Can complex
structures be
generically
stable in a
noisy world?

G. Grinstein

Toom’s “NEC” cellular automaton is a simple model or
dynamical “rule” that succeeds in producing two-phase
coexistence generically, i.e., over a nonzero fraction of its two-
dimensional parameter space. This paper reviews and explains
the behavior of the NEC rule and discusses the implications
of the rule for the generic stabilization of complex structures.
Much of the discussion is based on work performed almost
twenty years ago by Charles Bennett and the author.

Toom’s NEC rule

In the midst of a casual conversation sometime in 1984,
Charlie Bennett mentioned to me that Andrei Toom [1]
had constructed a probabilistic cellular automaton (CA)
[2] with a rather amazing steady-state phase diagram.
Toom had proved rigorously that the phase diagram
exhibited “generic bistability,” that is, two genuinely stable
phases coexisting over a nonzero fraction of the parameter
space. Now, almost twenty years later, this innocuous-
sounding result remains one of the more remarkable
surprises I have experienced in thirty-odd years of work

in statistical mechanics.

Before exploring the mechanism and implications of
this phenomenon, let us summarize more precisely what
Toom’s so-called “NEC model” or “NEC rule” is and does.
The CA is defined on a two-dimensional square lattice, each
site i of which is occupied by a binary variable, S;, which
assumes the values +1. We often refer to these variables as
“spins,” which point either “up” (+1), or “down” (—1),
employing the terminology of the Ising model [3], whose
analogy to the NEC cellular automaton is most revealing,
as we shall see. The dynamical rule under which the {S,}
evolve in time can be described as follows:

1. Any given spin S, denoted C (for center), evolves in
discrete time according to a triangular neighborhood of
spins consisting of C itself, its neighbor to the north
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(denoted N), and its neighbor to the east (denoted E);
hence the name “NEC.” All spins are updated
simultaneously.

2. The rule consists of two parts, the first (a)
deterministic, and the second (b) probabilistic: (a) The
first part is a simple majority rule: If two or more of
the spins N, E, and C point up (down) at time ¢, then
the value, denoted F (for future) of spin C at time ¢ + 1
is up (down). (b) If the result of applying (a) is that
F points up, then flip F down with probability g; if the
result of (a) is that F points down, then flip F up with
probability p.

The NEC rule on a finite lattice is fully probabilistic in
that there is a nonzero probability of any state, {S,}, of
the system evolving into any other state, {S’}, in a single
time step. The rule obviously depends on the two
parameters, p and g, whose rough effect is clear: When
p > g, up spins are favored over down, since the rule flips
more down spins to up than the reverse; when p < g,
down spins are favored over up; and when p = ¢, up and
down spins are treated equivalently, implying a global
up—down symmetry. It follows that the “bias,” i.e., the
quantity 7 = (p — q)/(p + ¢q), is a rough analogue of the
magnetic field in the Ising model. To complete the Ising
analogy, one further defines the “noise” in the system,

T = p + g, and the expectation value M = (S,) of any
spin, which are respective analogues of the temperature
and average magnetization in the Ising model.
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Phase diagram for the NEC model as a function of noise (7") and
bias (4); one-phase region shown unshaded, two-phase region
shown shaded; T, denotes critical point. Adapted from [4], with
permission; © 1985 by the American Physical Society.
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Phase diagram for the Ising model as a function of temperature
(T) and magnetic field (4); dark portion of 4 = 0 axis represents
two-phase region; 7, denotes critical point.

Toom proved that in the long-time limit, the NEC
model achieves a steady state characterized by the
schematic phase diagram of Figure 1, shown in the T/
plane: For sufficiently large values of & and/or 7, the
model has a unique stable phase with a steady-state
magnetization M with the same sign as the bias /. This is
exactly what one would expect. Unanticipated, however,
is the (roughly triangular) shaded region of the phase
diagram near T = h = 0, where the model exhibits two
coexisting stable phases, one with M > 0 and the other
with M < 0. Along the T axis, the two stable phases have
equal and opposite magnetization values, =M, with M
decreasing continuously to zero at the second-order
critical point located at # = 0 and T = T, the “critical
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temperature,” or “critical noise” value. At nonzero &, two
curved first-order phase boundaries, mirror-symmetric
about the & = 0 axis, separate the region of coexisting
stable phases from the single-phase region.

