much is inherent in the physical system, how
much is a representation of our knowledge) is still
an extremely elusive notion. This novel method for
duplicating a quantum state somewhere else by a
combination of quantum correlations and classical
information will become an important one of the

intellectual tools available to anybody trying to clear
up this murkiness.

While hunting down the above report I discovered, to
my amazement, that the year before I had also refereed
the discovery paper on dense coding [4]. (I was under the
impression that I had paid no attention whatever to dense
coding until shortly before its deconstruction in 2002 [5].)

Bennett and Wiesner, “Communication via one-and
two-particle . . .” LT4749

Your question was: Does this qualify as “strikingly
different” enough to publish? I have never read
anything like it, and I have read a lot on EPR,
though far from everything ever written. So as far
as I know it is different.

But strikingly? The argument is very simple, so
shouldn’t the point be obvious? After reading the
paper I put it aside and spent the next week working
hard on something totally unrelated. Every now and
then I would introspect to see if some way of looking
at the argument had germinated that reduced it to a
triviality. None had. Last night I woke up at 3am,
fascinated and obsessed with it. Couldn’t get back to
sleep. That’s my definition of “striking”.

So I say it’s strikingly different and I say publish it.
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Rereading these old reports reminded me that the myth
that referees relish their power to reject papers is off the
mark. Writing a favorable report for a good paper is sheer
pleasure. Negative reports are no fun at all.

2. Prologue: Bernstein–Vazirani problem
without parallel universes
The Bernstein–Vazirani problem presents one with a
black-boxed subroutine, shown in Figure 1, whose action
on n � 1 qubits is that of a unitary transformation Ua

which takes the computational basis state � x�n � y�1 of an
n-Qbit1 input register and 1-Qbit output register into the
state � x�n � y Q x � a�1 . Here Q denotes addition modulo 2,
x � a denotes the bitwise modulo 2 inner product of the
two n-bit numbers x and a ( x � a � xn�1an�1 Q . . . Q x1a1

Q x0a0), and a is some fixed but unknown n-bit integer
with binary expansion a � an�1 . . . a1a0 . The problem is
to find the smallest number of invocations of the black
box needed to learn a.

If the subroutine is applied to x � 2 j , the output
register will be flipped if and only if aj � 1, so a classical
computer can determine a with n calls of the subroutine.
Evidently there is no classical way to learn a with fewer
than n calls, since one needs n independent linear
relations among the bits of a. But with a quantum
computer one can find a with just a single call of the
subroutine, whatever the size of n.

This remarkable trick is accomplished by applying a
Hadamard transformation,

H�0� �
1

�2
��0� � �1�), H�1� �

1

�2
��0� � �1�), (1)

to every one of the n � 1 Qbits both before and after the
application of Ua , as shown in Figure 2. If one initializes
the input register to the state �0�n and the output register
to the state �1�, then at the end of this process the input
register is guaranteed to be in the n-Qbit state �a�n . So
a can be learned by measuring each Qbit of the output
register in the computational basis.

The conventional explanation for why this works goes
like this:

1. Applying Hadamards to every Qbit of an input register
initially in the n-Qbit state �0�n results in a uniform
superposition of all possible inputs:

Hn�0�n � 2 �n/ 2 �
0�x�2 n

� x�n . (2)

2. Preparing the output register in the state H�1� converts
a bit-flip into a change of phase (specifically, a
multiplication by �1).

1 I use here the unorthodox spelling Qbit because it will be constantly juxtaposed
to Cbit, a role the currently favored qubit cannot gracefully play.

Figure 2

Quantum solution of the Bernstein–Vazirani problem. Hn is an 

n-fold tensor product of 1-Qbit Hadamards.
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The black-boxed Bernstein–Vazirani subroutine Ua. The heavy 

lines represent the n-Qbit input register; the light lines represent 

the 1-Qbit output register.
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3. Another application of Hadamards to the input register
after the application of Ua introduces additional
x-dependent phases according to the rule

Hn� x�n � 2 �n/ 2 �
0�z�2 n

��1� x�z� z�n . (3)

4. A little arithmetic now reveals that the combined
phases lead to complete destructive interference for
every term characterizing the input register in the final
superposition except for the single state �a�n .

