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Application
of an SOI
0.12-�m CMOS
technology
to SoCs with
low-power and
high-frequency
circuits
Systems-on-chips (SoCs) that combine digital and high-speed
communication circuits present new opportunities for power-
saving designs. This results from both the large number of
system specifications that can be traded off to minimize overall
power and the inherent low capacitance of densely integrated
devices. As shown in this paper, aggressively scaled silicon-on-
insulator (SOI) CMOS is a promising technology for SoCs
for several reasons: Transistor scaling leads to active power
reduction in the sub-50-nm-channel-length regime, standard
interconnect supports the high-quality passive devices essential
to communications circuitry, and high-speed analog circuits
on SOI are state of the art in terms of both performance and
power dissipation. We discuss the migration of a complete
digital circuit library from bulk to SOI to prove that SOI
CMOS supports ASIC-style as well as fully custom circuit
design.

1. Introduction
Many of the power-management schemes currently used in
integrated circuits involve adding a power-control system
to what are essentially standard circuit building blocks.
These power-control networks supply power to the blocks
that limit throughput at any given moment and remove
it from the blocks that are not supplying useful output.
Examples of such power-control schemes include clock
gating and variable power supplies. However, when an
integrated circuit is a true system-on-a-chip (SoC),
encompassing not only digital and memory blocks but
also high-frequency analog blocks for wired and wireless
communication, power savings become more than a
question of the computational efficiency of digital logic.
In communications circuits, the power budget depends
on such elements as noise levels, isolation, transmission
efficiency between subcircuits, and the losses in passive

components. SoCs allow the reduction of total system
power because the performance and communication
specifications of a system can be met with subcircuits and
transmission networks that are inherently more energy-
efficient than discrete units in a package.

Systems are becoming increasingly integrated, and it is
becoming obvious that SoCs are indeed feasible. The first
example of the combination of analog and digital blocks
was the integration of clock generator phase-locked loops
(PLLs) with processors and memory. CMOS circuits with
even more analog and radio frequency (RF) function are
now being introduced. For example, products such as
5-GHz-wireless-LAN, 1.9-GHz-GSM-cellular, and
10-Gb/s-SONET transceivers [1–3] are being fabricated
in 0.18-�m and 0.13-�m technologies, though without
integration of the baseband digital signal processor or the
microprocessor. As shown in Figure 1(a), the receiving
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end of a wireless transceiver extracts the information
encoded in a carrier modulated at high frequency by
filtering and down-converting the antenna signal. After
low-frequency analog processing, the signal is converted
into the digital domain, where digital processing can be
done. An output signal is later transmitted by modulating
a high-frequency carrier. One of the key challenges in the
design of wireless transceivers is the detection of signals
of microvolt amplitude in a multi-carrier environment.
With the high gain and low input resistance of today’s
CMOS transistors, low-noise amplifiers that meet the
specifications for wireless communication can answer this
challenge.

For wired communication, a transceiver is also used
to interface the digital and analog worlds, as shown in
Figure 1(b). On the receiving end, after amplification
of the input signal, a clock signal is extracted from the
bitstream of random data. This clock signal determines
the time at which data is sampled by the decision circuit.
The high-speed datastream is then demultiplexed—
divided into several channels of lower bit rates—for
digital processing [Figure 1(c)]. On the transmitting
end, the data is aggregated by the multiplexer and then
amplified before being sent out to the wired medium.

When combined with a microprocessor, a transceiver
makes possible the highly connected, highly intelligent
world of embedded electronics envisioned by many. In the
integration race, the next step might be the integration of
these two functions on the same chip (Figure 1). In the
future, wireless and wired transceivers will be seen simply
as I/O for microprocessors. As integration continues, we
can begin to envision a one-chip solution. This will have a
profound and beneficial effect on system cost, power, and
size. There are, of course, many barriers to the one-chip
solution: Sensitive analog circuits can be disturbed by
noise-producing digital logic, the conflicting requirements
of analog/RF circuits [4] and digital circuits demand the
integration of multiple device types, and there will always
be competition from system-in-a-package solutions.

In this paper we discuss silicon-on-insulator (SOI)
technology, the platform of choice to integrate digital
and high-speed analog functions owing to the 10�-lower
parasitic capacitance to the substrate of active SOI devices
and its inherent higher efficiency and isolation when
compared with bulk silicon technologies. SOI ultralarge-
scale integration (ULSI) capabilities and the integration
of DRAM and SiGe bipolar transistors on SOI have
previously been reported [5–7]. Some aspects of low-power
digital design on SOI have also been reported [8, 9]. We
show here that, as the number of circuit functions
supported by a technology increases and as the
performance of those elements increases, the opportunity
to save power grows. We first discuss how scaled SOI
CMOS provides increased performance and reduced
active power in the sub-50-nm-channel-length regime.
We then present passive devices integrated with standard
interconnect and discuss how they support low-voltage,
low-power analog blocks. Next, we discuss circuits
designed in this technology and present measurements of
high-speed analog circuits and digital signal processing
(DSP) building blocks that are state of the art in power
dissipation and performance and a circuit library that
encompasses low-active-power digital and mixed-signal
blocks and allows simple bulk-to-SOI migration. This
paper presents new and recently published research and
development work done across several IBM organizations
on SOI SoC.

