
C. A. Rusu
R. Melhem
D. Mossé

Maximizing the
system value
while satisfying
time and energy
constraints
Embedded devices designed for various real-time applications
typically have three constraints that must be addressed: energy,
deadlines, and reward. These constraints play important roles
in the next generation of embedded systems, since they provide
users with a variety of quality-of-service (QoS) tradeoffs. We
propose a QoS model in which applications may have several
versions, each with different time and energy requirements,
while providing different levels of accuracy (reward). An
optimal scheme would allow the device to run the most critical
and valuable versions of applications without depleting the
energy source, while still meeting all deadlines. A solution
is presented for frame-based and periodic task sets. Three
algorithms are devised that closely approximate the optimal
solution while taking only a fraction of the runtime of an
optimal solution.

1. Introduction
The current developments in embedded systems
technology have been largely responsible for the
promotion of mobile, wireless systems-on-a-chip and other
“computing-in-the-small” devices. Most of these devices
have energy constraints, embodied by a battery that has
a finite lifetime. Therefore, an essential element of these
embedded systems is the way in which power is managed.

In addition to the power management needs, some of
these devices execute real-time applications, in which
producing timely results is typically as important as
producing logically correct outputs. Overloaded systems
naturally lend themselves to scenarios in which only the
most critical applications can be executed. If some
applications cannot be executed in a timely fashion, the
system must select the applications that will maximize
the overall reward (a value/reward is assigned to each
application), such that all selected applications will
execute within their respective deadlines and without
exceeding the energy budget.

A solution to this problem for frame-based task sets was
presented in [1]. Two algorithms were devised that select
the most valuable applications, given the timing and

energy constraints. This work includes a review of these
algorithms, with new experimental results obtained for a
different system. A third algorithm is then proposed that
extends the preliminary work in [1] in three directions:
periodic tasks, optional/mandatory tasks, and task versions.

Version programming enhances the opportunity for QoS
tradeoffs. An example of version programming comes
from satellite-based signal processing [2]. Four different
algorithms (least mean square, maximum likelihood,
software trigger, matched filter) with running times
ranging from microseconds to hundreds of milliseconds
and energy consumptions from microjoules to joules
provide different levels of accuracy. Another example is
automatic target recognition (ATR), in which task values,
running times, and energy requirements are roughly
proportional to the number of targets detected [3]. Task
versions can result from different algorithms, as well as
from the same application with different input arguments,
such as encoding/decoding at different rates, low/high-
quality compression schemes, and low/high-resolution
image processing.

Note: A preliminary version of this work appeared in the Proceedings of the 23rd
IEEE Real-time Systems Symposium (RTSS’02), Austin, TX, December 2002 [1].

�Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

689

The three constraints mentioned above, energy, deadline,
and reward, play important roles in the current generation
of embedded devices. An optimal scheme chooses to run
the most valued versions of applications without depleting
the energy source, while still meeting all deadlines.

Note that this problem differs from simply minimizing
power consumption due to the extra constraints
considered, namely deadlines and task values. Clearly,
minimizing the energy consumption of applications
is useful, but it does not consider the value/reward
characteristics of different applications. Simultaneous
consideration of reward, energy, and deadlines is important
because it allows system designers to determine the most
important components of their system, or allows them to
emphasize one subset of the system over another in a
dynamic fashion. An example of such flexibility is when
one decides to maximize mission lifetime (the time the
system is functional) instead of having a fixed mission
time within which performance should be maximized.

The rest of this paper is organized as follows: We first
describe related work. Section 2 explains in detail the
single-version and multiple-version task models and
defines the problem. In Section 3 we review the two
algorithms in [1] for the single-version task model,
followed by new experimental results obtained through
simulation. Section 4 describes and evaluates a new
algorithm for the multiple-version task model. Section 5
concludes the paper.

Related work
For decades, the issue of assignment of CPU cycles to
different tasks has been studied through scheduling and
operations research. In the mid-1980s, researchers began
considering the tradeoff between time and other metrics,
such as value/reward [4]. In the late 1990s, researchers
began to study a case that was similar, but focused on the
tradeoff between energy and time [5]. Below we describe
representative work in these two fields. However, none of
this work addressed the general framework with the three
types of constraints we consider here: energy, deadline,
and reward/value.

Rewards and real time
The Imprecise Computation (IC) [6, 7] and Increased
Reward with Increased Service (IRIS) [8, 9] models were
proposed to enhance utilization of resources and provide
graceful degradation in real-time systems. In the IC
model, every real-time task is composed of a mandatory
part (which must finish before the task deadline to yield
an output of minimal quality) and an optional part. The
more time the CPU is allocated to the process, the better
the quality of the result. Liu et al. proposed several
efficient algorithms to solve the scheduling problem of
aperiodic tasks [6, 7]. A common assumption in these

studies is that the quality of the results produced is a
linear function of the precision; more general precision
functions are not usually addressed.

An alternative is the IRIS model, with no upper bounds
on the execution times of the tasks and no separation
between the mandatory and optional parts (i.e., tasks may
be allotted no CPU time). Typically, a nondecreasing
concave reward function is associated with the execution
time of each task. Dey et al. addressed the problem of
maximizing the total reward in a system of aperiodic tasks
and presented an optimal solution for static task sets, as
well as two extensions that include mandatory parts and
policies for dynamic task arrivals1 [8, 10]. Aydin et al.
presented an optimal algorithm assuming concave reward
functions and periodic real-time applications [11]. Both
IC and IRIS focus on linear and concave (for example,
logarithmic) functions representing applications such as
image and speech processing [12–14] or multimedia
applications [15]. The case of real applications with no
reward for partial executions or step functions has been
shown in [6] to be NP-complete.2 Furthermore, the
reward-based scheduling problem for convex reward
functions is NP-hard3 [11].

Rajkumar et al. proposed a QoS-based resource
allocation model (QRAM) for periodic applications [15].
The reward functions were given in terms of utilization of
resources, and an iterative algorithm was presented for
the case of one resource and multiple QoS dimensions;
the QoS dimensions could be either dependent or
independent. In [16], the QRAM work was continued
by the authors with the solution for a particular audio-
conferencing application with two resources (CPU
cycles and network bandwidth) and one QoS dimension
(sampling rate). Several resource tradeoffs (compression
schemes to reduce network bandwidth while increasing the
number of CPU cycles) were also investigated, assuming
linear utility and resource consumption functions.

Variable voltage scheduling and real time
The variable voltage scheduling (VVS) framework, which
involves dynamically adjusting the voltage and frequency
of the CPU, has recently become a major research area.
Cubic energy savings [5, 17] can be achieved at the
expense of only linear performance loss. For real-time
systems, VVS schemes focus on minimizing energy
consumption in the system while still meeting the
deadlines. Yao et al. provided a static off-line scheduling
algorithm [5], assuming aperiodic tasks and worst-case

1 Dynamic task arrivals — Tasks that are presented to the system dynamically,
without a priori knowledge of task arrival times.
2 Nondeterministic Polynomial-time complete — A set or property of
computational decision problems which is a subset of NP (i.e., can be solved by a
nondeterministic Turing machine in polynomial time), with the additional property
that it is also NP-hard.
3 A problem is NP-hard if solving it in polynomial time would make it possible to
solve all problems in class NP in polynomial time.