This process is usually described as an application of
massive quantum parallelism followed by destructive
interference among all the unfavorable outcomes. People
with overactive imaginations like to say that step 1
initializes a computer in each of 2n parallel universes to
each of the 2n possible inputs. The remaining steps are
cunningly designed to produce destructive interference
among all those 2n universes, in just such a way as to lead
in every single universe to the presence of a in the input
register at the end of the process.

There is, however, a much simpler way to understand
why the circuit in Figure 2 behaves as advertised, which
offers no hint of this metaphysical extravaganza. This
approach merely notes that the effect of Hadamards on
the basic 2-Qbit controlled-NOT (cNOT) gate, defined
in Figure 3, is just to interchange the control and target
Qbits, as shown in Figure 4. This follows from the fact
that H2 � 1 and HXH � Z, where

X�0� � �1�, X�1� � �0�, Z�0� � �0�, Z�1� � ��1�, (4)

and the fact that controlled-Z is symmetric under
interchange of target and control Qbits.

The action of Ua shown in Figure 1 is identical to the
action of a collection of cNOT gates— one for each
nonzero bit of a. They all target the output register
and are controlled by just those Qbits representing
bits of x that correspond to nonzero bits of a. This is
illustrated in Figure 5 for n � 5 and a � 11010. Since
sandwiching cNOT gates between Hadamards interchanges
the control and target Qbits and since H is its own inverse,
the magic of Bernstein–Vazirani follows at once, as shown
in Figure 6, which makes perfect sense in just a single universe.

Figure 5

The black-boxed Bernstein–Vazirani oracle (shown for the case n � 5, a � 11010) behaves as if it contained a collection of cNOT gates.
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Because U
a
 behaves as a collection of cNOT gates, because Hadamards reverse the action of cNOT gates, and because the output register 

has been set to 1, we have a simple explanation for why a can be determined with only one invocation of U
a
.
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Notice that the only way quantum mechanics enters is
through the ability of Hadamards to reverse the action of
cNOT gates, as illustrated in Figure 4. Since this can also
be done classically with 2-Qbit SWAP gates, as shown
in Figure 7, the magic of quantum mechanics here lies
entirely in the possibility it offers for reversing the roles
of target and control Qbits using only 1-Qbit local
operations. The power of Hadamards over classical SWAPs
is that they can bring about the reversal without the need
for any interaction between the two Qbits. If the six pairs
of vertically separated Hadamards in the middle circuit of
Figure 6 were vertically linked into irreducibly 2-Qbit gates,
then they could no longer be moved to the extreme right
and left of the circuit without leaving any traces in the
central part, as in the circuit on the left in Figure 6.

3. How I invented the Copenhagen
interpretation while teaching quantum
mechanics to computer scientists

[I]n our description of nature the purpose is not to
disclose the real essence of the phenomena but only
to track down, so far as it is possible, relations between
the manifold aspects of our experience.

—Niels Bohr [6]

For the past few years I have taught a course in
quantum computation suitable for computer scientists
having no background in physics [7]. My first challenge
was to develop a minimalist introduction to quantum
mechanics that straightforwardly conveyed in a few
lectures everything a mathematically sophisticated
student needed to know to understand discussions
like, for example, that of the preceding section.

The advantage of teaching an approach to a subject as
you develop it is that you get striking demonstrations of
the ways in which it does and doesn’t work. After several
iterations and countless revisions, reorganizations, and
reconstructions, the process seemed to be converging. It
was only then that I realized that the unproblematic, no-

nonsense, lucid, practical pedagogical approach that had
so painfully evolved out of my clumsy initial attempts
was nothing but the standard Copenhagen interpretation.
What follows, therefore, is my vision of why quantum
computation, far from demonstrating the existence of the
multiverse, provides the simplest and most compelling
example of a major application of quantum mechanics
which the Copenhagen point of view fits like a glove.

We begin with a silly formulation of ordinary non-
quantum classical computation, based on representing the
integers less than N as orthonormal vectors in N dimensions:

03 �
1
0
0
0
0
···

� , 13 �
0
1
0
0
0
···

� , 23 �
0
0
1
0
0
···

� , 33 �
0
0
0
1
0
···

� , 43 �
0
0
0
0
1
···

� , . . . .