2. Power saving enabled by high-performance
SOI FETs

FET scaling and active power1

From generation to generation, transistor gate-length
and oxide-thickness scaling have successfully reduced the
active power dissipation of gates switched at a given fixed

1 Portions of this subsection and the one which follows were originally published in
[10]. Reprinted with permission; �2002 IEEE.

Figure 1

System-on-a-chip with (a) wireless and (b) wired transceivers, 

and (c) digital signal processing and microprocessor.
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frequency. This reduction has depended on transistor
characteristics (for example, input capacitance, drive
current, and operating voltage) following the simple
scaling trends first discussed by Robert Dennard [11]. In
the future, continued reduction of active power dissipation
will be difficult if parasitic elements, such as fringe
capacitances and series resistances, diminish the benefits
of scaling.

One way to determine whether scaled transistors obey
traditional scaling trends is to measure their small-signal
parameters at high frequency. These parameters are
measured at actual operating frequency (1 to 10 GHz) and
give more information about transistors than gate delay
alone, including important performance- and power-
determining parameters such as input capacitance and
transconductance. It has been shown that the gate delay
of scaled CMOS technology decreases continuously as
transistor gate length decreases in the 45-nm to 70-nm
region [12]. However, such behavior would be observed
even if punchthrough and poor gate control occurred at
the shortest gate lengths. For active power to decrease
with transistor scaling, the transconductance and other
small-signal parameters must improve as gate length
decreases.

Most publications on the high-frequency properties of
CMOS transistors provide data on overall figures of merit,
such as the unity current-gain frequency ( fT) and unity
power-gain frequency ( fmax), but they do not present
data on more particular transistor parameters such as
transconductance ( gm) and input capacitance (C in) [13, 14].
These publications show that fT and fmax are improving
with gate-length scaling when one’s view extends across
technologies and technology generations. However, these
publications do not show evidence of well-behaved small-
signal parameters across a range of short (�100 nm)
channel lengths. Indeed, one publication that does provide
gm and C in data shows a decrease in transconductance at
gate lengths below 80 nm [15]. In the following paragraphs,
we present small-signal parameter data which suggest
that active power will decrease as FETs are scaled [10].

To extract the SOI FET small-signal parameters, we
first measured the scattering parameters (S-parameters)
using a vector network analyzer. An S-parameter is
defined to be the ratio of the scattered voltage wave
to a wave incident on an FET. By manipulating the
S-parameters, the current gain (H21) can be computed,
as well as the impedance (Zij) or admittance (Yij)
parameters. We measured the S-parameters of four
n-FETs from a 0.12-�m partially depleted SOI CMOS
technology [16] ranging in gate length from 47 nm to 72 nm.
Each device consisted of 64 fingers, each 1.24 �m long.
The parameters fT, gm, and C in were extracted from their
respective de-embedded small-signal parameters—Mag(H21),
Real(Y21), and Imag(Y11)—in the frequency range of 2 GHz

to 20 GHz, over which each parameter had the ideal
frequency dependence (proportional to 1/f, constant, and
proportional to f, respectively). The measurements were
made with a constant dc bias at a relatively high power
density. Therefore, the data (particularly the gm data)
is influenced by self-heating. The results are shown in
Figure 2. None of the small-signal parameters reach a
limiting value at the smallest gate length of 47 nm. The
input capacitance shows a tendency to saturate at even
lower gate lengths as a result of finite gate-fringing
capacitance. The transconductance shows no sign of
saturation, indicating that the gate has good control of
the channel and that the effective velocity of electrons
in the channel increases with increasing lateral electric
field, even at high drain voltage (1.2 V). The fT of
196 GHz at the shortest gate length is the highest ever
reported for a silicon FET with acceptable short-channel
effect [15].

No discussion of the small-signal parameters of FETs
would be complete without a discussion of the maximum
frequency of oscillation, fmax. This is one of the few small-
signal parameters that reflect the input resistance of the
transistor gate, which can decrease switching speed at a
given level of power dissipation. Perhaps the most difficult
parameter to measure accurately is fmax, because it
requires accurate measurement of a very low input
resistance (�1 �) that is in series with the high-
impedance input capacitance (�90 fF). The theoretical
resistor/capacitor (RC) time of the input corresponds to
a frequency above 1 THz, which means that the input
resistance is not resolvable in the frequency range
accessible to basic equipment (�20 GHz) and, in higher-
frequency systems, that it can be distorted by small
calibration errors and contact resistance.

