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Over the past decade, quantum information theory has
developed into a vigorous field of research despite the fact
that quantum information, as a precise concept, is undefined.
Indeed, the very idea of viewing quantum states as carriers of
some kind of information (albeit unknowable in classical
terms) leads naturally to interesting questions that might
otherwise never have been asked, and corresponding new
insights. We discuss some illustrative examples, including a
strengthening of the well-known no-cloning theorem leading
to a property of permanence for quantum information, and
considerations arising from information compression that
reflect on fundamental issues.

Introduction
Perhaps the most intriguing product of quantum
information theory is the concept of quantum information
itself. In the early 1990s Charles Bennett was one of the
first workers to recognize and promote this new concept,
establishing the foundations of a new subject. Taken as
a primary ingredient, quantum information cannot be
defined, but the viewpoint it fosters is richly suggestive,
leading to new interesting questions and modes of
interpretation for some quantum processes. In this paper
we explore a few examples.

A quantum state ��� may be viewed as a carrier of
information in two fundamentally different ways. First, ���

may be regarded as carrying the classical information of
the state identity. As an example, a sender may prepare
one of the two (non-orthogonal) states ��0� and ��1� to
encode the bit values 0 and 1, respectively. Then the
receiver’s task is to regain the value of i from �� i�. If pj�i

denotes the probability that he generated the output j
when the state was �� i� and qi is the probability that �� i�

was sent, then he may, for example, apply a procedure
that minimizes the error probability p2�1q1 � p1�2q2 . In this
way, the available information in the quantum state is
similar to the result of classical communication through
a noisy channel; it is well known that if ��1��2� � 0, the

minimum error probability cannot be zero; i.e., the state
�� i� cannot be perfectly identified by any physical process.

In a second way, ��� may be viewed as the carrier of
“quantum information” which, although we leave it
undefined in more fundamental terms, we intuitively think
of as “the state itself.” Quantum information is a new
concept with no classical analog, and it is important
to distinguish it from the state identity. For example,
given a physical realization of one of the two states �� i�

above, quantum theory considerably restricts (in a richly
structured way) the allowable manipulations that we can
perform, in contrast to what is possible if we are given the
identity of i. Indeed, “being given the quantum state �� i�”
is very different from being given any kind of classical
information, and by an analogy of terminology we apply
the phrase quantum information to describe what we
have received. In more formal terms, we would aim to
formulate and interpret quantum physics in a way that
has a concept of information as a primary fundamental
ingredient. Primary fundamental concepts are ipso facto
undefined (as a definition amounts to a characterization in
yet more fundamental terms) and they acquire meaning only
afterward, from the structure of the theory they support.

As a first example, consider the process of quantum
teleportation (cf. [1] for details): Alice (A) succeeds in
transferring a qubit state to Bob (B) (distantly separated
in space) by sending only two classical bits of information.

Note: This paper is based on a talk presented in May 2003 at a symposium at the
IBM Thomas J. Watson Research Center in Yorktown Heights, New York,
honoring Charles Bennett on the occasion of his sixtieth birthday.
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A and B also need to share an entangled Einstein–
Podolsky–Rosen (EPR) pair which is destroyed in
the process. We would like to think of teleportation
as the transmission of quantum information from A to B.
If we accept the intuitively appealing tenet that a transfer
of information from sender to receiver must always be
mediated by a channel connecting the two participants,
teleportation appears paradoxical: If only two classical
bits were sent, how did the full quantum information pass
from A to B? Looking at the standard space–time diagram
of the teleportation process (cf. Figure 1(a) of [1]), we see
that there is indeed a second (V-shaped) path connecting
A to B, which is defined by the two world lines of the
distributed EPR particle pair. This leads to an intriguing
interpretation (first proposed by Bennett soon after the
discovery of teleportation): In addition to the two bits,
the remaining quantum information must have been
propagated backward in time from A to the EPR source
and thence forward in time to B.1 Indeed, if we insist that
information transmission requires a physical channel,
there appears to be no other possible interpretation
of the teleportation process! It is remarkable that this
interpretation is entirely consistent: The principles of
quantum measurement theory imply that the information
sent backward in time is random and independent of the
teleported state, so long as the two classical bits remain
unknown. Hence, the well-known classical causal
paradoxes of backward-in-time information propagation
are neatly circumvented. This analysis, inspired by our
informational point of view, also reveals a new significance
for entanglement in quantum theory (beyond the
traditional issues of nonlocal correlations of measurement
outcomes): Entanglement can be viewed as providing a
channel for the transmission of quantum information.