(5)

This clumsy form takes on a rather simpler structure if
N is a power of 2, so we specialize to the case N � 2n .
When n � 1 we have only two such vectors, which we
denote by a more compact pair of symbols due to Dirac:

�1
0� � �0�, �0

1� � �1�. (6)

To manipulate these two numbers in a computer, it is
necessary to represent them by a physical system having
two distinguishable configurations. Continuing to follow
Dirac, we call any such physical system a Cbit2 (“C” for
“classical”). The vectors �0� and �1� associated with these
two configurations are called the states of the Cbit.

If we have two Cbits (n � 2), their four states
conveniently decompose into the tensor product of
two 1-Cbit states:

�0�2 � �
1
0
0
0
� � �1

0� � �1
0� � �0��0� � �00�,

�1�2 � �
0
1
0
0
� � �1

0� � �0
1� � �0��1� � �01�,

�2�2 � �
0
0
1
0
� � �0

1� � �1
0� � �1��0� � �10�,

2 The term “c-bit” doesn’t work because one often needs to talk, for example,
about 2-Cbit states.

Figure 7

Classical SWAP gates also invert the action of a cNOT gate just 

as Hadamards do (Figure 4). But if swap gates are used to invert 

the cNOT gates in the final form of Figure 6, they get all tangled 

up with each other when one attempts to move them to the edges 

of the figure, as one can do with the Hadamards.
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�3�2 � �
0
0
0
1
� � �0

1� � �0
1� � �1��1� � �11�. (7)

The last two forms in each line provide some simpler
notations for these 2-Cbit states. Pause to admire how
the quantum-mechanical practice of representing the
states of composite systems by the tensor product of
the subsystem states emerges automatically from the
trivial representation of integers introduced in (5).

The tensor product extends straightforwardly to many
Cbits: States of n Cbits can be expressed as tensor
products of n 1-Cbit states. For example,

�5�3 � �
0
0
0
0
0
1
0
0

� � �0
1� � �1

0� � �0
1� � �1��0��1� � �101�. (8)

While the operation X defined in (4) makes perfect
sense for Cbits (representing the logical NOT), the
operation Z makes no sense at all, since we have assigned
no meaning to the sign of the state-vector that describes a
Cbit. Nevertheless, combinations of operators Z on pairs
of Cbits can be classically meaningful. For example,
1
2

�1 � Z � Z) projects on �0��0�, �1��1�,

1
2

�1 � Z � Z) projects on �0��1�, �1��0�. (9)

This leads directly to a representation of the SWAP
operator S that takes the 2-Cbit state � x�� y� to � y�� x�:

S �
1
2

�1 � Z � Z� � �X � X� 1
2

�1 � Z � Z�

�
1
2

�1 � Z � Z � X � X � Y � Y�, Y � XZ. (10)

Pause also to admire the simplicity of this classical
derivation of the form of the quantum-mechanical
exchange operator, compared with the standard derivation
based on the full-blown quantum theory of angular
momentum technology. Note also the further simplicity
introduced into (10) by incorporating an additional factor
of i into the definition of Y (which also makes it
hermitian, like X and Z). With examples like this, one can
motivate the utility of extending the notion of states to
include multiplication by complex scalars, leading to the
generalization from Cbits to Qbits.

Qbits are physical systems characterized by states which
fully exploit the entire 2n dimensional complex vector

space spanned by the 2n orthonormal Cbit states. Nature
has been kind enough to present us with many examples
of them. The general state ��� of n Qbits is any unit vector:

��� � �
0�x�2 n

ax� x�n, �
0�x�2 n

�ax�
2

� 1. (11)

With one (extremely important) exception, all
operations on Qbits are reversible. Since the exception
(“measurement”) has no nontrivial analog for Cbits, in
comparing Qbits and Cbits it suffices to consider only
reversible operations on Cbits. The only reversible
operations on the 2n Cbit states are their (2n)! possible
permutations. But the general operation nature allows us
to perform on n-Qbit states is any linear norm-preserving
transformation,

���3 U���, U unitary, (12)

as shown schematically in Figure 8.
While Qbits are far more versatile than Cbits in their

range of states and the operations one can perform on
them, the usefulness of their versatility is highly constrained
by one important difference between Qbits and Cbits.
Learning the state �x�n of n Cbits is unproblematic: One
just looks to see which of the 2n possible states �x�n it is.
In contrast, learning the state ���n � ¥x ax�x�n associated
with n Qbits is impossible. Given the Qbits, there is
nothing one can do to them to reveal their state.