Comparison of the NEC and Ising models

To understand how extraordinary this deceptively simple
phase diagram really is, let us compare it with that of its
much more familiar Ising-model analogue. First recall that
the simplest near-neighbor, ferromagnetic equilibrium
Ising model on a square lattice in two dimensions is
defined by the classical Hamiltonian

H{S}H) = -T2, 88— hZS,. (1)
Here X i, denotes the sum over all nearest-neighbor
pairs of sites i and j;' the exchange constant J is positive,

so that the system lowers its energy by aligning near-
neighbor spins; and £, the magnetic field, tends to make
all spins point up if # > 0 and point down if 4 < 0.
The stationary equilibrium phase of the Ising model at
temperature 7 is of course described by the Boltzmann
distribution, the probability of finding the system in state
{S.} being proportional to e BT where ky is
Boltzmann’s constant. The famous phase diagram
summarizing the stationary properties of the Ising model
is shown in Figure 2, again in the 7-A plane. (We use
the symbols /2 and T to represent both the field and
temperature in the Ising model and the analogous
quantities in the NEC rule.) This phase diagram is
strikingly different from that of the NEC rule. In
particular, the two-phase coexistence region of Figure 2
occupies only a set of measure zero of the parameter
space, being confined to the portion of the T-axis below
the critical temperature, T,, of the Ising model. On this
special line, the Ising system indeed exhibits two stable
coexisting ferromagnetic phases with equal and opposite
magnetizations, consistent with both the up—down
symmetry of H({S,}) at & = 0 and the NEC phase
diagram in Figure 1. For any nonzero &, however, the
Ising system has a unique stable (paramagnetic) phase,
its magnetization M having the same sign as /. For

h =0and T > T, the Ising model has, like its NEC
counterpart, a unique stable paramagnetic phase with
M = 0.

The following simple argument demonstrates that the
Ising phase diagam is prototypical of equilibrium systems,
where two-phase coexistence occurs only along a surface
of dimension one less than that of the parameter space:
Any equilibrium system that depends on N parameters,

@, a,, ", ay, has a free energy F = F(a,, a,, -+, a,).

12

1 One obvious difference between the two-dimensional Ising and NEC models is
that in the former, the evolution in time of a particular spin depends on all four
neighboring spins, rather than just two; the spatial asymmetry in the NEC rule
is central to its behavior.
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At any point of two-phase coexistence, the free energies,
F, and F,, of the two phases must be equal; the resulting
equation, F (a,, ), * "+ , @) can
be solved for one of the o in terms of the other N — 1,
producing an (N — 1)-dimensional coexistence surface
in the N-dimensional parameter space. This is why
coexistence surfaces are called “surfaces” or “curves,”
rather than “volumes” or “areas.”

We therefore conclude that the NEC model must be a
nonequilibrium or irreversible system. Such systems are
usually thought of as open systems, driven externally in
some way that prevents them from reaching equilibrium.
However, many nonequilibrium toy models such as Toom’s
NEC rule are defined on closed systems, the effects of the
openness and external driving being incorporated in the
dynamical rule. To give a fanciful example dear to
Charlie’s heart, one could imagine one of Maxwell’s
demons living on a two-dimensional lattice of spins.
Armed with a tiny magnetometer, the demon moves
around the lattice, flipping spins in such a way as to
implement Toom’s rule. In describing the resulting system,
however, we can safely ignore the demon, i.e., the
coupling of the system to the external world, and simply
imagine that the system follows the NEC dynamics,
without inquiring about the origin of the rules.