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

690

execution times (WCET). Hong et al. proposed heuristics
for on-line scheduling of aperiodic tasks while not
affecting the feasibility of periodic requests [18]. The
same authors investigated nonpreemptive power-aware
scheduling [19] and examined the effects of upper bounds
on the voltage change rate [17]. Shin and Choi explored
the CPU slowdown that occurs when there is a single task
eligible for execution [20]. Lorch and Smith investigated
VVS in the context of soft deadlines [21]. Cyclic and EDF
scheduling of periodic hard real-time tasks on systems
with two (discrete) voltage levels were investigated by
Krishna and Lee [22]. Aydin et al. provided the static
solution for the general periodic model in which tasks
have potentially different power characteristics [23]. Since
real-time applications exhibit a large variation in actual
execution times (Ernst and Ye [24]) and WCET is too
pessimistic, much research was directed at dynamic slack-
management techniques [25–28].

Aydin et al. proved that the problem of minimizing
the energy consumption assuming WCET for tasks and
convex power functions is equivalent to the problem of
maximizing the rewards for concave reward functions,
assuming that all of the tasks run at the maximum speed
[25].

In this work we address the problem of maximizing
the rewards, assuming the VVS framework and a limited
energy budget for real-time tasks. Our goal is to maximize
the rewards without exceeding the deadline and the total
energy available, which can be provided by an exhaustible
source such as a battery. The algorithms we propose
determine which tasks to execute and the speeds at which
these selected tasks should run so that the total reward
of the system is maximized and the timing and energy
constraints are met.

Recently, similar research combined the time, energy,
and reward constraints for the case of IRIS tasks (Kang
et al. [29]). An algorithm was developed to maximize the
system value through an energy-aware allocation of
resources. However, the task model in [29] does not
include voltage or frequency scaling.

2. Task model
Two task models with their corresponding problem
definitions are presented. To simplify the problem, we first
assume that tasks are frame-based, meaning that all task
periods are identical and all task deadlines are equal to
their period. At the end of the section we show how the
periodic-task case, with individual deadlines for each
task, results in an equivalent problem formulation.

The common deadline/period (also known as frame
length) is denoted by D. There are N available periodic
tasks in the system, all ready at time zero. A frame
consists of a subset of tasks that are selected for
execution. The execution of the frame is to be repeated.

The tasks are to be executed on a variable-voltage
processor with the ability to dynamically adjust its
frequency and voltage on application requests. There are
M available frequencies (clock rates or CPU speeds),
{ f1 , f2 , . . . , fM}. Each task can run at any of the available
speeds, and we say that a task runs at speed level k if the
speed of the task is set to fk . By placing tasks that run
at the same frequency next to each other, the maximum
number of speed changes that can occur during a frame is
min(M, N). We assume that the overhead of min(M, N)
speed changes is negligible compared to the frame length
D or that it has already been subtracted from D.

Optional single-version task model
The task set is denoted by T � {T1 , T2 , . . . , TN}. It is
not required that all tasks be scheduled; however, a task
cannot be selected more than once during a frame. We
assume that the task worst-case execution time and energy
consumption are known for all tasks and all speed levels.
The execution time of task Ti running at speed level j is
denoted by ti, j . Similarly, the energy consumption of task
Ti running at speed level j is denoted by ei, j .

Associated with each task Ti there is a task value ri

(also called the task reward or utility). The value of the
system is defined as the sum of task values for all tasks
that are selected for execution. The ultimate goal is to
find a subset of tasks S � {1, 2, . . . , N } that maximizes
the system value (reward) ¥ i�S ri . For all tasks i � S, the
speed level si � {1, 2, . . . , M} must also be determined.
There are two major constraints on the system:

● The timing constraint imposed by the global deadline, D.
Each task selected for execution must finish before this
deadline.

● The energy constraint imposed by the amount of energy
available in the system, Emax. The total energy consumed
by the selected tasks cannot exceed Emax.

Thus, the problem is to find the subset S and the speeds
si , @i � S in order to

maximize �
i�S

ri (1)

subject to �
i�s

ti,si
� D, (2)

�
i�s

ei,si
� Emax , (3)

S � �1, 2, · · · , N �, (4)

si � �1, 2, · · · , M�. (5)

Inequality (2) guarantees that the timing constraint is
satisfied, and inequality (3) guarantees that the energy
budget is not exceeded.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

691

Multiple-version task model
In this model each task has several versions, each with
different rewards, time, and energy requirements.
For example, one version can execute faster and
requires less energy, at the expense of producing less
accurate/complete/valuable results. For simplicity we
assume the same number of versions, V, for each task,
although the algorithms proposed can handle different
numbers of versions as well as different numbers of speed
levels for each task. Within each frame, exactly one version
of each task must be scheduled.

The version k of task i is denoted by Ti
k . The execution

time and energy requirement of version k of task i
running at speed level j are denoted by ti, j

k and ei, j
k ,

respectively. Associated with version k of task i there is a
version value or reward, ri

k . The goal is to determine for
each task which version to execute and the speed level
at which to do so in order to maximize the system value
(i.e., the sum of rewards for all task versions selected for
execution). The same two major constraints apply: the
timing constraint in the form of the deadline, D, and the
energy constraint imposed by the amount of energy
available in the system, Emax.

Thus, the problem is to determine for each task i
its version v i and speed level si in order to

maximize �
i�S

r i
v i (6)

subject to �
i�s

t i,si

v i � D, (7)

�
i�s

e i,si

v i � Emax , (8)

v i � �1, 2, · · · , V�, (9)

si � �1, 2, · · · , M�. (10)

If power is also a constraint, task versions at high speed
levels exceeding the power budget are simply removed
from further consideration. The algorithms proposed in
Sections 3 and 4 can handle a different number of speed
levels and versions for each task. Thus, the search is
limited to those versions and speed levels that are feasible
from the point of view of peak power.

As shown in the Appendix, the problems defined by
(1)–(5) and (6)–(10) are NP-hard. Therefore, we relax
the maximization objectives in (1) and (6) and look for
solutions that approximate the optimal solution.

Periodic tasks
We next present the problem definition for multiple-
version periodic tasks. We denote the deadline of task Ti

by Di and the least common multiple of all task deadlines
(hyperperiod) by TLCM. Assuming that the maximum

energy is associated with TLCM, the formulation of the
multiple-version periodic task problem is

maximize �
i�S

r i
v i

TLCM

Di

(11)

subject to �
i�s

t i,si

v i

Di

� 1, (12)

�
i�s

e i,si

v i
TLCM

Di

� Emax , (13)

v i � �1, 2, · · · , V�, (14)

si � �1, 2, · · · , M�. (15)

The total reward for the hyperperiod is the sum of
rewards for all task instances (11). Similarly, the energy
consumption of all task instances is accounted for in (13).
The timing constraint in (12) assumes Earliest Deadline
First (EDF)4 scheduling. A different utilization formula
can be used with different schedulers, such as Rate
Monotonic Scheduling (RMS).5 Observe that problems
(6)–(10) and (11)–(15) are equivalent. The periodic task
set corresponds to a frame of length TLCM, in which the
time, energy, and value of each task Ti are multiplied
by (TLCM/Di).

