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This paper describes the design and validation of a
performance and power simulator that is part of the Mambo
simulation environment for PowerPC� systems. One of the
most notable features of the simulator, designated as Tempo,
is the incorporation of an event-driven power model. Tempo
satisfies an important need for fast and accurate performance
and power simulation tools at the system level. The power
and performance predictions from the simulated model of a
PowerPC 405GP (or simply 405GP) were validated against
a 405GP-based evaluation board instrumented for power
measurements using 42 application/dataset combinations from
the EEMBC benchmark suite. The average performance and
energy-prediction errors were 0.6% and �4.1%, respectively. In
addition to describing Tempo, we show examples of how well
it can predict the runtime power consumption of a 405GP
microprocessor during application execution.

1. Introduction

Computer architects and software developers are faced
with a dilemma. In addition to performance, which is the
primary design goal of high-end microprocessors, systems,
and software, power has emerged as a second primary
design metric, especially for embedded systems.
Unfortunately, there has been a lack of practical
simulation and profiling tools for “what-if” power
analysis of new and existing architectures. Performance
architectural simulators typically include cycle-accurate
models of varying complexity for the systems under
investigation. If these simulators are to be practical
enough to enable the study of complete applications using
realistic datasets, simulation speed will be critical (the
classic tradeoff of detail vs. speed is often resolved in
favor of the latter).

Further, the power simulation tools that exist today
range from very detailed and slow transistor-level SPICE-
like [1] models, to higher-level Verilog/VHDL circuit-level
power simulators such as PowerTheater** [2] and
PowerMill** [3], to the even higher levels of abstraction

found in tools such as Wattch [4] that can be integrated
with architectural simulators. Our goal has been to
integrate cycle-accurate performance and power
simulation at the minimum possible speed penalty. Our
approach differs from that used in Wattch in that we
further abstract the details of power simulation, because
our target audience is architects and developers of
operating systems and applications. The dilemma of the
architects/researchers extends to developers of power-
aware software on systems. While they are typically not
as concerned about circuit details involved in arriving
at power estimates, they want to know where power is
dissipated in their applications. Very few tools can provide
such feedback.

Event-based energy tracking models have previously
been shown to provide good microprocessor power
estimates [5]; hardware registers count the number
of occurrences of a limited set of events, allowing an
estimate of energy usage over time. Unfortunately, such
models are not useful for studying new architectures or
systems that do not include event-tracking support in
hardware. Since many cycle-accurate simulators are event-
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driven, we sought to investigate the possibility of modeling
the power consumption of a microprocessor by associating
energy costs with the occurrence of certain architectural
events. If successful, this power modeling approach could
be performed at almost no additional simulator runtime
overhead; since the important architectural events are
already modeled for timing estimates, energy estimates
could be computed simply by some additional counting.
Our methodology should be extendable to future
microprocessors by relying on some of the other, more
detailed power simulation techniques to generate our
event-based power model during early design stages.

To determine the feasibility of our approach, we
decided to model an existing microprocessor: the core
processor found in the PowerPC* 405GP [6] system-on-a-
chip. Since the 405GP is an existing processor, we could
validate our simulator against actual hardware. Our
colleagues at the IBM Austin Research Laboratory had
designed the Pecan board, a 405GP-based system that has
provisions for power measurements. Although the 405GP
processor does not include hardware performance
counters, it is a relatively simple in-order pipelined
processor. If we could build a cycle-accurate version
of the 405GP, our simulator could be used for the

performance/power tuning of applications and operating
systems, despite the lack of hardware performance
counters. Enabling such evaluation methodology is very
desirable for embedded systems such as the 405GP.

Our efforts have resulted in the development of Tempo,
an execution and event-driven cycle-accurate simulator
that is part of the Mambo PowerPC simulation
environment of the IBM Austin Research Laboratory.
Our validation results show that the processor core
performance predictions of the simulator have an average
error of 0.6%, with a standard deviation of 2.5% on 42
Embedded Microprocessor Benchmarking Consortium
(EEMBC) [7] benchmarks when compared to the
hardware platform being modeled. The average error in
energy predictions was �4.1%, with a standard deviation
of 5.1%. In addition, we could model the transient power
behavior of applications, which is not possible with many
energy models. Tempo can bridge this gap because it can
compute the power consumption on a per-cycle basis by
accumulating event energies on every cycle.