In any event, it is easy to infer directly that the NEC
model is not an equilibrium system, since it fails to satisfy
detailed balance for any energy function. Recall that the
dynamics of a noisy, discrete-time system is said to obey
detailed balance for the energy function £({S,}) if, given
that the system is in the state {S,} at time ¢, the probability,
Q({S/}|{8,}), of its undergoing a transition to the state
{S/} at time ¢ + 1 satisfies the equation

QUSHisy
QUSHISH

It is readily apparent that systems obeying this condition
have, in the long-time limit # — o, a stationary state
described by the Boltzmann distribution,” wherein the
probability of occurrence of any state {S,} is proportional
to e FI%T To show that the NEC rule cannot obey
detailed balance for any conceivable energy function
E({S,}), assume the contrary, i.e., that there exists an
E({S,}) for which the NEC transition probability O
satisfies Equation (2). The fact that the evolution of any
site C depends on its neighbor to the north, site N,
implies that E({S,}) contains the term S.S. (To see this,
note that an arbitrary nonpathological function of the
binary variables S. and S, can be written as a linear
combination of the four terms: 1, S, S, and S.§. Of
these four, only the §.S term makes the time evolution

s ay) = Fy(a, oy -

[EASH~E{SH kT ) (2)

2 The existence of a stationary Boltzmann distribution generally implies that the
associated stationary phase is the unique stable phase of the system, but there are
exceptions which we ignore here.
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of site C depend on the value of site N.) But the presence
of the term .S in £({S,}) implies in turn that the
evolution of site N depends on C, its neighbor to the
south, which is false, whereupon the reductio ad absurdum
argument is complete.

Let us now try to understand on an intuitive level how
the nonequilibrium NEC rule manages to achieve generic
multistability. A relatively simple explanation can be
formulated in terms of droplet dynamics [4]. It is helpful
to review how such arguments rationalize the phase
diagram of the Ising model before tackling the NEC
problem.

Rationalizing generic multistability: Droplet
arguments
Let us begin at # = 0 and T < T, in the Ising model, i.e.,
on the line of two-phase coexistence. To understand how
both of the oppositely magnetized phases can be stable,
imagine preparing the system in an initial state in which a
straight domain wall separates a domain of up spins from
one of down spins. Now at 2z = ( this domain wall cannot
translate with nonzero velocity, since that would violate
the up-down symmetry of Hamiltonian (1), i.e., the
equivalence of the up and down spins. Thus, in the
thermodynamic limit, the wall can develop local wiggles,
but its average position must remain fixed. If this position
is denoted by R, the situation is described by the trivial
equation dR/at = 0.

Next imagine starting the system off in an initial state
consisting of a single circular droplet of radius R of
up (down) spins immersed in a sea of down (up)
spins. Such a droplet can lower its surface energy by
shrinking in size, its dynamics being governed by the
phenomenological equation [5]

aR/ot ~ — /R, (3)

where o is the surface tension of the the droplet. In the
limit R — oo, this equation reduces to dR/dt = 0, as
it must, since the droplet becomes the flat interface
considered just above. We conclude that droplets of
minority spins tend to shrink and disappear when & = 0.
Now imagine starting from an initial condition wherein
all of the spins in the system are down (up). Because of
thermal fluctuations, minority up (down) droplets will
form spontaneously throughout the system. Since, as we
have seen, however, such droplets tend to shrink rather
than grow, their total weight will remain limited, provided
that the temperature of the system is sufficiently low.
Thus, for low enough T—meaning, in practice, T < T —
a state with an initial positive (negative) magnetization
will, in the thermodynamic limit, have M > 0 (M < 0)
in perpetuity. This explains heuristically how the two
oppositely magnetized phases of the Ising model with
h = 0and T < T, can be genuinely stable.
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Domain walls separating up from down spins in NEC model. (a)
and (b): Vertical and horizontal walls do not move. (c¢) Diagonal
wall translates downward one lattice spacing per time step.

Right isosceles triangular droplet of up spins, in sea of down
spins, and circular droplet of radius R inscribed in triangle.

Finally, let us next move off the coexistence curve of
the Ising model by considering # > 0. Here up spins
are favored energetically over down, so a flat interface
separating domains of up and down spins will translate
with a uniform velocity proportional to £ itself, for small
h. This situation is represented by the phenomenological
equation dR/dt ~ h. A droplet with radius R of up spins
immersed in a sea of down spins is then described by the
equation
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dR/ot ~ —a/R + h, (4)

which reduces to the required dR/dt = h as R — o,

and also incorporates the effect of surface tension. This
equation provides a heuristic description of the important
phenomenon of metastability: Droplets with radii R less
than the “critical droplet size” R, = o/h will shrink with
time; however, any droplet with a radius R > R_will grow
forever according to Equation (4). Even if one prepares
the system in an initial state in which all spins point down,
and even if & and T are very small, thermal fluctuations
will eventually nucleate a density of up-spin droplets
whose radii exceed R . These droplets will grow and
merge, ultimately producing a stationary state with
positive magnetization. This nucleation and growth
process explains why for 42 # 0 the Ising model has a
unique stable phase with nonzero magnetization. Note,
however, that if o/h, and hence R, is sufficiently large,

it can take considerable time for the nucleation of critical-
size droplets. (The time required for the nucleation

of such droplets grows exponentially with R_ [6].)