The algorithms presented in the next two sections
assume frame-based task sets, as described by Equations
(1)–(5) and (6)–(10). Clearly, the same algorithms can be
used for periodic tasks as well.

3. Optional single version
We have tried many algorithms to solve Equations (1)–(5).
Some of these algorithms were based on sorting all tasks
at all speed levels according to some metric that combines
the energy, deadline, and reward constraints. Tasks were
then added to the schedule in one traversal of the sorted
list of tasks until the timing or energy constraint could no
longer be satisfied. This approach was too conservative
and almost invariably led to poor utilization of one of
the resources (energy or time) and poor system values.
Algorithms that dynamically modify the schedule on the
basis of resource usage (while still considering task
values) turned out to be much more rewarding in
terms of resource utilization and system value. Several
heuristics for task selection were considered, ignoring
or including the task values, favoring tasks with low energy
consumption or low time requirements, or considering all
three constraints at once. Two algorithms were proposed
in [1] that closely approximate the optimal solution; these

4 Earliest Deadline First — Preemptive real-time scheduling algorithm in which
tasks with the earliest deadline have priority.
5 Rate Monotonic Scheduling — Preemptive real-time scheduler in which tasks
have fixed priorities according to their period. Tasks are executed in the order of
their priority.

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

692

algorithms are reviewed in the next sections, followed by a
quantitative reevaluation for a different system.

We assume that tables exist that store the task values
r(i), running times t(i,j) and energy requirements e(i,j)
for all tasks i � {1, 2, . . . , N } and all speed levels
j � {1, 2, . . . , M}. The algorithms are based on
adapting the schedule by adding and dropping tasks
until all of the tasks are considered. We also use two
boolean arrays, selected(i) and considered(i), of size N
to store information about the status of all tasks. Initially,
we start with an empty schedule [selected(i)�false] with
no task considered yet [considered(i)�false]. The set
of selected tasks (initially empty) is defined as
S��i � selected(i)�true�. Two variables, time and
energy, store the total running time of the schedule
[time � ¥ i�S t(i, si)] and the total energy consumed
[energy � ¥ i�S e(i, si)] and are initialized to zero.
R stores the system value for the current schedule
[R � ¥ i�S r(i)] and SR stores the system value, that is,
the largest value of R encountered so far. Finally, an
array, speed(i), of size N stores the speeds of all tasks.

The REW-Pack algorithm
The flowchart of the REW-Pack algorithm is presented in
Figure 1. The three major components (add task, increase
speed, and drop task) are described next in detail.

Add a task
A new task is added (always at the minimum speed) to the
current schedule if all of the following criteria are met:

● It has not been considered before [considered(i)�false].
● The current schedule is feasible (time � D).
● Adding the task to the current schedule at the minimum

speed does not cause the energy budget to be exceeded
[energy � e(i, 1) � Emax].

● Among all tasks Ti that satisfy the above criteria, the
one that has the largest ratio,

r�i�

t�i, 1�e�i, 1�
,

is selected.

A new task is always added if possible. The task added
must have a good (large) value, a reasonable (small)
running time, and reasonable (small) energy consumption.
Hence, the metric used to decide which task is best to add
is proportional to the reward and inversely proportional to
the time and the energy required by the task. The task
with the highest metric is considered the best. In our
experiments, metrics that do not consider all parameters
(i.e., task value, task energy, and task time) failed to give
good approximations of the optimal solution.

Observe that for each task, the smaller the speed, the
larger the value of the metric (since energy increases
more than linearly with the speed while time decreases
approximately linearly, and the task value remains
the same regardless of the running speed). Thus, it is
reasonable to start with the smallest speed (level 1) and
later increase the speed of the task. Also observe that
exceeding the deadline is allowed. We noticed during
experiments that without this enhancement, some tasks
were prematurely removed from consideration by the
scheduler, affecting the accuracy of the solution. However,
for similar reasons, we do not allow the energy budget to
be exceeded.

Increase task speed
If no task can be added to the schedule, the algorithm
packs tasks to make room for other, not-yet-selected tasks
(the term packing means increasing the speed of one of
the selected tasks, always to the next higher speed level).
The task chosen for a speed increase must satisfy the
following conditions:

● It is selected in the current schedule [selected(i)�true].
● It is not running at the maximum speed (si � M).
● Increasing the speed of the task to the next higher

level does not cause the energy budget to be exceeded
[energy � e(i, si � 1) � e(i, si) � Emax].

● Among all selected tasks Ti , it has the highest ratio
(t/	E), where 	t � t(i, si) � t(i, si � 1) and
	E � e(i, si � 1) � e(i, si).

Figure 1

Flowchart of the REW-Pack algorithm. Reprinted with permission
from [1]; © 2002 IEEE.

Increase speed,
update schedule

Add task to the
schedule

Yes

Yes

No

No

No

Return
solution

Yes

Can increase the speed
of some task?

Drop a task from
the schedule

Initialize

Can add some task
at minimum speed?

Save schedule
if best so far

All of the tasks were considered
and the current schedule is feasible?

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

693

Packing reduces the total execution time and increases
the energy consumption. The best candidates are
considered the tasks that create a lot of room (time
or slack) for the remaining tasks while not significantly
increasing the energy consumption. Task values do not
play any role here because the total reward is not changed
by the packing operation. Interestingly, we obtained poor
results when we used the same metric for packing as we
did for task selection—that is, increasing the speed of the
task with the smallest ratio,

r�i�

t�i, si�e�i, si�
.

Drop a task
If the previous two steps fail, a task is eliminated from the
current schedule. The task that is dropped must satisfy the
following conditions:

● It is selected in the current schedule [selected(i)�true].
● Among all selected tasks Ti , it has the smallest ratio,

r�i�

t�i, si�e�i, si�
.

When it is necessary to drop a task, the task with the
worst (i.e., smallest) metric [r(i)/t(i, si)e(i, si)] is dropped.
Task values must be considered here, since it is generally
better to keep tasks with high values and drop the less
important ones. Once a task is dropped, it is never added
again. We also experimented with allowing tasks to be added
or dropped k times in the schedule; there was an increase
in the running time of the algorithm by a factor of k, but
no significant improvement in the accuracy of the solution.

The REW-Pack algorithm is shown in Figure 2(a);
add_task(), drop_task(), and increase_speed() all return
the task number or �1 if no task can be chosen.

Figure 2

(a) REW-Pack algorithm. (b) REW-Unpack algorithm. Both parts reprinted with permission from [1]; © 2002 IEEE.