In the following sections we discuss two further issues in
which an informational point of view leads to interesting
considerations. First we revisit the quantum no-cloning
theorem [3] and prove a new stronger form of this result.
Together with the Pati–Braunstein no-deleting principle
[4], this leads to a property of “permanence” for quantum
information. Second, we discuss the concept of
information compression. In classical information theory,
this provides one of the clearest approaches to the
concept of information. By mimicking this theory in a
quantum context, we obtain some surprising relationships
between the concept of information and the geometry
of Hilbert space (i.e., the basis of the conventional
formulation of quantum theory).

The idea that a concept of information should be
regarded as a fundamental ingredient in physical theory

has also been proposed by Horodecki et al. [5] from a
different point of view. In that work a notion of quantum
information is based on the presence of entanglement in
(multipartite) quantum systems, leading to an information
conservation principle (corresponding to the fact that in
a closed system, entanglement cannot be changed by
local operations). In [6] the no-cloning and no-deleting
principles are discussed from this point of view. However,
this notion of quantum information and its conservation
(involving the extra ingredients of locality and
entanglement) appear not to be evidently related to
the property of permanence that we discuss below.

A stronger no-cloning theorem
It is well known that (non-orthogonal) pure quantum
states cannot be cloned [3]; i.e., if {�� i�} is a set of pure
states containing at least one non-orthogonal pair, no
physical operation can achieve the transformation
�� i� 3 �� i��� i�. Although the impossibility of cloning in
quantum theory can be attributed to the fact that such a
process is nonunitary or nonlinear, from an informational
point of view we can intuitively understand it by saying
that two copies of a quantum state embody strictly more
“information” than is available in just one copy, so
cloning must be impossible. Extending this particular
line of thought, it is then natural to go on to ask: What
additional (quantum) information is needed to supplement
one copy �� i� in order to be able to produce two copies
�� i��� i�? For classical information, no supplementary
information at all is needed, and one might guess that as
the set {�� i�} becomes “more classical,” the necessary
supplementary information should decrease in some
suitable way. However, we prove below that this is not the
case: We show (for mutually non-orthogonal states) that
the supplementary information must always be as large as
it can possibly be; i.e., the second copy �� i� can always be
generated from the supplementary information alone,
independently of the first (given) copy. Thus, in effect,
cloning of �� i� is possible only if the second copy is fully
provided as an additional input.

We now give a precise formulation of the main result in
this section. By a physical operation we mean a trace-
preserving, completely positive map. Note that this
definition excludes the collapse of wavefunction in a
quantum measurement, as a valid physical process. (This
will be relevant to our later discussion of the no-deleting
principle.) By an abuse of notation for pure states, we
write ������ R � as just ��� R � and sometimes also omit
the tensor product symbol, writing ������ R ������ as ������.

Theorem 1
Let {�� i�} be any finite set of pure states containing no
orthogonal pairs of states. Let {� i} be any other set of

1 A similar interpretation involving propagation backward in time was proposed
earlier for the Bennett–Wiesner dense coding protocol in [2] and attributed there
to B. Schumacher, Kenyon College, Gambier, OH. Further developments of this
idea by Schumacher are unpublished.
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(generally mixed) states indexed by the same labels. Then
there is a physical operation

��i� � �i3 ��i���i�

if and only if there is a physical operation

�i3 ��i�;

i.e., the full information of the clone must already be
provided in the ancillary state � i alone.

Remark2

If the set {�� i�} contains some orthogonal pairs, the
unassisted clonability of orthogonal states spoils the
simplicity of the statement of Theorem 1. As an example,
consider

��1� � �0�, ��1� � �a�,
��2� � �1�, ��2� � �a�,

��3� �
1

�2
��0� � �1�), ��3� � �b�,

where �a� and �b� are orthogonal. Then clearly �� i��� i� 3
�� i��� i� is possible (because {�� i��� i�} is an orthonormal
set), but �� i� 3 �� i� is not possible (since ��1� � ��2� but
��1� � ��2�). Indeed, the �� i� states here provide reliable
distinguishability of i values exactly when this is not
already provided by the �� i� themselves.