Thus, a metastable phase (e.g., a phase with negative
magnetization for 2 > 0), can persist for extremely long
times before being destabilized by droplet growth.

To apply this experience with droplet dynamics to
Toom’s CA, let us return to the NEC rule in the
deterministic limit p = ¢ = 0, analogoustoh = T = 0
in the Ising model, and imagine preparing the system in
an initial condition with a straight interface separating
domains of up and down spins (Figure 3). The NEC
majority updating rule immediately implies that such
interfaces are totally immobile, provided they are oriented
with the lattice axes, i.e., in the vertical or horizontal
directions [Figures 3(a) and 3(b)]. This mimics the
situation in the Ising model. However, the interface
oriented at 45° along the NW-SE axis, as in Figure 3(c),
translates downward, maintaining its orientation, by one
lattice spacing with every time step, since any site C just
below the interface has both its N and E neighbors on the
opposite side of the boundary. This phenomenon, which
holds regardless of whether the up or down domain lies
below the domain wall, is a consequence of the peculiar
spatial asymmetry of the Toom rule.

The striking ramifications of this behavior become
obvious when one considers the evolution of a droplet of
either sign, immersed in a sea of the opposite sign. First
consider an isosceles right triangular droplet with one
vertical side of length R, one horizontal side with length
R, and one side oriented from NW to SE (Figure 4): The
horizontal and vertical sides remain fixed in position,
while the diagonal one translates downward, shrinking
the droplet to zero in a time proportional to R.

Since a circular droplet of radius R cannot shrink
more slowly than the isosceles right triangular droplet

IBM J. RES. & DEV. VOL. 48 NO. 1 JANUARY 2004



circumscribed around it (Figure 4), it follows that such a
circular droplet (of either sign) must also shrink to zero
in a time proportional to R. Thus, the dynamics of such

a droplet is described by the phenomenological equation
dR/dt ~ —1. Now, the effect of allowing the parameters p
and ¢ to be nonzero can only be to add terms of O(p, q)
to the right side of this equation, provided p and g are
small compared to unity. In this case, the droplet equation
therefore takes the form

aR/3t ~ =1+ O(p, q), Q)

which implies that even for nonzero p and ¢, droplets

of either sign will shrink in a time proportional to their
radius, so long as p and g are sufficiently small. In this
regime, therefore (which of course corresponds precisely
to the two-phase coexistence region of the NEC model),
the sign of the initial magnetization of the system will be
preserved in the long-time limit, since droplets of either
sign are efficiently suppressed. This accounts in a simple
intuitive way for the remarkable generic multistability of
Toom’s rule: Even for p > ¢, say (meaning up droplets
being favored over down), up droplets that nucleate
spontaneously in an initial sea of down spins cannot grow
to destabilize the system, provided p is sufficiently small.
Hence, there is a genuinely stable state with M < 0 in this
regime, in addition to the expected one with M > 0. Thus
we understand how the irreversibility embodied in the
spatial asymmetry of the Toom rule eliminates errors of
both signs efficiently enough to generate generic two-
phase coexistence.”*

It is important to try to identify the minimum
conditions required to produce such generic multistability.
It has been argued [7] that neither the simultaneous
updating nor the discreteness of time, space, and variables
inherent in CA is necessary: The only indispensable
ingredient seems to be irreversibility in the specific form
of spatially asymmetric rules or partial differential
equations.

The generic stabilization of complex structures
Having understood heuristically the unconventional phase
diagram (Figure 1) of the Toom rule, let us briefly explore
its implications for the stabilization of complex structures,
or “error correction.” The basic question is inspired by the
evolution of living creatures, specifically the fact that the
complexity of such creatures seems to be increasing with
time. There is little doubt that modern man, for example,

3 Starting from an arbitrary initial condition, the magnetization of the NEC model
in its two-phase region relaxes exponentially, with a characteristic relaxation time,
to the steady-state value for the appropriate stable phase of the model. The same
is true of the Ising model; see [6].