To extract any information from Qbits, one must
“make a measurement.” This consists of sending the Qbits
through a “measurement gate.” If the state of the Qbits is
(11), then the measurement gate signals x with probability
p � �ax �

2 . After x is signaled, the state associated with the
Qbits must be taken to be � x�n . The manner in which an
n-Qbit measurement gate operates and the fact that it
represents the only way to extract information from the
n-Qbits constitute the Born rule. The Born rule is
illustrated in Figure 9.

As defined above, “measurement” is always in
the computational basis. One loses nothing by this
simplification, since measurement in any other basis can
be described as measurement in the computational basis,

Figure 8

Circuit diagram representing a unitary gate U acting on n Qbits.
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preceded by an appropriate unitary transformation. What
one gains, pedagogically, is the need to invoke only a
single variety of measurement gate and, as noted below,
only 1-Qbit measurement gates.

A somewhat stronger version of the Born rule plays a
crucial role in quantum computation, though it is rarely
explicitly mentioned in most standard quantum mechanics
texts. The stronger form applies when one measures only
a single one of n Qbits. The state ��� of all n Qbits can
always be represented in the form

��� � a0�0��	0� � a1�1��	1�, �a0�
2

� �a1�
2

� 1, (13)

where the Qbit to be measured appears on the left and
where �	0� and �	1� are normalized but not necessarily
orthogonal states of the n � 1 unmeasured Qbits. The

generalized Born rule asserts that if only the single Qbit is
measured, then the 1-Qbit measurement gate will indicate
x (0 or 1) with probability �ax �

2 , after which the n-Qbit
state will be the product state � x��	x�, as illustrated in
Figure 10.

To see that the gate acting on the measured Qbit in
Figure 10 is indeed the n � 1 version of the n-Qbit
measurement gate of Figure 9, note that Figure 10
simplifies to Figure 11 when �	0� � �	1� � �	�. In this
special case, the entangled input state in Figure 10
becomes an uncorrelated product in which both the
measured Qbit and the remaining n � 1 Qbits have states
of their own. The (n � 1) unmeasured Qbits now take no
part whatever in the process. Nothing acts on them and
they do nothing but maintain their original state �	�.
Their presence is irrelevant to the upper part of the
figure, which is nothing more than the n � 1 version
of Figure 10.

It is an elementary consequence of the generalized Born
rule that the n-Qbit measurement gate of the ordinary
Born rule can be constructed from n 1-Qbit measurement
gates, as illustrated in Figure 12.

Although the generalized Born rule is stronger, it follows
from the Born rule under two plausible assumptions:
a) Once a Qbit ceases to interact with others and
ceases to be acted on by unitary gates, it does not
matter when it is measured. b) To assign a state to Qbits
is to do nothing more than to specify the probabilities of
subsequent measurement outcomes, possibly preceded by
unitary gates. Since the generalized Born rule reduces the
notion of measurement to a single black-boxed 1-Qbit
measurement gate (and indeed, since Qbits can be
measured one by one, one needs only a single specimen
of such a measurement gate), by far the most economical
introduction to quantum computation is to base it on a
primitive concept of the 1-Qbit measurement gate and
make explicit assumptions a) and b) above.

Since it is impossible to determine the state of a
collection of Qbits from the Qbits themselves, how is one
to associate with the registers of a quantum computer
the initial states on which the unitary transformations
subsequently act? The obvious, simplest, and conceptually
most economical answer is to exploit the measurement
gates themselves. One can initialize n Qbits to the state
�0�n by measuring each Qbit and applying X if and
only if the measurement indicates 1, as illustrated
in Figure 13.

Note the following features of this pedagogically
motivated approach to quantum mechanics:

1. It relies on an irreducible primitive notion of a
unique black-boxed 1-Qbit measurement gate. The
measurement gate is the only irreversible circuit

Figure 9

An n-Qbit measurement gate, acting as specified by the Born rule.

Mn� x

x

n n

Figure 10

Action of a 1-Qbit measurement gate on a single one of n Qbits, 

according to the generalized Born rule.
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element. It is defined by what it does, and what it does
is to extract information from the Qbits in a form that
is immediately accessible to us. There is no other way
for us to obtain such information from the Qbits.3

2. Measurement plays a dual role. Output on a readable
(classical) display not only ends the computation; it
also provides, without any further complication, a
straightforward way to begin the computation. Initialize
every Qbit to the 1-Qbit state �0� by sending each
through a measurement gate, and then do nothing or
apply X, depending on whether the display shows 0 or 1.