To prove the theorem we use the following lemma,
which is proved as Lemma 1 of [7].

Lemma 1
Let {�� i�} and {�� i�} be two sets of pure states (indexed by
the same labels). Then the two sets have equal matrices of
inner products (i.e., �� i �� j� � �� i �� j� for all i and j) if and
only if the sets are unitarily equivalent (i.e., there exists a
unitary operation U on the direct sum of the state spaces
of the two sets with U�� i� � �� i� for all i).

Proof of Theorem 1
Suppose that there is a physical operation � i 3 �� i�. Then
clearly �� i� R � i 3 �� i��� i� is allowed.

Conversely, suppose that there is a physical operation

��i� � �i3 ��i���i�. (1)

Consider first the case that � i are pure states, which we
write as �� i�. The physical operation [Equation (1)] may
be expressed as a unitary operation if we include an
environment space, initially in a fixed state denoted �A�.
For clarity we include an extra register, initially in a
fixed state �0�, that is to receive the clone of �� i�. Then
Equation (1) may be written as a unitary transformation,

��i��0���i��A�3 ��i���i��Ci�,

where �Ci� (generally depending on i) is the output state
of the two registers that initially contained �� i��A�. Hence,
by unitarity, the two sets {�� i��� i�} and {�� i��� i��Ci�} have
equal matrices of inner products, and then so do the sets
{�� i�} and {�� i��Ci�} (by a simple cancellation of �� i �� j�

from the two initial matrices). Thus, by Lemma 1 these
two sets are unitarily equivalent; hence, �� i� can be
generated from �� i� alone (by applying the unitary
equivalence and discarding the �Ci� register).

If � i are mixed, we express them as probabilistic
mixtures of pure states,

�i � �
k

pk
�i��� k

�i���� k
�i��

(where all pk
(i) are nonzero). Then a physical operation

achieves

��i� � �i3 ��i���i� for all i

if and only if it achieves

��i� � �� k
�i��3 ��i���i� for all i and k. (2)

By the pure state analysis above, a physical operation
achieving Equation (2) exists if and only if there is a
physical operation achieving

�� k
�i��3 ��i� for all i and k.

We then get � i 3 �� i� as well. QED.
In the particular case of cloning assisted by classical

information (i.e., the states � i are required to be mutually
commuting), we deduce that this supplementary data
must contain the full identity of the states as classical
information. Indeed, if the � i are classical, they can be
copied any number of times; thus, if we can make one
clone of �� i� from � i , we can make arbitrarily many clones
and hence determine the identity of �� i�; i.e., the classical
information of the label i must be contained in the
supplementary classical information.

The proof of Theorem 1 is easily adapted to prove the
following generalization: Let {�� i�} be any finite set of
pure states containing no orthogonal pairs of states. Let
�� i�

Rn denote the state of n copies of �� i�. Then there is
a physical operation

��i�
Rn

� �i3 ��i�
R�n�1�

if and only if there is a physical operation

�i3 ��i�.

Curiously, the increasing information contained in n
copies of �� i� (as n increases) can never be used to assist
in the creation of even a single extra copy.

2 Thanks to H. R. Thomann (Consultant, Grosswiesenstrasse 80, CH-8051 Zurich)
and A. Winter (Computer Science Department, University of Bristol UK) for
pointing out an error in an earlier version of Theorem 1.
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No deleting
Our techniques may also be used to give a simple proof
of the Pati–Braunstein no-deleting principle [4] for sets
{�� i�} that contain no orthogonal pairs. The issue here is
the following. Suppose we have two copies �� i��� i� of a
state and we wish to delete one copy by a physical
operation:

��i���i�3 ��i��0�, (3)

where �0� is any fixed state of the second register. As
before, any such physical operation may be expressed as
a unitary operation if we include an environment space,
initially, say, in a fixed state �A�. Then Equation (3) is
equivalent to the unitary transformation