4 As in the Ising model, two-phase coexistence of the NEC model occurs only in
the thermodynamic limit: For any finite system, droplets encompassing the entire
system form with nonzero probability. Since the time required to nucleate such
droplets increases exponentially with sample size, however, reasonably large
systems will exhibit two-phase coexistence over immeasurably long time scales.
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is (despite the odd counterexample one is occasionally
distressed to encounter), a more complex creature

than anything that existed on this planet ten million

years ago. This increase in complexity obviously requires
nonequilibrium processes working against entropy, and
raises an important question of principle: Are complex
structures simply metastable, or are there local
nonequilibrium rules, operating at nonzero temperature
and therefore noisy, that are capable of producing
genuinely stable structures of arbitrary complexity under
generic conditions, i.e., with no tuning of parameters? At
least for strings of binary variables, this last question was
answered compellingly in the affirmative through a specific
one-dimensional model due to Gacs [8] and through a
much simpler three-dimensional model due to Gacs and
Reif [9], which is based on the Toom rule. The rest of this
paper is devoted to a discussion of this latter construction
and its significance.’

Imagine for specificity some complex pattern, or at least
the information required to construct it, encoded in a long
binary sequence. (A binary encoding, in 1’s and —1’s, of
all the information contained in the human genome is a
particularly stirring example.) Suppose that the first few
bits in that pattern of interest, which we denote S*,
or Sifori=1,2,3,---, are

§*=+1,+1, -1, -1, -1, +1, -1, -1,
—1, =1, =1, +1, =1, . (6)

Assume, moreover, that the desired sequence is a fixed
point of a one-dimensional deterministic, local, dynamical
rule—a one-dimensional CA, say—that has been used to
create the sequence from some appropriate initial condition,
through 7 updates of the system. Since one-dimensional
deterministic CA rules capable of universal computation
(i.e., capable of carrying out an arbitrary digital
computation, given the right initial condition), have been
proven [10] to exist, this assumption is not unreasonable.’
(In the example above, in which the sequence is supposed
to represent a blueprint for the human genome, we can
loosely think of the automaton that produces it as
mimicking, in a grossly oversimplified way, some of the
effects of evolution.) For compactness of terminology,
let us refer to the one-dimensional automaton used to
produce the sequence of interest as the “creation rule.”

As long as this automaton is deterministic, then once it
reaches, after 7 iterations, the desired fixed point above,
nothing changes further, and the sequence of interest
persists forever. To address the question of the stability

5 We use the term “complex” in a loose, intuitive way here, begging the difficult
and contentious issue of providing a careful definition. In this sense, our attitude
toward complexity is much like the one expressed toward pornography by former
U.S. Supreme Court Justice Potter Stewart, who famously opined: “I know it when
I see it.”

6 It is important to keep in mind, however, that there is, in general, no practical
procedure for determining the right initial condition.
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Gacs—Reif construction: One-dimensional “creation rule” CA
chains in z direction, placed on sites of square lattice in XY plane
to form three-dimensional CA. Sites in the XY planes are coupled
with Toom’s rule to eliminate errors, shown circled.

of complex patterns under noisy conditions, however, we
must give the creation rule some probabilistic character.
This is easily accomplished by taking the result of each
step of the deterministic creation rule, and then flipping
all down spins to up and up spins to down with probabilities
r, and r_, respectively, just as in the Toom rule. Of
course, this will soon destroy the desired pattern (6)
above, since, even for very small 7, and r_, nothing
prevents the errors from proliferating with time,
particularly because a faulty result produced by the

noise at time ¢ is likely to cause even the deterministic
piece of the rule to generate further faulty results at later
times. The probabilistic creation rule is therefore a very
poor model for generating stable structures.