1. Initialize: selected(i)=false;
 considered(i)=false �i {1, 2, ..., N};
 energy=0; time=0; SR=0; R=0
2. If time � D and SR<R
 a. sol_selected(i)=selected(i);
 sol_speed(i)=speed(i),
 �i {1, 2, ..., N}
 b. SR=R
3. If (�i , considered(i)==false) or
 (time>D) do
 a. i=add_task()
 b. If i � �1
 i. selected(i)=true;
 considered(i)=true;
 energy=energy+e(i,1)
 speed(i)=1; time=time+t(i,1);
 R=R+r(i)
 ii. Go to step 2
 c. i=increase_speed()
 d. If i � �1
 i. energy=energy+e(i,speed(i)+
 1)-e(i,speed(i));
 time=time+t(i,speed(i)+1)-
 t(i,speed(i));
 speed(i)=speed(i)+1
 ii. Go to step 2
 e. i=drop_task()
 f. energy=energy-e(i,speed(i));
 time=time-t(i,speed(i); R=R-
 r(i); selected(i)=false
 g. Go to step 2
4. Return solution (sol_selected,
 sol_speed, SR)

1. Initialize: selected(i)=false;
 considered(i)=false �i {1, 2, ..., N};
 energy=0; time=0; SR=0; R=0
2. If energy � Emax and SR<R
 a. sol_selected(i)=selected(i);
 sol_speed(i)=speed(i),
 �i {1, 2, ..., N}
 b. SR=R
3. If (�i , considered(i)==false) or
 (energy>Emax) do
 a. i=add_task()
 b. If i � �1
 i. selected(i)=true;
 considered(i)=true;
 energy=energy+e(i,M);
 speed(i)=M;
 time=time+t(i,M); R=R+r(i)
 ii. Go to step 2
 c. i=decrease_speed()
 d. If i � �1
 i. energy=energy+e(i,speed(i)-
 1)-e(i,speed(i));
 time=time+t(i,speed(i)-1)-
 t(i,speed(i));
 speed(i)=speed(i)-1
 ii. Go to step 2
 e. i=drop_task()
 f. energy=energy-e(i,speed(i));
 time=time-t(i,speed(i); R=R-
 r(i); selected(i)=false
 g. Go to step 2
4. Return solution (sol_selected,
 sol_speed, SR)

(a) (b)

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

694

Additional vectors are used to store the solution tasks
(sol_selected) and speeds (sol_speed).

The complexity of the REW-Pack algorithm can be
analyzed as follows. Each task is added at most once and
dropped at most once. For each task we can increase its
speed at most M � 1 times. Determining what task to
pick takes log N time for all functions (add, increase,
and drop). Thus, the complexity of the algorithm is
O(MN log N).

The REW-Unpack algorithm
The idea behind the REW-Unpack algorithm is basically
the same as that for REW-Pack. The difference is that
instead of adding tasks at the minimum speed and then
packing to create time for tasks still to be selected, the
search goes in the opposite direction: Tasks are added at
the maximum speed, and the schedule is unpacked (i.e.,
a task is selected and its speed decreased) to create
energy for the remaining tasks.

The function increase_speed() is replaced with
decrease_speed(). The same metrics are used for adding
and dropping tasks and the opposite metric is used to
decide which task’s speed to decrease (the task that saves
the most energy while increasing the execution time the
least is considered the best, that is, the task with the
highest (E/	t) is selected). As in REW-Pack, exceeding
the energy budget is allowed, while exceeding the deadline
is not. The algorithm is shown in Figure 2(b).

Another interesting problem is that of minimizing the
energy given a desired system value. The REW-Pack
algorithm can solve this problem by pruning the search for
a solution when the total value exceeds the desired system
value.

Experimental results
We simulated both algorithms on the same task sets and,
for relatively small task sets, compared our solution with
the optimal solution, obtained through an exhaustive
search. We define the absolute error for each of the two
algorithms to be

SROPT � SR

SROPT

,

where SR represents the system value (reward) resulting
from the algorithm and SROPT is the optimal system value.
The average error for several experiments is defined as
the arithmetic mean of the absolute errors for each
experiment. The following parameters are used in our
simulations:

● N � number of tasks.
● M � number of speed levels.
● ti, j , ei, j � time and energy requirements.

● D � deadline.
● Emax � available energy.
● ri � task values (rewards).
● Nr � number of runs from which we obtain averages.

The maximum deadline, MaxD, is defined as
MaxD � ¥ i�1

N ti,1 , that is, the total execution time of
the tasks at minimum speed. The maximum energy,
MaxE, is defined as MaxE � ¥ i�1

N ei,M , that is, the total
energy requirement for all tasks if they are running at
maximum speed. Clearly, if D � MaxD, the timing
constraint cannot be violated. Similarly, if Emax � MaxE,
the available energy cannot be exceeded. Two parameters,
� and 	, describe the available time and energy in the
system. The deadline was generated using the formula
D � �MaxD, and the energy was generated by
Emax � 	MaxE, where �, 	 � [0, 1].

We simulated the IBM PowerPC* 405LP processor as
presented in Table 1. The 405LP power ranges were
obtained by experiments we performed at the IBM
Austin Research Laboratory on a 405LP evaluation
board (designed for power measurements). We
measured the 405LP core power for a set of artificial
benchmarks at four frequency/voltage settings:
33 MHz/1.0 V, 100 MHz/1.0 V, 266 MHz/1.8 V,
and 333 MHz/1.9 V. The combinations 33 MHz/1.0 V
and 266 MHz/1.8 V were identified to be energy-inefficient
operating points, and we removed them from the model
(for example, our benchmarks consume a little more
energy at 33 MHz/1.0 V than they do at 100 MHz/1.0 V).
The 200 MHz/1.4 V and 266 MHz/1.7 V settings in
Table 1 are known to be feasible but were not actually
measured. The power range for these two frequency/voltage
settings was extrapolated on the basis of voltage, frequency,
and data from the measured operating points. Minimum
and maximum power consumption values at each operating
point are indicated in the last column of the table. Similar
results are obtained for other power models, such as
XScale [1].

For each task, the execution time at minimum speed ti,1

was randomly generated in the range [1, 100]. The running
time of task Ti at speed level j was then computed as
ti, j � ti,1(f1/fj); thus, the running time is inversely

Table 1 PowerPC 405LP speeds, voltages, and power
ranges.

Speed
level

Speed
(MHz)

Voltage
(V)

Power range
(mW)

1 100 1.0 46 – 82
2 200 1.4 154 –300
3 266 1.7 307– 630
4 333 1.9 429 – 881

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

695

proportional to the speed. The power was computed
as Pi, j � Pj

min � ai(Pj
max � Pj

min), where [Pj
min, Pj

max]
is the power range of speed level j and ai � [0, 1].
The energy requirement ei, j is then computed as ei, j � Pi, jti, j,
that is, the power multiplied by the time. Task values were
generated randomly in the range [1, 100].