��i���i��A�3 ��i��0��Ai�, (4)

where the final state �Ai� of the environment may depend
on �� i� in general. One way of achieving this would be to
simply swap (a constant) part of the environment into the
second register, but then the second copy of �� i� would
remain in existence (albeit in the environment now). The
no-deleting principle states that the second copy of �� i�

can never be “deleted” in the sense that �� i� can always be
resurrected from �Ai�. Note, however, that if wavefunction
collapse is also allowed as a valid physical process,
deletion is possible. (We perform a complete
measurement on �� i� and rotate the seen post-
measurement state to �0� by a unitary transformation
that depends on the measurement outcome.)

To see the no-deleting principle with our methods, note
that the unitarity of Equation (4) implies that the sets
{�� i��� i��A�} and {�� i��0��Ai�} have equal matrices of inner
products, and then, as before, so do the sets {�� i�} and
{�Ai�}. Thus Lemma 1 states that these sets are unitarily
equivalent, which is just the no-deleting principle.

Permanence of quantum information
Deleting and cloning have a common feature: In cloning
we saw that the existence of the first copy �� i� provided
no assistance in constructing the second copy from the
supplementary information. Similarly for deletion, the
existence of the first copy provides no assistance in
deleting the second copy—in effect, the only way to
delete the second copy is to transform it out into the
environment [i.e., �0��Ai� in Equation (4) is a unitary
transform of �� i��A� alone], again making no use of the
first copy. Considering no-cloning and no-deleting together
(and excluding wavefunction collapse as a valid physical
process), we see that quantum information (of non-
orthogonal states) has a quality of “permanence”:
Creation of copies can be achieved only by importing the
information from some other part of the world where it
had already existed; destruction (deletion of a copy) can
be achieved only by exporting the information to some

other part of the world where it must continue to exist.
This property is different from the preservation of
information by any reversible dynamics. For example,
consider the classical reversible C-NOT operation
mapping �b1��b2� to �b1��b1 Q b2� (where b1 , b2 are bit
values and Q is addition modulo 2). This operation
can imprint copies of a bit b into a standard state via
�b��0� 3 �b��b� and also delete copies via �b��b� 3 �b��0�.
In both cases, however, the first copy is used in an essential
way in the process and the information content of one copy
is the same as that of two copies. In contrast, in the
quantum (non-orthogonal) case, copying and deleting
can only occur independently of the first copy, and then
reversibility of dynamics implies that the information of
the second copy must have already existed separately
in the environment (for cloning) or continue to exist
separately in the environment (for deletion). But in any
reasonable intuitive sense, �� i��� i� does not have double
the information content of �� i� (and similarly, �� i�

Rn

cannot have n times the information content, since n is
unbounded). One might interpret this as an overlap of
information content of the two copies; then Theorem 1
implies that this common part cannot be duplicated from
within a single copy and merely extended to give the
second copy.

Information compression and Hilbert space
geometry
So far our discussion of quantum information has been
qualitative. However, it would be interesting to develop
a quantitative theory of this concept, being able to say
that one quantum system has more quantum information
than another; and we would like to have corresponding
dynamical laws for the manipulation of quantum information.
In classical information theory there exists a well-defined
quantitative notion of information. As a first attempt,
we consider importing it into a quantum context.

In Shannon’s classical information theory, we begin with
a classical information source which is defined by a prior
probability distribution { pi} of signals si . The information
content is then quantified by the Shannon entropy
H( pi) � �¥ i pi log2 pi bits. This definition has a
compelling physical interpretation: It characterizes the
minimal resources (H bits per signal) that are necessary
and sufficient to faithfully represent the source (in a
suitable asymptotic sense [8] that we need not elaborate
here). To approach the concept of quantum information,
a natural avenue is to mimic this very successful classical
theory in a quantum context. Thus we introduce a
quantum source, characterized by a prior probability
distribution { pi} of quantum signals �� i� and define its
quantum information content to be S, the least number
of qubits that are necessary and sufficient to faithfully
represent the source (in an asymptotic sense that naturally
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generalizes the classical case). Following Schumacher, one
may prove [9] that S is then the von Neumann entropy
S(�) of the source density matrix � � ¥ i pi �� i��� i �,
establishing a fundamental role for von Neumann entropy
in quantum information theory.

