
Preface
Over the past few years, research in power-efficient
computing has gained momentum globally, widening the
scope of technical advances in hardware and software.
Technology trends, environmental concerns, and economic
factors have enhanced this momentum. Power is now
considered to be a formidable obstacle that challenges the
status quo in system design.

Doubling the number of transistors on a chip every 18
months (Moore’s law) and the corresponding increase in
performance may continue for the remainder of the
decade. However, there is a growing concern that
manufacturing of denser computing chips could be limited
by our ability to cool them.

There is also a growing concern about the environmental
impact of the energy required to operate and cool
computing devices and its potential contribution to
global warming. A 1994 study showed that computers
consumed up to 10 percent of the electricity budget
in North America.

Additionally, there is an economic incentive to reduce
the energy required to operate and cool computing
systems. This is fueled by the recent trends of server
consolidation and outsourcing computing operations to
data centers. Some experts estimate that typical data
centers attribute up to 25 percent of their operating costs
to power consumption and cooling.

This special issue presents 12 technical papers from
leading researchers in power-efficient computing from
within and outside IBM.

Technology trends
Over the past 25 years, advances in lithography and device
manufacturing have contributed to phenomenal growth in
the density of computing devices. The quest for higher
performance is the main driving factor in computing
system design. With increasing device density, however,
come related increases in heat densities that are
challenging existing cooling technology. These trends have
motivated research in hardware–software co-design to
solve or mitigate the problem.

Power reduction in today’s microprocessors is a global
priority. Fundamentally, the power consumed by a device
built from switched capacitive elements (e.g., CMOS
technologies) can be separated into dynamic and static
components.

The dynamic component can be adjusted by controlling
the frequency, the voltage, or the actual parameters of the
circuits. It is reduced linearly by reducing the frequency of
the processor and hence its performance. However, if the
problem involves intensive computing and the processor is
not spending a significant fraction of its cycles waiting for
memory or switching between threads, there is no change
in the work performed. As a result, the energy required

for an operation is not reduced. Moreover, there may be
a net loss, because the static power component increases
owing to an increased running time. On the other hand,
for threads that spend a substantial fraction of their time
waiting for memory, reducing the frequency can lead
to energy savings for each instruction. This is possible
because less energy is spent in idle cycles and for cycles
needed to switch threads on long-latency memory
operations. Since fewer threads compete for the resources
(caches), performance and energy efficiency improve.

The second mechanism for saving dynamic power is to
reduce the complexity of the circuits in the processor. The
return in power efficiency varies greatly for each simplified
function. However, for a substantial number of functions,
area is proportional to frequency (i.e., the area– delay
product is constant). When the switching factor is
unaffected, the switched capacitance is proportional to the
area of the processor. Therefore, this mechanism is likely
to increase the power– efficiency.

The third, and potentially most efficient, way to reduce
power is to reduce the operating voltage. As we scale the
supply voltage down to about three times the threshold
voltage of the transistors, the circuits slow down linearly
with the voltage supplied. Hence, the maximum operating
frequency must be reduced in equal proportion to the
supply voltage. Because power is dependent on supply
voltage raised to a factor n greater than 1, the power is
reduced at a faster rate than the drop in frequency. For
the typical case in which n � 2, the power per operation
is reduced with the square of the supply voltage. This is
an effective mechanism for increasing power efficiency.

The aforementioned techniques are applicable only to
dynamic power. Traditionally, static power has been a
small component of the power consumed and has received
relatively little attention. The best-known technique for
dealing with static power is to turn off the device when
it is not needed. However, continued scaling to shrink
devices and increase device densities will cause leakage
currents to increase. It is predicted that the static power
component will dominate the power consumed by CMOS
devices in the near future.

Software issues
Software plays a key role in power management. The
operating system typically provides mechanisms for
exploiting the underlying hardware support for power
management. It also receives information about the
application mix, either through a program interface or
direct user input. This information is useful in controlling
the underlying hardware to yield the best performance
within a given power budget or the minimum power
consumption for a given performance requirement.

Industry recognizes the need for standardizing the
interface to power management so that system software

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 PREFACE

521



and application can communicate information about
workloads and control the operation of the hardware.
Today, stock hardware exports several standard functions
to inquire about the power consumed and to exercise
control over the machine resources. This has created
several problems as well as opportunities for software to
play an active role in power management. Processor
scheduling, for example, must now balance the often
conflicting requirements of application performance
and power management. For desktop applications, the
situation is mitigated somewhat by the fairly moderate
performance requirements of interactive applications. The
problem is more acute for real-time systems, high-end
computers, and servers, because performance and
timeliness in generating results are important goals.