First we compared the two algorithms with a simplified
version of REW-Pack that does not take task values
into consideration and randomly selects which tasks to
add/drop/pack from the subset of tasks satisfying the
add/drop/pack criteria. For each simulation, � and 	 were
randomly generated in the range [0.1, 0.3]. Task sets with
20 to 200 tasks were simulated, and 1000 experiments
were averaged for each point in the graphs. The
performance ratio shown in Figure 3 is defined as the
system value returned by the algorithm (REW-Pack
or REW-Unpack) divided by the system value of the
simplified REW-Pack. It is clear that the two algorithms
have almost identical performance. As expected, on
average and for each particular simulation, they
consistently outperformed the simplified REW-Pack,
which, in turn, outperforms the other heuristics we tried
for solving (1)–(5).

Figure 4 shows the average absolute error of the
algorithms as a function of the available energy. Task
sets with N � 10 tasks were simulated for tight deadlines
(� � 0.2) and for more relaxed deadlines (� � 0.3 and
� � 0.4). The average for 100 simulations was computed
for each point. The same averages hold for higher numbers
of simulations. The maximum error for each point is
typically 10 –30%. Experiments show that as � increases
beyond 0.5, both algorithms find the optimal solution most
of the time and the average error becomes zero. Also, as

the amount of energy available increases, the average error
for both algorithms tends to decrease. No algorithm is a
clear winner, as the previous experiment suggested. The
worst performance is when there is little slack in the
system (i.e., small � values) combined with a reduced

Figure 3

Comparison of the two algorithms with a simplified version of
REW-Pack (, [0.1, 0.3]).

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0 50 100 150 200

Pe
rf

or
m

an
ce

 r
at

io

Number of tasks

REW-Pack
REW-Unpack

� 	

Figure 4

Average absolute error of the algorithms as a function of (available
energy) for ten tasks: (a)
 0.2; (b)
 0.3; (c)
 0.4.

0

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 e
rr

or
Energy ()

(a)

0

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 e
rr

or

REW-Pack
REW-Unpack

REW-Pack
REW-Unpack

REW-Pack
REW-Unpack

0

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 e
rr

or
	

Energy ()
(b)

	

Energy ()
(c)

	

�
	

� �

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

696

amount of energy (i.e., small 	 values). In this case
even the optimal can select only two or three tasks; if
the algorithms do not pick exactly the same tasks as
the optimal, the error is likely to increase.

We noticed that although the two REW algorithms
search for a solution from quite opposite directions, they
usually select the same tasks in the end. Also, the tasks
selected by the algorithms are usually the same as those
selected by the optimal. In fact, for each point in the
graphs, the algorithms were equal to the optimal at least
31% of the time (31% was obtained for REW-Pack at
� � 0.2 and 	 � 0.25).

We hoped that REW-Pack would perform better on
time-constrained task sets and REW-Unpack would have
better results on energy-constrained task sets. It turns out
that the time and energy are equally important (except for
cases in which D or Emax are too large to be used entirely
given the other constraint), and both algorithms return
schedules that tend to use to the maximum both the
available time and energy.

When the optimal algorithm outperforms our REW
algorithms, it usually manages to pick one more task, or it
selects the same number of tasks but one or two tasks are
different. The higher the number of tasks in the optimal
solution, the higher the number of tasks selected by our
heuristics algorithms and thus the smaller the absolute
error.

Unfortunately, the exponential nature of the optimal
makes it impossible to compute the absolute error for high
values of N. There is experimental evidence, however, that
the absolute errors do not increase (rather, they actually
decrease) as the number of tasks increases. For example,
in Figure 5, which shows results for simulated task sets
with five to 14 tasks and � � 0.4 and 	 � 0.4, we can see
this trend. In the figure, each point is the average error of
100 runs.

To avoid the complexity of finding the optimal solution
to evaluate our algorithms, we designed an experiment in
which we constructed sets of tasks with known optimal
solutions and ran our algorithms against those task sets.
The task sets were constructed as follows: The deadline D
was set to D � ¥ i�1

N ti,ki
and the maximum energy Emax was

set to Emax � ¥ i�1
N ei,ki

, where ki � {1, 2, . . . , M} was
randomly generated for each task. Thus, if each task Ti

runs at speed level ki , all tasks are schedulable, and the
optimal reward is simply SROPT � ¥ i�1

N ri . We ran 1000
simulations on task sets with 50, 100, and 200 tasks. We
do not show a graph for the results, because both of our
heuristic algorithms returned the optimal solution in all
1000 simulation runs.

4. Multiple versions
For multiple versions, the MV-Pack algorithm is proposed
to solve Equations (6)–(10). The algorithm, similar in

many respects to REW-Pack, is described and evaluated
in this section.

The MV-Pack algorithm
The flowchart of MV-Pack is shown in Figure 6(a). The
algorithm has three major components: add task, increase
speed, and increase version. The first two components
are identical to those of REW-Pack. However, since the
multiple-version task model requires that each task in
the schedule be selected, tasks are never dropped.

The algorithm begins with an empty schedule. A new
task is added if possible, always at the first (smallest)
speed level and version (we assume that task versions are
sorted by their reward, with the first version having the
smallest reward). If the deadline is exceeded, tasks are
packed to make room for other tasks. When all of the
tasks in the schedule have been selected, a minimum-
reward solution is found; otherwise, failure is returned.

Next, while the remaining energy allows it, a better
schedule (higher reward) is searched by increasing the
version of some task. The third component of the
algorithm (increase version) selects the task to move to its
next higher version. The old version is removed from the
schedule, while the new version is added at the minimum
speed. Tasks are then packed, if necessary, until either a
solution with the new version is found or the energy is
exceeded, in which case the current solution is returned.

The process of adding and packing tasks was described
in detail in the previous section. The last component of
MV-Pack is described next. The task i that is selected to
move to the next higher reward version satisfies the
following criteria:

Figure 5

Average absolute error of the algorithms as a function of N (
 0.4,

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

4 6 8 10 12 14

A
ve

ra
ge

 e
rr

or

Number of tasks

REW-Pack
REW-Unpack

�

	
 0.4).

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

697

● It is not running at the highest version (v i
 V).
● Replacing the current version of the task with the

next higher version at the first speed level does
not cause the energy budget to be exceeded
(energy � ei,1

v i�1 � ei,si

v i � Emax).
● Among all the tasks that are not running at their highest

version, the next version at minimum speed has the
largest reward per unit time and energy. That is, we
select task i that maximizes

r i
v i�1

t i,1
v i�1e i,1

v i�1 .

The complexity of MV-Pack can be analyzed as follows.
Each task is added at most once and its version can be
increased at most V � 1 times. We can increase the speed
of each task at most (M � 1)V times. With appropriate

data structures, determining which task to choose takes
log N time for all functions (add task, increase speed, and
increase version). Thus, the complexity of the algorithm is
O(MVN log N).

Experimental results
We simulated the 405LP processor as presented in Table 1.
For each task, the execution time of the first version at
minimum speed ti,1

1 was randomly generated in the range
[10, 100]. For the remaining versions, the running time
at the first speed level was generated by the formula
ti,1

k � ti,1
k�1 � 	 i

k , where 	 i
k � [0.2ti,1

1 , 1.2ti,1
1] was randomly

generated for each task version. Next, ti, j
k was computed

for all versions and all speed levels, inversely proportional
to the speed [ti, j

k � ti,1
k (f1/fj)].