The rest of the paper is organized as follows. Section 2
describes the Mambo simulation environment, with special
emphasis on the Tempo model. Section 3 presents our
timing validation methodology and results. Section 4
describes how the power model was created and presents
power validation results. Related work is discussed in
Section 5. Finally, we present concluding remarks in
Section 6.

2. Mambo simulation environment
Mambo is an IBM proprietary full-system simulation
toolset for the PowerPC architecture. It shares some of its
roots with the PowerPC extensions added to the SimOS
[8] simulator and is written completely in the C
programming language. It can be run on many platforms,
but we commonly run it on both PowerPC and x86
processors, under either AIX* or Linux**.

Mambo supports the 64-bit PowerPC processor and
the 32-bit 405GP processor. The system is designed
for multiple configuration options. Various PowerPC
extensions and attributes such as vector multimedia
extensions (VMX) support, hypervisor, cache geometries,
segment lookaside buffers (SLBs) and translation
lookaside buffers (TLBs) can be configured. Models of
future PowerPC architectures can be created by selecting
from the various configuration options. Further, Mambo
includes models for disks [9], various system and I/O
buses, Ethernet controllers, and Universal Asynchronous
Receiver/Transmitter (UART) devices. When these
models are combined with the full-architecture processor
models, full-system simulations with real operating systems
and applications are possible. Mambo is in active use by
multiple research and development efforts at IBM. The

Figure 1

Block diagram of the PowerPC 405GP processor.
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rest of this section concentrates on aspects of Mambo
that are relevant to this paper.

One of the processor models supported by Mambo is
the PowerPC 405GP, a 32-bit system-on-a-chip PowerPC
processor used in embedded applications. Figure 1 shows
a block diagram of the system. Mambo simulates not only
the instructions executed by the processor core, but also
its interactions with its surrounding devices.

The 405GP simulator includes two processor models:
Simple and Tempo. The former is a basic functional
model that does not try to model complex timing aspects
of program execution. To simulate an “add” instruction,
for example, it simply fetches the two operands from
simulated registers or memory, computes the sum, and
sets the simulated registers to the results defined by the
PowerPC instruction set. The Simple model assumes
that each instruction takes one cycle and that access
to memory is immediate and takes no time.

The advantage of the Simple model is its speed. On
the EEMBC benchmark suite, we can simulate all of its
2,225,591,852 instructions from power-on to the end of
all benchmarks in 15.5 minutes at about 2.4 million
instructions per second on a 1.2-GHz AMD Athlon**
processor-based system running Red Hat** Linux. The
disadvantage of Simple is that it provides no information
about the actual number of cycles needed to execute a
set of instructions: All it does is count instructions, one
instruction per cycle. The number of cycles reported by
Simple is not affected by the type of instruction, memory
accesses, caches, or any of the other features of the
405GP. Timers, I/O, and other external devices are
correctly modeled with respect to time, but the timing
aspects of the processor are not modeled.

The PowerPC 405GP can also be simulated by the
Tempo model, which adds accurate timing information to
the Simple model. The 405GP processor core implements
the PowerPC instruction set using an in-order five-stage
pipeline, as shown in Figure 2. Most instructions execute
in one cycle, but some instructions (such as multiplication
and division) require more cycles (e.g., division requires
35 cycles) and some functional units are pipelined.
Although the 405GP core is a single-instruction in-order
issue processor, it allows the overlap of load misses with
independent instructions.

The Tempo model of this system includes cycle-accurate
details of the processor core, including its pipeline,
instruction fetch unit, branch predictor, instruction and
data caches, memory management unit including both
instruction-side and data-side TLBs, functional units, and
timers. Further, the system memory, PLB bus, interrupt
controller, memory controller, and memory subsystem are
all modeled.

Correctly simulating the PowerPC 405GP pipeline and
the complexities of overlapped execution requires more

work on the part of Tempo. For the same EEMBC
benchmark suite and computational platform mentioned
above for Simple, Tempo requires 63.1 minutes, running
at an average of 587 thousand instructions per second, a
factor of 4� slower than Simple. In exchange for this
longer execution time, it provides a more accurate
simulation time of 3,579,669,994 cycles.