Considering other system components, turning off the
bus interface of a memory chip can reduce consumed
power by a large percentage (more than 95 percent). The
memory chip does not lose its content because it operates
in an energy-efficient self-refresh mode. This requires
some complexities in the memory-management layer of
the operating system, a situation in which some memory
banks may be switched off to self-refresh mode. So far,
studies have focused on conserving the energy consumed
by memory systems.

Moving up the storage hierarchy, changing speeds
(spin-up/down) is now a standard staple of computing
systems, especially portable ones. Unlike memory
chips, power management of the disk has been extremely
effective, especially for mobile computers and handheld
devices. These use special 1.8- and 2.5-inch disks that are
optimized for frequent changes in spin speeds. Server
systems, however, have been slow to embrace power
management for disks. In fact, early attempts to use
power management for disks did not work well because
server disks tend to be optimized for continuous operation.
Such disks are affected negatively by frequent increases in
speed. Recently some disk manufacturers have begun to
produce disks optimized for both modes of operation. File
system software plays an important role in ensuring good
performance with minimum disk power consumption and
wear.

This issue
The papers in this issue describe hardware and software
approaches to power management in computing systems.
In the area of circuits and technology, the issue includes
seven papers that involve different areas of processor and
microarchitecture design. Nagakome et al. review current
issues regarding the design of low-power SRAM and
DRAM and investigate techniques for reducing the
threshold voltage for such devices without compromising
reliability. The paper by Mann et al. follows with a
description of an ultralow standby power technology for

0.18-�m- and 0.13-�m-lithography nodes for embedded
and standalone SRAM applications, and it reviews the
critical leakage components and paths within a six-
transistor SRAM cell. In the next paper, Oklobdzija
presents a systematic design of a clocked storage element
suitable for “time borrowing” and absorption of clock
uncertainties. The issues related to power consumption
and low-power clock circuit designs are reviewed, and
results among representative designs are compared.
Zyuban and Strenski relate a metric they call “hardware
intensity,” which is useful for evaluating issues that affect
both circuits and architecture, to an architectural energy
efficiency metric. Expressions are derived for evaluating
the effect of modifications of processor frequency and
power at the microarchitectural level, assuming optimal
tuning of a pipeline. In the next paper, Kim et al. examine
a new technique for a pipeline design that adapts to the
data rate. When the processing rate is slow, several stages
of the pipelines are turned off and bypassed, and vice
versa.

The use of aggressively scaled silicon-on-insulator (SOI)
CMOS to successfully build low-power systems-on-a-chip
(SoCs) is next examined by Plouchart et al. Finally,
Nowka et al. provide a detailed description of the
PowerPC� 405LP implementation, which was successful
in producing impressive savings in energy without
compromising performance.

The hardware papers are followed by two papers on
power-estimation tools. In the first, Shafi et al. describe
enhancements to the Mambo simulator to estimate the
energy consumed by a PowerPC processor within a
5-percent accuracy. In the second, Brooks et al.
describe PowerTimer, a tool for estimating energy at
the microarchitecture level. The two papers provide a
contrast in the goals they address. The first focuses on
the macroarchitecture of the processor, and thus is
ideal for system-level tuning. The second, in contrast,
focuses more on the microarchitecture, and thus is
useful for processor or chip microarchitecture design.

The following section contains three papers that
cover system-level algorithms and software for power
management. The first paper, by Felter et al., describes a
performance study of the Super Dense Server project,
which uses low-power processors to build server blades.
This project provides an example of how modern servers
can be constructed to satisfy the need to reduce power
dissipation. The paper shows that opting for low-power
processors does not necessarily entail a performance
penalty, and in fact performance actually improves for
some applications. The second paper, by Rusu et al.,
describes theoretical scheduling algorithms for real-time
systems, in which a study is made of the tradeoff of work
completed by the deadline of a task and the amount of
energy consumed. The paper shows how the software can

PREFACE IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

522



trade the quality of the work performed for lower energy,
and vice versa. The last paper, by Bradley et al., describes
and evaluates algorithms for system-level power
management and unmet demand in parallel computer
systems using data obtained from production servers for
various applications.

Acknowledgment
We would like to thank Lisa T. Su and David L. Cohn for
their contributions to the initial phase of this special issue.
We also would like to thank the referees for their help in
evaluating the manuscripts.

E. N. (Mootaz) Elnozahy

Rajiv V. Joshi

Guest Editors

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 PREFACE

523