This notion of quantum information, while interesting,
is perhaps not entirely satisfactory in that it still involves
an essentially classical ingredient, viz., the prior classical
probability distribution. However, in this context it should
be pointed out that that there is an unexpected and
remarkable harmony in such classical mixing of quantum
information: If �1 � {�� i�; pi} and �2 � {�� j�; qj} are
two quantum sources with the same density matrix
¥ i pi �� i��� i � � ¥ j qj �� j��� j �, then �1 and �2 are entirely
indistinguishable by any physical process. The quantum
information of the �� i�s probabilistically mixed by pi is
exactly the same as the quantum information of the �� j�s
mixed by qj ; no trace of the component states remains in
the mixture! This indistinguishability can be seen to be
related to various other consistency requirements of a
physical theory such as the no-superluminal-signaling
principle [10].

A second difficulty with the proposal of identifying
the quantum information content of a source with its
von Neumann entropy S is the fact that very different
sources can have the same entropy, yet some look “more
quantum” than others! This was realized soon after the
appearance of Schumacher’s compression theorem and
discussed by Bennett and other participants during the
first ELSAG–Bailey Quantum Computation Workshop at
the Institute for Scientific Interchange in Torino, Italy, in
July 1993 (subsequently leading to [11]). It was suggested
that a quantum source might be decomposable into a
classical and a quantum part, with the von Neumann
entropy quantifying both parts together. Then we would
seek to separate out a maximal classical part and quantify
the quantum part alone [11]. To illustrate the situation,
consider a source which emits one of two orthogonal
states ��0� and ��1� with equal prior probabilities of
1
2
. Since the states can be reliably identified by a

measurement, this source can be represented entirely in
classical terms with S � 1 classical bit per signal. Suppose
now that the states are not quite orthogonal, e.g., ���0��1��
� 10�9. The von Neumann entropy is still very close to 1,
and we ask: Is this source “almost classical”? That is, can
we extract approximately one classical bit of information,
leaving behind a very small amount of quantum
information (e.g., almost parallel states) in such a way that
the signals can still be faithfully reconstructed from the
classical and quantum information parts? This question
was settled only recently [12], in the negative: Let � be
a quantum source whose signal states do not lie in a
family of orthogonal subspaces. Then � can be faithfully
compressed to � qubits per signal plus any number of

classical bits per signal if and only if � is at least as large
as the von Neumann entropy S; i.e., it is generically
impossible to separate a source nontrivially into a classical
and a quantum part, and the classical representation of
exactly orthogonal states is therefore a singular feature
of infinite precision.

Thus, we need to look at more subtle properties of
quantum compression to distinguish sources with equal
entropy. Following a further suggestion of Bennett, we can
study features of so-called visible quantum compression. In
this scenario the source is described by giving the classical
information of the identity of the emitted signal state
(rather than just the quantum state itself, as quantum
information). Our task again is to faithfully represent the
signal states with minimal resources. Since we now have
more prior information about the signals (viz., the full
classical information of their identities), we have more
possibilities available for constructing such a minimal
(compressed) representation. As an example, consider a
source of four signal states, with equal prior probabilities
of 1

4
and having von Neumann entropy 1. In visible

compression, we can represent this source with two
classical bits per signal and no qubits (since there are four
equiprobable possibilities) or with one qubit per signal
and no classical bits (by creating the signal states and
performing Schumacher’s quantum compression on them).
Between these two extremes, there is a tradeoff curve q(c):
If we have c classical bits per signal (with 0 � c � 2),
then q(c) is the least number of qubits per signal that
is sufficient to represent the source [so the above gives
q(0) � 1 and q(2) � 0]. Thus, instead of trying to extract
classical information from a quantum source, we start by
giving a fully classical description of the source and
consider the tradeoff involved in coding the source back
into quantum terms. An extensive study of this tradeoff
curve is given in [13], and it is found that the shape of the
curve does indeed distinguish different sources with the
same entropy.