3. Timing validation
Table 1 shows the PowerPC 405GP settings used for
timing and power validation measurements during our
experiments.

Tempo PowerPC 405GP model
The 405GP core is a relatively simple processor to
simulate owing to its in-order issue architecture; however,
discovering the timing details needed for a cycle-accurate
model was a nontrivial task, primarily because of our
inability to locate detailed architectural (behavioral)
specifications. The timing information used for the
processor model was gathered either from existing publicly
available user manuals or through experimentation.

Whenever we could not find good documentation, we
resorted to running carefully designed microbenchmarks
that were used to identify the behavior of a specific aspect
of the microarchitecture. A microbenchmark is designed

Table 1 PowerPC 405GP settings for modeling and
validation.

Parameter Value

CPU core frequency 200 MHz
Processor local bus (PLB) frequency 66 MHz
Core voltage (used for

measurements)
2.5 V

SDRAM speed/voltage 10 ns/3.3 V

Figure 2

Simplified representation of the PowerPC 405GP pipeline.
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to allow the time associated with a specific event to be
determined. For example, to measure the time for a
cache miss, we can use a microbenchmark such as the
following:

loop:

lwz r2, 0 (r3)

addi r2, r2, 1

lwz r2, 0 (r4)

addi r2, r2, 1

lwz r2, 0 (r5)

addi r2, r2, 1

bctr loop

This loop consists of three load instructions followed by
instructions that use the loaded value. The load followed
by a use causes the addi instruction to wait for the result
of the load. The load instructions load from addresses
held in registers r3, r4, and r5. To measure the latency
of a load miss, we run this microbenchmark twice. In the
base case, each of these registers has the same address,
making all loads cache hits (after the first iteration loads
the caches). This allows us to measure any delays when
a load is immediately followed by a use, since we know
the number of cycles needed to execute cache hits, add
instructions, and branch-on-counter instructions in the 405
core; any extra cycles in iteration time are due to load/use
timing restrictions. To determine the time for a cache
miss, we note that the 405GP data cache is two-way set-
associative. By setting r3, r4, and r5 to be different
addresses in the same cache set, we can force a cache miss
for each load. The third load evicts the first load from the
cache. Looping back around, the first load then evicts
the second load, the second load evicts the third, and
so on. The loop is executed ten million times. The time
difference between the base case and the cache-miss case
is the time for thirty million cache misses, allowing the
time for one cache miss to be determined. In Section 4,
we show how this microbenchmark may be used for power
modeling.

The microbenchmark tests were timed on the PowerPC
405GP-based Pecan board and studied with the aid of the
IBM RISCTrace* tools to discover the actual behavior of
the core under certain conditions. Most of this timing
validation effort revolved around memory operations,
the store buffer, and cache units.

Validation methodology
To validate the timing accuracy of our simulator, we
used Version 1.0 of the EEMBC [10] benchmark suite.1

We ported the benchmarks to run on the Pecan board
operating system and created two boot ROM images, one
for the hardware and the other for the simulator. The
simulator image differs from the hardware image
because the Mambo version of the operating system
does not support some hardware devices. All of the
benchmarks and their datasets were also included
in the ROM. On both platforms (hardware and
Mambo), we used the time base counters, programmed
to use the internal CPU clock, to measure execution
time for each benchmark. In addition, before each
benchmark started, we disabled interrupts and address
translation to avoid any interaction with the operating
system. We ran all iteration-based benchmarks for 50
iterations and used all available datasets for those
that had such options.

Timing results
Table 2 summarizes the timing validation results. For
each benchmark, the table indicates the number of cycles
required to execute the benchmark both on the hardware
and on Tempo. The last column shows the simulated
execution time error. The average error across all
benchmarks was 0.6%, with a standard deviation of 2.5%.
These results strongly support the accuracy of the timing
information provided by Tempo.

4. Power model and validation
Achieving good cycle accuracy was the first step in our
implementation because of the time dependence between
energy and power. This section describes the methodology
we followed to generate the event-based power model
used in Tempo and our validation results.