The energy requirements ei, j
k were generated as

described in the single-version experiments. The activity
coefficients ai are different for each task and identical
for all versions of the same task. Task values of the
first versions ri

1 were generated randomly in the range
[10, 100]. For the higher versions (a number of V � 4
versions were used for each task), task rewards were
generated according to the formula ri

k � ri
k�1 � � i

k ,
where � i

k � [0.2ri
1 , 1.2ri

1] was randomly generated
for each task version. Thus, observe that each version
requires more time and more energy than the previous
versions, but gives a higher reward. The deadline D
and maximum energy Emax are respectively generated
by the formulas D � ¥ i�1

N ti,si

v i and Emax � ¥ i�1
N ei,si

v i ,
where si � {1, 2, . . . , M} and v i � {1, 2, . . . , V}
are randomly generated for each task i � {1, 2, . . . , N }.
We denote by SRmin the minimum reward that can be
achieved for a given task set, SRmin � ¥ i�1

N ri
1 . Similarly,

SRmax denotes the maximum reward that can be achieved,
SRmax � ¥ i�1

N ri
V . Observe that if each task i runs at the

version v i and the speed level si used to generate D and
Emax, the energy and deadlines are not exceeded, and the
system reward is SRgen � ¥ i�1

N ri
v i .

Since it is impractical to compute the optimal solution,
we compare the performance of MV-Pack with SRmin,
SRmax, and SRgen. Figure 6(b) shows the comparison for
task sets of 10 to 100 tasks, where SRgen, SRmax, and the
reward returned by the algorithm are normalized to SRmin.
Each point is the average of 1000 simulation runs. In all
experiments, MV-Pack returned a system value higher
than SRgen and close to SRmax. Note that SRmax is an upper
bound on the optimal solution, not the optimal solution
itself. For most graph points, MV-Pack used more than
99% of the available energy; the smallest value is 96%.
Similarly for the available time, the smallest usage was
98%.

The system value can be improved even more with the
following enhancement: If there is not enough energy to
pack tasks within the deadline, the task that caused the

Figure 6

(a) MV-Pack flowchart; (b) evaluation of MV-Pack.

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100

Sy
st

em
 v

al
ue

 n
or

m
al

iz
ed

 to
 S

R
m

in

Number of tasks
(b)

SRmax

MV-Pack

SRgen

Yes

No

Yes

Yes No

No

No

Yes

Yes

No

Can increase the
speed of some task?

Return current
solution or failure

Deadline exceeded?

Can increase the
version of some task?

Initialize

Can add a task?

Add task

Increase
speed

Increase
version

Return
failure

All tasks
added?

Save
solution

Return
solution

(a)

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

698

energy problem when increasing its version number is
removed from further consideration, and the schedule is
restored to its state just prior to the attempt to increase
the version number of the offending task. The algorithm
continues then as usual by selecting a task to increase its
version from the remaining set of tasks. The upper bound
on the running time becomes O(MVN 2 log N), although in
practice the running time does not increase significantly.
The enhanced MV-Pack returns slightly higher rewards in
24% of the simulations with ten tasks and in 57% of the
simulations with 100 tasks. However, the increase in the
average normalized reward is almost unnoticeable.

The enhanced MV-Pack algorithm can also handle the
optional single-version model. The original task set is
modified in the following way: For each task we artificially
add to the single version a second version with zero
reward and zero energy and time requirements. We call
this added version the zero version. A task selected in the
final schedule at its zero version is equivalent to a task
not selected for execution in the optional single-version
model. Figure 7 compares the REW-Pack algorithm
applied to a single-version task set and the MV-Pack
algorithm applied to the same task set enhanced with
zero versions. The system value is normalized to SRgen, as
SRmin � 0 due to the zero versions. MV-Pack is slightly
better for all points in the graph, at the cost of a higher
execution time. In practice, MV-Pack (which has a higher
theoretical upper bound) takes 25% to 70% longer than
REW-Pack, both algorithms running in less than a
millisecond even for 100 tasks. For 20 tasks, MV-Pack is
better in 2.5% of the experiments and REW-Pack is better
in 0.4% of the experiments, the algorithms returning
equal system values in the rest of the simulations. As the
number of tasks increases, the dominance of MV-Pack is
more evident: For 100 tasks, MV-Pack is slightly better in
12% of the experiments, the algorithms being equal in the
rest of the simulations.

5. Conclusions
We have presented two algorithms for the problem
of maximizing the system value given time and energy
constraints in a single-version task set environment. A
third algorithm has been presented for the same problem
and multiple-version task sets. The goal is to determine
which tasks (or task versions) to execute and the speeds at
which to execute the selected tasks on a variable-voltage
processor so that the total value of the system [defined
as the sum of task values for all tasks (or task versions)
selected for execution] is maximized without violating the
timing and energy constraints. While real-time researchers
have dedicated much effort to reward-based scheduling
and power-aware scheduling, the problems of maximizing
the reward (system value) and minimizing the energy
consumption are usually treated separately. Further,

continuous speeds and/or continuous reward functions
(increased reward with increased service) are usually
assumed. In this work we have departed from such
assumptions to address the case of discrete speeds and
discrete task values, with no reward for partial execution.

The problem is NP-hard, and an optimal solution
requires an exponential time solution. Where possible we
show by simulation that the proposed algorithms closely
approximate the optimal. The worst-case time complexity
of the single-version algorithms is just O(MN log N),
where N is the number of tasks in the system and M is the
number of available speeds. For multiple versions, the
running time is O(MVN log N), where V is the number
of versions. A small running time allows a scheduler
to quickly adapt to changes in the system (e.g., tasks
becoming unavailable, new tasks being added to the
system, or new timing and energy constraints). In most
current variable-voltage processors, the number of speed
levels is typically a small constant (5–10). The number of
versions in version programming is also typically very
small.

Appendix—Maximizing rewards while
guaranteeing time and energy constraints
is NP-hard
In Section 2 we claimed that both problem formulations,
as described respectively by Equations (1)–(5) and
(6)–(10), are NP-hard. We next present the proof for the
single-version problem, followed by a sketch of the proof
for multiple versions.

First we show how the single-version problem can be
transformed to a special case of the 0 –1 multidimensional
knapsack problem [30]. Then we show that the single-
version problem formulation is harder than the 0 –1

Figure 7

Comparison of the enhanced MV-Pack algorithm with REW-Pack.

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

20 40 60 80 100

Sy
st

em
 v

al
ue

 n
or

m
al

iz
ed

 to
 S

R
ge

n

Number of tasks

MV-Pack
REW-Pack

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

699

bidimensional knapsack problem, which is known to be
NP-hard.