Returning now to information compression and the
insight it may provide into the notion of information, it
is interesting to ask why compression is possible at all.
Evidently some kind of redundancy in the raw signals is
being eliminated. For a classical source, it is well known
that nontrivial compression is possible if and only if the
prior probability distribution is not uniform. For example,
consider the case of two signals with unequal probabilities.
In that case we already have some prior knowledge of the
signal before it is received, in the sense that we can guess
the signal (choosing the more probable one) and be
correct more often than not. In this sense, part of the
signal (if sent in full) is redundant.

The quantum situation is considerably more subtle. For
any quantum source {�� i�; pi} we have S(�) � H( pi)
with equality if and only if the signals are all mutually
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orthogonal, suggesting that there is a quantum redundancy
associated specifically with non-orthogonality. For example
consider two qubit signals ��1� and ��2� at 45	 with equal
prior probabilities of 1

2
. Then H( pi) is 1 bit but S(�) is

0.601 qubits. Moreover, S(�) decreases monotonically
from 1 to 0 as the overlap ���1��2��

2 is increased from
0 to 1.

The interpretation of non-orthogonality is one of the
enigmas of quantum theory. Conventionally the overlap
���1��2��

2 provides a measure of the nondistinguishability
of ��1� and ��2�, and this is reflected in the properties of
the von Neumann entropy above, viz., an increasing
redundancy of quantum information with increasing
overlap. Thus, if �1 � {�� i�; 1/n} and �2 � {�� i�; 1/n}
are two quantum sources with n states each (having all
prior probabilities equal, for simplicity) and with larger
overlaps ��� i �� j�� 2 
 ��� i �� j�� 2 for each pair in �2

compared to the corresponding pair in �1, we would
expect a decrease of information content in passing from
�1 to �2. While this is true for n � 2, it can be shown
to fail generically [7] for n � 3 and higher; i.e., it is
generically possible to increase the von Neumann entropy
of a source while increasing the overlaps of every pair of
signal states! Evidently the quantum information content
depends on more subtle structural properties of the
geometry of the signals in the Hilbert space, beyond just
the pairwise overlaps.

The relationship of quantum information to the
geometry of the Hilbert space is largely unstudied, but for
n � 3 we can say a little more [7]. The von Neumann
entropy S of three equiprobable states ��1�, ��2�, ��3�

is a function of four independent real parameters:
the three overlaps a12 � ���1 ��2�� 2 , a23 � ���2 ��3�� 2 ,
a31 � ���3 ��1�� 2 , and the phase � of the triple product
� � ��1��2���2��3���3��1� (noting that the squared modulus
of � is the dependent quantity a12a23a31). Then, keeping
a12 , a23 , and a31 fixed, we can vary �, and it can be shown
[7] that S is actually a monotonically decreasing function
of cos � [or Re(�)]. Despite this clean relationship, we
still lack an intuitive understanding of why increasing
the phase � allows increased compressibility.

Concluding remarks
In this paper we have promoted a viewpoint that attempts
to place a notion of information at a primary fundamental
level in the formulation of quantum physics. In the spirit
of Landauer’s slogan “Information is physical!” we would
declare “Physics is informational!” Physical theories
have traditionally been formulated in conceptual and
mathematical terms that are, at root, geometrical. As such,
they have an intuitive accessibility which has facilitated
many developments (for example, the powerful guiding
principles of symmetry and coordinate invariance in the
construction of Lagrangians and field equations).

Similarly, the concept of information has an intuitive
basis, although not geometrical (and evidently having
a complicated relation to the geometry of state space).
Hence, it offers a potentially new perspective on quantum
physics with its own guiding principles. For example, we
might adopt the principle that any prospective physical
theory should not allow the efficient solution of an NP-
complete problem (where NP denotes the complexity
class of nondeterministic polynomial time algorithms).
This principle greatly restricts the form of the theory,
yet, remarkably, it appears to hold in the established
formalisms of classical and quantum physics, which
developed from entirely different perspectives. Although
an informational and geometrical formulation of a given
physical theory would be mathematically equivalent, both
points of view are valuable for further developments:
Natural generalizations that these respective formalisms
suggest would be quite different and no longer equivalent
as theories.
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