Event-based power model
Our power model assumes that the total energy consumed
by a processor is the sum of its static (or idle) energy
consumption and the energies consumed by the pipeline,
execution units, and caches as they execute various
microarchitectural events. Thus, given a static
energy E idle and a set of events i with energies ei ,
the total energy Etotal consumed by a given application
is given by

Etotal � Eidle � �
All i

�ei � ni�,

where ni denotes the number of executed events of event
type i. In Tempo, this energy is computed on a per-cycle
basis, allowing us to produce a cycle-by-cycle power-
consumption graph of the processor core. Unfortunately,
the 405GP does not include hardware event monitors,
which increased the complexity of our task. Furthermore,

1 The EEMBC benchmarks were used only for validation purposes, with
permission. Performance and power results reported here may not comply with
official EEMBC reporting guidelines and may not represent the performance of
those benchmarks on the PowerPC 405GP.
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we did not have a priori knowledge of the events that
are of interest from the point of view of power. These
questions were resolved through experimentation and
educated guesses (based on our knowledge of architecture
and VLSI circuits) about the sources of energy consumption
in a processor.

To determine the actual energy cost of each of these
events, we used a Pecan board instrumented for power
measurement by means of a National Instruments2

2 National Instruments Corporation, Austin, TX.

Table 2 Summary of timing validation results.

Benchmark No. of
hardware

cycles

No. of
simulated

cycles

Error
(%)

a2time 413,223 426,739 3.3
aifftr 144,395,655 148,928,991 3.1
aifirf 740,301 741,021 0.1
aiifft 130,856,883 135,408,005 3.5
autcor (pulse) 300,555 300,207 �0.1
autcor (sine) 44,774,787 44,774,970 0.0
autcor (speech) 42,725,127 42,725,001 0.0
basefp 3,223,875 3,324,118 3.1
bezier 88,849,557 95,193,983 7.1
bitmnp 15,206,409 15,788,075 3.8
cacheb 45,441 44,292 �2.5
canrdr 38,601 37,291 �3.4
cjpeg 60,585,141 61,566,468 1.6
conven (k3) 15,241,887 15,248,499 0.0
conven (k4) 19,492,803 19,495,072 0.0
conven (k5) 22,412,505 22,418,867 0.0
dither 220,016,577 227,779,585 3.5
djpeg 52,295,116 52,653,158 0.7
fbital (pent) 55,151,595 54,218,153 �1.7
fbital (step) 5,639,745 5,577,367 �1.1
fbital (typ) 117,365,997 116,698,767 �0.6
fft (sine) 12,731,943 12,941,597 1.6
fft (spn) 12,702,291 12,912,470 1.7
fft (tpulse) 12,702,291 12,909,947 1.6
filters 253,353,351 256,038,518 1.1
idctm 17,032,503 17,145,522 0.7
iirflt 708,351 731,537 3.3
matrix 227,769,267 237,158,898 4.1
ospf 14,621,890 14,096,063 �3.6
pktflow 101,628,513 98,222,474 �3.4
pntrch 5,834,997 5,798,781 �0.6
puwmod 47,043 44,873 �4.6
rgbcmy 221,814,574 220,380,235 �0.6
rgbyiq 243,783,219 244,510,864 0.3
rotate 120,452,955 120,622,977 0.1
routelookup 43,405,971 43,824,845 1.0
tblook 1,364,169 1,442,869 5.8
ttsprk 594,351 580,387 �2.3
viterbi (gett) 45,632,349 45,297,193 �0.7
viterbi (ines) 45,643,815 45,296,846 �0.8
viterbi (toggle) 45,604,809 45,269,109 �0.7
viterbi (zeros) 45,518,001 45,160,094 �0.8

Average error: 0.6
Error standard deviation: 2.5

Minimum error: �4.6
Maximum error: 7.1

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 H. SHAFI ET AL.

645



SCXI-1000-based data-acquisition system. Power planes on
the board were separated for the various components
using the same voltage levels, and the power-supply
lines included sense resistors. Voltage drops across
these resistors were used to compute the current
dissipated by the devices under test and were sampled
at 10 kHz.