3. Unlike the state of n Cbits, the state of n Qbits does
not reside in the Qbits themselves: Presented with a
bunch of Qbits, there is nothing one can do to them to
reveal their state. Indeed, in general—for example if
they share with other Qbits an entangled state—Qbits
will not have a state of their own at all. To determine
the state of Qbits (or whether they have one) one must
ask Alice, who knows their history: what initial
measurements were performed on them, what the
outcomes of the initial measurements were, and what
subsequent unitary gates were applied.

4. While the purpose of the state of n Cbits is an
anthropocentric add-on to its intrinsic character (what,
for example, is the purpose of the velocity of a classical
particle?), one would not bother to keep track of the
state of n Qbits were it not that this information about
their past history has a specific purpose: It enables us
to determine the correlations between the initial and
final measurement outcomes after any intermediate
sequence of applications of unitary gates.

All of these features resonate strongly with the
constellation of ideas known as the Copenhagen
interpretation. The quantum state of a system is not an
objective property of that system. It merely provides an
algorithm enabling one to infer from the initial set of
measurements and outcomes (“state preparation”) the
probabilities of the results of a final set of measurements
after a specified intermediate time evolution. We ourselves
have direct access to nothing beyond the outcomes of such
measurements.

Why did my bare-bones, no-nonsense, pedagogically
motivated, minimalist introduction to quantum mechanics
come out sounding so Copenhagen? I think there are
several reasons:

a. Proponents of the Copenhagen interpretation (notably
Heisenberg and Peierls) have always maintained that
the quantum-mechanical formalism does not describe
“the system” but “our knowledge of the system.”

Quantum computation is the first application of
quantum mechanics that does not use it to further our
understanding of the physical world. On the contrary,
quantum computation exploits the known quantum-
mechanical character of the physical world to expedite
the processing of knowledge, as represented
symbolically by constituents (Qbits) of that world.
It is therefore not surprising that the Copenhagen
interpretation should provide a congenial setting for
the exposition of quantum computation.

b. A computation uses a finite set of Qbits. It has an
unambiguous beginning and end. There is always a
world external to the computation. If there were not
an outside world, there would be no point in doing the
computation because there would be nobody or nothing
to take advantage of the output. Nobody (well, at this
stage practically nobody) wants to view the entire
universe (single or multiple) as one colossal quantum
computer, sufficient unto itself. The Copenhagen
interpretation is characterized by a similar modesty
of scope. Physics is a tool for relating some aspects
of our experience to other aspects. Every application of
physics begins and ends with an appeal to experience.

3 The art of quantum computation, of course, is to construct unitary
transformations leading to final states in which only informative values of x
are associated with appreciable probabilities �ax �2 .

Figure 12

Construction of a 4-Qbit measurement gate from four 1-Qbit 

measurement gates. The integer x has the binary expansion 
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c. The pedagogical device of restricting “measurement”
to measurement in the computational basis, treating
measurement in other bases as computational-basis
measurement preceded by an appropriate unitary
transformation, resonates with the Copenhagen
notion of the primacy of the classical world. The
computational basis states are (actually, one should
replace “are” with “are isomorphic to”) the states
that describe ordinary classical Cbits. By restricting
“measurement” to the computational basis, I have
automatically arranged for the input and output of
every quantum computation to be describable in
the ordinary old-fashioned language of classical
computation—numbers flashed on a classical display.
Bohr always insisted that our knowledge of the world
had to be formulated in ordinary language, or we
could not communicate it to anybody else.

d. My computer science students know very little physics.
They are therefore immune to any temptation to reify
the states of Qbits into properties of the associated
physical systems. If you think you too are immune
from such temptation, ask yourself whether you do
or do not believe that a horizontally polarized photon
is intrinsically different from a vertically polarized
photon. If you do, you are a victim of that very
temptation.

I conclude by translating the possibly obscure quotation
at the head of this section into the quite straightforward
form it assumes in the context of quantum computation:

In our description of a quantum computation the purpose
is not to disclose the real essence of the Qbits but only to
track down statistical relations between initial and final
measurement outcomes.
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