Obviously, what is required to rescue the model is a
mechanism for employing redundancy to correct errors.
Following Gacs and Reif [9], therefore, let us imagine a
system consisting not of a single one-dimensional CA but
a large number of identical one-dimensional automata, all
running the creation rule with the same properly chosen
initial condition. Imagine further that all of these one-
dimensional CA chains are oriented in the same (say z)
direction, and that they are positioned on the sites of a
square lattice in the x and y directions, forming a three-
dimensional cubic lattice overall (Figure 5). Furthermore,
align the one-dimensional automata in the z direction so
that the corresponding sites of each one lie in the same
XY plane, making the values of all the sites in any given XY
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plane identical initially. If we now run the deterministic
creation rule on each of the chains, the values of all of
the sites in any XY plane will remain identical, and each
automaton will reach the fixed point §* after 7 time steps.

Now imagine adding to the creation rule the probabilistic
component discussed above, with small error rates r, .
Errors will then proliferate randomly along each of the
chains, making the values of the sites in any given XY
plane nonuniform and rendering each of the automata
incapable of achieving the desired fixed point. To suppress
this proliferation, Gacs and Reif proposed coupling the
equivalent sites of the one-dimensional automata in each
XY plane with the Toom rule, producing a fully three-
dimensional automaton in which each probabilistic
creation-rule update of the one-dimensional chains is
followed by s time steps of the two-dimensional Toom rule
in every XY plane of the system. The values of p and g for
the Toom rule are chosen small enough so that the rule is
in its region of two-phase coexistence. The value of s is
chosen large enough to bring the average magnetization of
each plane to within some desired fraction of the steady-
state value of the NEC rule (see footnote 3) with the sign
dictated by the result of the previous update of the
creation rule.

This algorithm guarantees that after any number, ¢, of
updates of the creation rule [i.e., after (1 + s) total
updates of the system], the average magnetization,

M (t), of the ith plane has the correct sign, viz.,
sgn[M,(1)] = SiD(z), where SiD(t) is the value of the

ith site of the deterministic creation rule after ¢ updates.
Thus, for all # = 7 and for every site i, sgn[M,(1)] = S7,
the desired fixed point value of the deterministic creation
rule. In this average sense, therefore—the only sense

in which a noisy system such as our three-dimensional
CA can hope to reproduce the result of a deterministic
calculation—the Gacs—-Reif construction succeeds in
generating precisely the outcome of the deterministic
creation rule.

Gacs and Reif have proven that their three-dimensional
CA accomplishes this task for the creation rule (or any
other deterministic one-dimensional CA). The physical
mechanism underlying the proof is quite easy to understand,
however: While each update under the probabilistic creation
rule introduces a small fraction of O(r,) of new sites with
the wrong sign (errors) within any plane 7, running the NEC
rule for sufficient time s eliminates enough of these errors
to bring the average magnetization M, of that plane
arbitrarily close to the steady-state value of the NEC
rule with the correct sign. Thus errors cannot proliferate
in time. After each step of the creation rule and the
associated s steps of the NEC rule, the fraction of errors
in each plane is ~O(p, q). Hence, for small p and g, the
sign of M,(¢) for any i will be identical to the desired
result, S,.D(t), of the deterministic creation rule.
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Since this error-correction mechanism works for any
sufficiently small values of r_, p, and g, it is truly generic,
requiring no tuning of parameters. Thus, it establishes that
arbitrary one-dimensional binary sequences can indeed be
stable in nonequilibrium systems under generic conditions
and in the presence of noise. Note that the equilibrium
Ising model along its coexistence curve, & = 0, also
shrinks minority islands of either sign, and so can be
used in place of the NEC rule to perform in-plane
error correction. However, this requires the tuning of
the magnetic field & to zero, and so cannot be done
generically. It is a distinct advantage not to need to invoke
any mysterious tuning of parameters to stabilize complex
structures.

One could of course carry out generic error correction
with the Ising model for T < T and h very small: & << J,
say. Since this relies on the metastable phase (the phase
with negative magnetization for 4 > 0, say) being very
long-lived in the small-A limit, it will fail when the unique
stable phase of the Ising model in nonzero field ultimately
manifests itself. However, because the time required for
the nucleation and growth of this phase is exponential in
J/h, one can readily make it exceed the age of the universe
by simply choosing a small /. For all practical purposes,
therefore, this metastable generic error correction will
work as well” as the real thing. It is nonetheless comforting
to know that simple local nonequilibrium rules that cleverly
exploit spatial asymmetry can truly stabilize complex
structures generically.
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