We started by measuring the idle power of the
processor while it was in the wait state, the processor
state used by the Pecan board kernel in the idle loop. We
then developed about three hundred microbenchmarks to
measure the energy cost of certain processor core events.
Many of the microbenchmarks used to determine the
timing values required for the development of Tempo
were also used to measure the energy costs of the
various events of interest. For example, consider the
microbenchmark from Section 3 that was used to
determine the time for a cache miss. In the base case,
with all three registers set to the same address, all
accesses to memory are cache hits. In the “cache-miss”
case, the registers are set to different addresses in the
same cache set, and all accesses to memory are cache
misses. If we define C1 as the number of cycles per
iteration in the base case, C2 as the number of cycles per
iteration in the cache-miss case, P1 as the measured
average power consumption for the base case, P2 as the
measured power consumption for the cache-miss case,

and P idle as the measured idle power, we can compute
the energy consumed by an iteration Ei � PiTi (where
Ti � Ci � 5 ns, since the core is running at 200 MHz).
To measure the energy cost of a load miss, E load_miss,
we used the following equation:

P2T2 � P1T1 � E2 � E1 � �T2 � T1� Pidle � 3Eload_miss .

Note that in this example, loads replace only clean lines,
so there are no memory flushes. In addition, since loads
are followed by uses, the pipeline stalls until the loads
return, hence the term involving P idle. When the pipeline
stalls waiting for a load miss, it will probably consume
more power than the wait state, which implies that the
load-miss energy cost is somewhat exaggerated. Attributing
the energy cost of the stall to the load miss is also
questionable, because the core can overlap load misses
with the execution of independent instructions. We
discuss other means for improving our power model
in the next section.

Similar microbenchmarks and equations were derived
for the other power events. To measure instruction-
specific energy costs, we based our measurements on a
loop of NOP instructions. We then added the instruction
of interest to the loop and measured the contribution of
that instruction/functional unit to power consumption.
The final event list consisted of the average energy cost
of cache hits/misses, various instruction types, branch
conditions, interrupts, TLB hits/misses, etc. Table 3 shows

Table 3 Power modeling events.

Event Description

CPU static energy Base energy for every simulated cycle
Switching Average energy due to switching in pipeline
NOP NOP instruction (additional base energy in active state)
ALU Logic, addition, subtraction, move, etc. instructions
Load/store Load/store instructions
Divide/multiply Divide/multiply instructions
PFB0 branch Branch instruction placed in PFB0 buffer
DCD branch Branch instruction placed in decode stage
Mispredicted branch Branch misprediction (flushing pipeline)
ITLB miss, UTLB hit ITLB miss satisfied by the UTLB
DTLB miss, UTLB hit DTLB miss satisfied by the UTLB
TLB read tlbrehi or tlbrelo instruction
TLB search tlbsx instruction
TLB write tlbwehi or tlbwelo instruction
TLB sync tlbsync instruction
I-cache hit I-cache hit to same cache line as before
I-cache hit other I-cache hit to another cache line
I-cache miss I-cache miss
D-cache hit D-cache load/store hit to same cache line as before
D-cache hit other D-cache load/store hit to another cache line
D-cache miss D-cache miss
D-cache line flush D-cache replacement causes a writeback
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the general events that we modeled to determine energy
usage.

The only components of the power model that did not
correspond to architectural events were those associated
with the different instruction types and average instruction
switch energy. The average instruction switch energy was
used to reflect the energy consumed by the pipeline and
control path of the processor as different instructions
progress through the core. The additional overhead of
tracking these events and their associated energies in
the simulator was negligible, since it required only the
addition of an energy value to the information structure
of each instruction. The rest of the energy values were
inserted in a table and referenced as appropriate during
runtime.

Once all of the energy values were calculated, Tempo
was modified to accumulate a total energy value every
cycle. These energy-per-cycle values were accumulated
and averaged to emit an average power value at
specified intervals. The interval was set to 20 000
cycles to mimic the sampling rate of our measurement
apparatus.3 The Tempo power points were plotted to
create a power graph such as that in Figure 3 (shown
later).

Power validation
We performed two types of power validation. First, we
compared the simulated total energy with the total energy
measured on the Pecan board. Second, we compared the
power graphs generated by Tempo with those measured
from hardware.

We computed the energy consumed by the applications
by summing all of the event energies generated during
simulation and compared the total simulated energies to
those computed by our measurement equipment. The
hardware power samples were dumped to a file and
integrated over the execution time of the applications to
calculate the total energy consumed by each application.
To synchronize the beginning of power measurement with
the start of each benchmark run, we used GPIO signals
on the Pecan board to trigger the measurements. We
removed applications with short execution times from
this process because the number of power points captured
was small. Although our simulator was capable of emitting
power estimates at a fine granularity, our hardware power
measurement system was not capable of accurately and
consistently measuring the power behavior of applications
with very short execution times.