The 0 –1 multidimensional knapsack problem has the
following formulation:

maximize cx (16)

subject to Ax � b, (17)

xi � �0, 1�, (18)

where x � [x1 , x2 , . . . , xn] t is a column vector of 0 –1
variables, c � [c1 , c2 , . . . , cn] is a row vector of integers,
A is a matrix with m rows (constraints) and n columns
with integer values, and b � [b1 , b2 , . . . , bm] t is a column
vector of size m with integer values. A, b, and c are given,
and the solution is the 0 –1 vector x containing the items
for the knapsack. Equations (1)–(5) can be rewritten as
follows:

maximize �
i�1

N �
j�1

M

ri xi, j (19)

subject to �
i�1

N �
j�1

M

ei, j xi, j � Emax , (20)

�
i�1

N �
j�1

M

ti, j xi, j � D, (21)

�
j�1

M

xi, j � 1, (22)

xi, j � �0, 1�, (23)

� i � �1, 2, · · · , N �, � j � �1, 2, · · · , M�.

Thus, there are NM variables (the vector xi, j) and N � 2
constraints. The solution is the column vector x with NM
elements in which xi, j � 1 means that task i is selected
and runs at speed level j. Equation (20) enforces the
energy constraint, (21) is the timing constraint, and (22)
consists of N inequalities which ensure that each task is
selected at most once in the solution.

While many algorithms exist for approximating the 0 –1
multidimensional knapsack problem (for both real and
integer coefficients) [31], we take advantage in our approach
of the fact that each of the last N rows of matrix A has
exactly N coefficients equal to 1, while the other coefficients
[(N � 1) M] are 0. Similarly, in vector b the last N values
(out of a total of N � 2) are all equal to 1. This allows
a running time which is faster than even comparison-
based sorting on the same input size (NM), yet leading
to a very good approximation of the optimal solution.

In the 0 –1 bidimensional knapsack problem, matrix A
has only two rows (constraints):

maximize �
i�1

N

ci xi (24)

subject to �
i�1

N

a1i xi � b1 , (25)

�
i�1

N

a2i xi � b2 , (26)

xi � �0, 1�. (27)

We show next that the problem described by Equations
(19)–(23) is harder than the 0 –1 bidimensional knapsack
problem by showing the transformation from the 0 –1
bidimensional knapsack problem of size N to a problem
instance for (19)–(23) of size NM.

For each variable xi we add M � 1 variables yij ,
@j � {1, 2, . . . , M � 1}. The maximizing part
¥ i�1

N ci xi is transformed to ¥ i�1
N (ci xi � ¥ j�1

M�1 ci yij).
The first constraint is transformed from ¥ i�1

N a1i xi � b1

to ¥ i�1
N (a1i xi � ¥ j�1

M�1 kyij) � b1 , where k is chosen
to be higher than b1 . The second constraint is left
unchanged, and the new N constraints are added:
xi � ¥ j�1

M�1 yij � 1, @i � {1, 2, . . . , N }.
Observe that it is never possible to choose an item yij in

the knapsack, as the first constraint would be violated.
Thus, the solution of the transformed problem must be
the same as the bidimensional knapsack solution. This way
the bidimensional knapsack problem was transformed
to an instance of (19)–(23). Knowing that the 0 –1
bidimensional knapsack problem is NP-hard (by a
transformation from the simple knapsack problem),
we conclude that (19)–(23) is also NP-hard.

For multiple versions, Equations (6)–(10) can be
rewritten with a similar transformation into exactly the
formulation of the 0 –1 multiple-choice bidimensional
knapsack problem, which is known to be NP-hard.

Acknowledgments
The power measurements were performed at the IBM
Austin Research Laboratory, in an effort to build a power
model for the PPC405LP and 405GP processors. We
would like to thank IBM ARL members involved in this
project: Hazim Shafi, Patrick Bohrer, James Phelan, and
James Peterson. We also thank Rabi Mahapatra for his
help with the power benchmarks and measurements, as
well as Bishop Brock and Chandler McDowell for their
assistance during all phases of the project. This work was
supported by the Defense Advanced Research Projects
Agency through the PARTS (Power-Aware Real-Time
Systems) project under Contract No. F33615-00-C-1736.

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

700

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. C. Rusu, R. Melhem, and D. Mossé, “Maximizing the

System Value While Satisfying Time and Energy
Constraints,” Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS’02), Austin, TX, December
2002, pp. 246 –255.

2. P. M. Shriver, M. B. Gokhale, S. D. Briles, D. Kang, M.
Cai, K. McCabe, S. P. Crago, and J. Suh, “A Power-
Aware, Satellite-Based Parallel Signal Processing
Scheme,” Power Aware Computing, Kluwer Academic
Press, New York, 2002, pp. 243–259.

3. B. D. Guenther, “Aided and Automatic Target
Recognition Based upon Sensory Inputs from Image
Forming Systems,” IEEE Trans. Pattern Anal. & Machine
Intell. 19, No. 9, 1004 –1019 (1997).

4. R. K. Clark, E. D. Jensen, and F. D. Reynolds, “An
Architectural Overview of the Alpha Real-Time
Distributed Kernel,” Proceedings of the USENIX Workshop
on MicroKernels and Other Kernel Architectures, April
1992, pp. 127–146.

5. F. Yao, A. Demers, and S. Shankar, “A Scheduling
Model for Reduced CPU Energy,” Proceedings of IEEE
Annual Foundations of Computer Science, 1995,
pp. 374 –382.

6. J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C.
Chung, J. Yao, and W. Zhao, “Algorithms for Scheduling
Imprecise Computations,” IEEE Computer 24, No. 5, 58 –
68 (May 1991).

7. W.-K. Shih, J. W.-S. Liu, and J.-Y. Chung, “Algorithms
for Scheduling Imprecise Computations with Timing
Constraints,” SIAM J. Computing 20, No. 3, 537–552 (July
1991).

8. J. K. Dey, J. Kurose, and D. Towsley, “On-Line
Scheduling Policies for a Class of IRIS (Increasing
Reward with Increasing Service) Real-Time Tasks,”
IEEE Trans. Computers 45, No. 7, 802– 813
(July 1996).

9. C. M. Krishna and K. G. Shin, Real-Time Systems,
McGraw-Hill Book Co., Inc., New York, 1997.

10. J. K. Dey, J. Kurose, D. Towsley, C. M. Krishna, and M.
Girkar, “Efficient On-Line Processor Scheduling for a
Class of IRIS (Increasing Reward with Increasing Service)
Real-Time Tasks,” Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, May 1993, pp. 217–228.

11. H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez,
“Optimal Reward-Based Scheduling for Periodic Real-
Time Tasks,” Proceedings of the 20th IEEE Real-Time
Systems Symposium (RTSS’99), Phoenix, December 1999,
pp. 79 – 89.

12. E. Chang and A. Zakhor, “Scalable Video Coding
Using 3-D Subband Velocity Coding and Multi-Rate
Quantization,” Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing,
July 1993, Vol. 5, pp. 574 –577.

13. W. Feng and J. W.-S. Liu, “An Extended Imprecise
Computation Model for Time-Constrained Speech
Processing and Generation,” Proceedings of the IEEE
Workshop on Real-Time Applications, May 1993,
pp. 76 – 80.