As shown in Table 4, the error in the energy predicted
by the simulator compared with hardware ranged between

�11.3% and 6.6%, with an average of �4.1% and a
standard deviation of 5.1%.

While these power values are quite good, there is
some variation from the measured values. Some of
the factors that might contribute to the variation
are the following:

1. The effect of instruction-related switching in the
pipeline and control path of the processor was not
modeled accurately. As we showed in Table 3, only an
average instruction switching value was used. We have
observed some substantial power variations when the
instructions within a loop are reordered without
affecting functionality or performance. For example,
a loop with six loads and six independent adds
consumes 15% less power if the loads are all executed
consecutively followed by all of the adds compared with
the same loop when alternating between loads and
adds. We used an average value based on a limited
number of experiments because an exhaustive set
of experiments to capture all instruction ordering
permutations was not practical. In addition, we
examined the important loops in many applications
and realized that opportunities for varying instruction
scheduling to reduce power were difficult, primarily
because of dependences and short basic block lengths
in the codes examined.

2. A small amount of energy is also consumed depending
on the Hamming distance of different register number
encodings, and we do not model that [11].

3. We might have missed some event(s) that are
significant for estimating power.

4. We might not have isolated events to a sufficient
degree of separation or bundled events that should be
broken down further into subevents that do not always
occur together or in the same order.

5. There might be interactions between our events that
were not modeled. For example, we did not measure
the interaction between a load hit and a buffered store
hit that attempt to access the data cache concurrently.
In addition, we did not isolate the cost of various store
buffer states, although modeling them is important
from a performance perspective.

Despite the fact that there are many possible sources of
the variation between our model and the energy measured
by our hardware, we feel that our model is very effective
in predicting the energy usage of the processor.

Besides its effectiveness at predicting energy
consumption, the most important feature from our
perspective (and from that of a potential user) is the
ability of the simulator power model to depict transient
power-consumption behavior while an application is

3 The processor speed was 200 MHz and the sampling rate of the measurement
equipment was 10 kHz. Note that 20 000 cycles corresponds to a 0.1-ms sampling
interval.
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running. This aspect of the validation process is somewhat
subjective, but to give the reader an idea of the
effectiveness of the model, we have chosen to include a
few illustrations. Figures 3(a)–3(d) show the hardware
measured power during the execution time of an
application and the corresponding simulator-generated
curves for cjpeg, fft.sine, matrix, and djpeg,
respectively. These applications were chosen because

they have distinct power variations during runtime. The
simulator is capable of depicting most of this variation in
power consumption for the applications, but there are
some interesting deviations that we are attempting to
narrow.

For example, for cjpeg, the relative power during the
initialization phase (the first six steps in the curve) was
inverted compared with that of the hardware. We are also

Table 4 Summary of energy validation results.

Benchmark Simulated
energy
(mJ)

Actual
energy
(mJ)

Energy
error
(%)

a2time 2.50 2.40 4.44
aifftr 807.52 819.40 �1.45
aifirf 4.19 4.36 �3.99
aiifft 734.07 752.80 �2.49
autcor (pulse) 1.62 1.70 �4.67
autcor (sine) 241.05 258.40 �6.72
autcor (speech) 230.02 245.80 �6.42
basefp 19.44 18.49 5.12
bezier 522.69 502.30 4.06
bitmnp 84.33 81.30 3.73
cjpeg 342.15 354.50 �3.48
conven (k3) 82.28 87.12 �5.55
conven (k4) 104.95 111.60 �5.96
conven (k5) 120.67 127.80 �5.58
dither 1238.39 1291.00 �4.07
djpeg 296.86 311.90 �4.82
fbital (pent) 289.11 318.50 �9.23
fbital (step) 29.82 32.89 �9.32
fbital (typ) 633.24 677.90 �6.59
fft (sine) 68.57 70.36 �2.55
fft (spn) 68.42 71.25 �3.97
fft (tpulse) 68.40 70.77 �3.34
filters 1335.55 1389.00 �3.85
idctm 91.19 92.38 �1.28
iirflt 4.17 3.99 4.48
matrix 1378.78 1298.00 6.22
ospf 80.83 88.16 �8.31
pktflow 539.48 593.30 �9.07
pntrch 31.95 33.64 �5.03
rgbcmy 1257.79 1369.00 �8.12
rgbyiq 1332.43 1394.00 �4.42
rotate 662.80 701.80 �5.56
routelookup 252.91 283.50 �10.79
tblook 8.37 7.85 6.61
ttsprk 3.15 3.30 �4.66
Viterbi (gett) 254.85 285.30 �10.67
Viterbi (ines) 254.85 286.10 �10.92
Viterbi (toggle) 254.73 287.20 �11.30
Viterbi (zeros) 254.70 284.10 �10.35

Average error: �4.1
Error standard deviation: 5.1

Minimum error: �11.3
Maximum error: 6.6
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trying to understand the reason for the apparent power
offset in many of the curves, accounting for a large
portion of the error. We suspect that it is due to the use
of wait state power as the base. Intuitively, the base power
while the processor is idle, but out of the wait state,
should be slightly higher. Again, the consistency of our
power prediction relative to hardware measurements
suggests the usefulness of our event-based energy model
for studying the performance and power behavior of
software running on the 405GP.

Power profiling—A user’s perspective
After completion of the timing and power validation
effort, we implemented a prototype interface to assist
users in understanding the sources of power consumption
in their applications. We created a graphical user interface
(shown in Figure 4) that displays, for an application
running on Mambo, a real-time graph of the power
consumption broken down into some of its subparts (e.g.,
power due to cache misses, functional units, etc.). In
addition, the graphical user interface allows users to select
a section of the graph that is of interest and display the
simulated code responsible for that behavior. This
interface can easily be extended to provide graphical
representations of many events of interest by using the
Mambo emitter interface, which allows the simulator
to generate events that are processed by a separate
application in real time. The simulator can also display
a breakdown of many events that occur within an
application, along with typical performance statistics.

5. Related work
There is a substantial amount of related work in the area
of power modeling; we limit our discussion to the most
closely related efforts. Wattch [4] is a power-simulation
tool that estimates the power consumption of various
processor structures by including efficient power models
that use measurements of activity levels to arrive at power
estimates. These power models are usually tailored for
a specific technology. Wattch has been successfully
integrated into architectural simulators such as
SimpleScalar [12]. Our approach differs from theirs
because we use lookup tables, resulting in even lower
runtime overhead. In addition, our model has been
validated on real hardware. On the other hand, when
Wattch models are accurate, they provide a better
architecture investigation tool because they can
predict the power consumed by resized structures
without having to regenerate the power model,
which is the case with Tempo. However, even the
Wattch power model must be recalibrated when it
is applied to a different semiconductor fabrication
technology.

Event-based energy estimation has previously been
proposed for use on systems that include hardware event
counters [5, 13]. That approach is useful for average
power-consumption estimates across coarse-grained
portions of applications because it requires reading
hardware performance monitors. Our simulator does not
suffer from this granularity problem and can use a larger
set of events to estimate transient power behavior. Also,

Figure 3
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our measurement-based profiling of instruction energy
costs is similar to the work performed in [14].

6. Concluding remarks
In this paper, we have described the design and validation
of Tempo, a PowerPC system-level performance and
power simulator that should be of benefit to both
architects and software developers. For existing systems,
the simulator provides feedback on performance and
power consumption that is very difficult and/or time-
consuming to attain otherwise. For early design stage
applications, we believe that our simulation methodology
can leverage the many existing power-estimation tools
to create an event-based power model for studying the
performance and power consumption of full applications
and operating systems— quickly and with a high degree of
accuracy when integrated with cycle-accurate performance
simulators.

We are currently involved in multiple research efforts
that utilize our simulator experience for power-aware
systems. In addition, we plan to model more complex
microprocessors and multiprocessor systems while
enhancing our I/O power modeling capabilities. Our
effort to model and measure the power consumption

of the 405GP SDRAM memory subsystem is nearing its
completion and will be integrated into future versions of
the Tempo simulator. In addition, we are generating a
power model of the PowerPC 405LP processor [15],
including support for dynamic voltage and frequency
scaling, for use in the simulator. Finally, we are developing
a performance and power model of a version of the
PowerPC 750 processor.
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