14. C. J. Turner and L. L. Peterson, “Image Transfer: An
End-to-End Design,” Proceedings of the SIGCOMM
Symposium on Communications Architectures and
Protocols, August 1992, pp. 258 –268.

15. R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P.
Siewiorek, “A Resource Allocation Model for QoS
Management,” Proceedings of the 18th IEEE Real-Time

Systems Symposium (RTSS’97), December 1997, pp.
298 –307.

16. R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek,
“Practical Solutions for QoS-based Resource Allocation
Problems,” Proceedings of the 19th IEEE Real-Time
Systems Symposium (RTSS’98), Madrid, December 1998,
pp. 296 –306.

17. I. Hong, G. Qu, M. Potkonjak, and M. Srivastava,
“Synthesis Techniques for Low-Power Hard Real-Time
Systems on Variable Voltage Processors,” Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS’98),
Madrid, December 1998, pp. 178 –187.

18. I. Hong, M. Potkonjak, and M. B. Srivastava, “On-Line
Scheduling of Hard Real-Time Tasks on Variable Voltage
Processors,” Proceedings of the International Conference on
Computer-Aided Design (ICCAD’98), 1998, pp. 653– 656.

19. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava, “Power Optimization of Variable Voltage
Core-Based Systems,” Proceedings of the 35th Annual
Design Automation Conference (DAC’98), 1998, pp. 176 –
181.

20. Y. Shin and K. Choi, “Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems,” Proceedings of
the 36th Design Automation Conference (DAC’99), 1999,
pp. 134 –139.

21. J. R. Lorch and A. J. Smith, “Improving Dynamic Voltage
Scaling Algorithms with PACE,” Proceedings of the ACM
SIGMETRICS 2001 Conference, Cambridge, MA, June
2001, pp. 50 – 61.

22. C. M. Krishna and Y. H. Lee, “Voltage Clock Scaling
Adaptive Scheduling Techniques for Low Power in
Hard Real-Time Systems,” Proceedings of the 6th IEEE
Real-Time Technology and Applications Symposium
(RTAS’00), Washington, D.C., May 2000, pp. 156 –165.

23. H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez,
“Determining Optimal Processor Speeds for Periodic
Real-Time Tasks with Different Power Characteristics,”
Proceedings of the 13th Euromicro Conference on Real-
Time Systems (ECRTS’01), Delft, Netherlands, June 2001,
pp. 164 –169.

24. R. Ernst and W. Ye, “Embedded Program Timing
Analysis Based on Path Clustering and Architecture
Classification,” Proceedings of the International Conference
on Computer-Aided Design (ICCAD’97), 1997, pp. 598 –
604.

25. H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez,
“Dynamic and Aggressive Scheduling Techniques for
Power-Aware Real-Time Systems,” Proceedings of the
22nd IEEE Symposium on Real-Time Systems, 2001, pp.
213–222.

26. F. Gruian, “Hard Real-Time Scheduling Using Stochastic
Data and DVS Processors,” Proceedings of the
International Symposium on Low Power Electronics and
Design, 2001, pp. 46 –51.

27. D. Mossé, H. Aydin, B. Childers, and R. Melhem,
“Compiler-Assisted Dynamic Power-Aware Scheduling for
Real-Time Applications,” Proceedings of the Workshop on
Compilers and Operating Systems for Low Power
(COLP’00), Philadelphia, October 2000, pp. 28 –39.

28. D. Shin, J. Kim, and S. Lee, “Intra-Task Voltage
Scheduling for Low-Energy Hard Real-Time
Applications,” IEEE Design & Test of Computers
18, No. 23, 20 –30 (March 2001).

29. D. I. Kang, S. P. Crago, and J. Suh, “A Fast Resource
Synthesis Technique for Energy-Efficient Real-Time
Systems,” Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02), Austin, December 2002, pp. 225–
234.

30. S. Martello and P. Toth, Knapsack Problems: Algorithms
and Computer Implementation, Wiley & Sons, New York,
1997.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 C. A. RUSU ET AL.

701

31. H. M. Weingartner and D. N. Ness, “Methods for the
Resolution of the Multi-Dimensional 0/1 Knapsack
Problem,” Oper. Res. 15, 83–103 (1967).

Received November 18, 2002; accepted for publication
March 19, 2003

Cosmin A. Rusu Computer Science Department, University
of Pittsburgh, Sennott Square, Pittsburgh, Pennsylvania 15260
(rusu@cs.pitt.edu). Mr. Rusu received a B.S. degree in
computer science from the Technical University of Cluj-
Napoca, Romania, in 2000. He joined the University of
Pittsburgh that same year and is currently pursuing a Ph.D.
degree in the Computer Science Department. His research
interests include real-time systems and power-constrained
systems.

Rami Melhem Computer Science Department, University of
Pittsburgh, Sennott Square, Pittsburgh, Pennsylvania 15260
(melhem@cs.pitt.edu). Dr. Melhem received a B.E. degree in
electrical engineering from Cairo University in 1976, an M.A.
degree in mathematics and an M.S. degree in computer
science from the University of Pittsburgh in 1981, and a Ph.D.
degree in computer science from the University of Pittsburgh
in 1983. He was an Assistant Professor at Purdue University
prior to 1986, when he joined the faculty of the University of
Pittsburgh, where he is currently a Professor of Computer
Science and Electrical Engineering and the Chair of the
Computer Science Department. His research interests include
real-time and fault-tolerant systems, optical interconnection
networks, high-performance computing, and parallel computer
architectures. Dr. Melhem has served on program committees
for numerous conferences and workshops; he was the general
chair for the third International Conference on Massively
Parallel Processing Using Optical Interconnections. Dr.
Melhem was on the editorial board of the IEEE Transactions
on Computers and served on the advisory boards of the IEEE
technical committees on parallel processing and on computer
architecture. He is the editor for the Plenum Book Series in
Computer Science and is on the editorial board of the IEEE
Transactions on Parallel and Distributed Systems and the
Computer Architecture Letters. Dr. Melhem is a Fellow of
IEEE and a member of the ACM.

Daniel Mossé Computer Science Department, University of
Pittsburgh, Sennott Square, Pittsburgh, Pennsylvania 15260
(mosse@cs.pitt.edu). Dr. Mossé received a B.S. degree in
mathematics from the University of Brasilia in 1986, and M.S.
and Ph.D. degrees in computer science from the University of
Maryland in 1990 and 1993, respectively. In 1992 he joined
the faculty of the University of Pittsburgh, where he is
currently an Associate Professor. His research interests
include fault-tolerant and real-time systems, as well as
networking. The major thrust of his research in the new
millennium is power-aware computing and security. Dr. Mossé
has served on program committees for all major IEEE-
sponsored real-time related conferences and as program and
general chairs for the RTAS and RT Education Workshop.
Typically funded by NSF and DARPA, his projects combine
theoretical results and implementations. Dr. Mossé is a
member of the editorial board of the IEEE Transactions on
Computers, of the IEEE Computer Society, and of the
Association for Computing Machinery.

C. A. RUSU ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

702