We extracted the unilateral power gain from our
S-parameter data and found that it had greater than
the ideal 20-dB-per-decade slope over all frequencies in
the 2-GHz to 110-GHz range. No simple FET model can
produce this behavior. Thus, we refrain from stating a
measured fmax value. However, at 20 GHz, a frequency at
which calibration is usually reliable and the unilateral gain
can be measured precisely, every FET has a unilateral
power gain greater than 20 dB, indicating that fmax is
probably greater than 200 GHz for every FET. Calibration
techniques and the dependence of fmax on transistor
layout must be studied further to make accurate fmax

measurement possible.
One parameter that may be vulnerable to scaling is the

resistance of the silicide on a transistor gate. In [14] it
was reported that gate sheet resistance is an increasing
function of gate length at drawn gate lengths near 180 nm.
It was also shown through process simulation that silicide
resistance is the dominant input loss mechanism in the
same gate-length regime. We measured the gate resistance
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on FETs with high, easily measurable total gate resistance
(�150 �) to investigate the gate-length dependence of
silicide sheet resistance at gate lengths below 100 nm. The
results are shown in Figure 2(d). The measured resistance
is effectively constant below 20 GHz, as expected,
reflecting accurate measurement. The rolldown in the
gate resistance above 20 GHz is due to either parasitic
inductance or inaccurate calibration (the gate capacitance
of these structures was de-embedded). The sheet
resistance is 6.3 �/� at a gate length of 77 nm and rises
to 7.3 �/� at a gate length of 55 nm. This sheet resistance
increase is moderate enough not to be a performance
limiter and to allow aggressively scaled FETs to have very
high fmax.

We measured the active power dissipated by an actual
CMOS circuit (a ring of unloaded inverters) for further
confirmation that active power is reduced as transistor
gate length is scaled. Figure 3 shows the dependence of
normalized active energy per switch on gate delay for

unloaded inverters of three different gate channel lengths.
The normalized energy is calculated as
��Idd,active � Idd,quiescent�Vdd/�Wn � Wp�,

where � is the gate delay and Wn and Wp are the n-FET
and p-FET widths, respectively. The delay and energy
were modulated by tuning the power-supply voltage, Vdd,
between 1.2 V and 0.6 V. The active energy decreases
continuously with decreasing gate length at every gate
delay in the range measured. This range corresponds to a
variation in performance of a factor of 4, which is greater
than the typical performance tuning range of power-saving
circuitry that selectively diminishes the power-supply
voltage of noncritical paths (voltage scaling) [17].
Therefore, gate-length scaling supports typical power-
saving circuit architectures because it leads to active
power reduction in both high-performance and low-
performance regimes. The active energy of 0.44 fJ/�m
dissipated by the ring at the shortest channel length is
the lowest ever reported at a gate delay of 25 ps.

Figure 2

(a) Cutoff frequency, (b) transconductance, and (c) input capacitance as a function of polysilicon gate length. (d) Gate resistance as a 

function of frequency as measured on monitor structures (W = 14   m). Reprinted from [10] with permission; © 2002 IEEE.�
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FET RF and low-frequency noise
Noise has a direct impact on the power dissipation of a
communication system because the noise level determines
the minimum signal power needed to maintain the signal-
to-noise ratio. As long as ample gain (�10 dB) is
maintained, lowering the noise of active devices allows the
reduction of signal power, thereby reducing overall power
consumption. The RF noise figure and associated gain are
the most important figures of merit for the detection and
processing of low-amplitude signals. We measured an
n-FET with an Lpoly value of 65 nm to have a minimum
noise figure, NFmin, less than 2 dB up to 26 GHz (see
Figure 4). We also measured an associated gain of 19 dB
at 2 GHz. This data is the best ever reported for a silicon
technology and is similar to that of a state-of-the-art
pseudomorphic high electron mobility transistor (PHEMT).
For example, at 12 GHz, the PHEMT ATF-36077 [18]
exhibits a 0.5-dB NFmin and an associated gain of 12 dB,
compared with 1 dB and 14.5 dB, respectively, for our
n-FET.

Low-frequency noise is an important figure of merit
for analog circuit designers because it affects the jitter
of voltage-controlled oscillators (VCOs) and the charge
pump of PLLs. The high nitrogen content of the thin gate
oxide of scaled CMOS is known to increase low-frequency
noise [19]. Designers can take advantage of the thick
(T inv � 2.9 nm) dual oxide offered in our technology,
which has lower 1/f noise than the standard oxide owing
to its different nitrogen distribution. As shown in Figure 5,
the measured 1/f noise of a thick-oxide n-FET with its
body tied to ground is 3� lower than the noise reported
for the thick-oxide (7.0-nm) n-FET of an 0.18-�m bulk

technology [20]. The comparison is fair because the 4�

difference in active area is compensated by the 2�

difference in current (see Figure 5 for device dimensions
and currents). This demonstrates that oxides with low 1/f
noise and aggressively scaled oxides can be integrated
despite the high nitrogen content of the scaled oxides. In
coming generations, a FET with acceptable 1/f noise
performance should be continuously available to designers
of noise-sensitive circuits.

Figure 3

Gate-delay dependence of the normalized switched energy of an 

unloaded inverter.
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The drain-body diode current of floating-body SOI
FETs is known to be a distinct source of low-frequency
noise [21]. The shot noise of the diode current induces
noise in the body voltage which, in turn, varies the
channel current. This noise mechanism has a Lorentzian
frequency dependence that is markedly different from a
1/f dependence, making it distinguishable in measured
noise spectra. Diode-induced noise can be suppressed
by using devices with body contacts. The noise shown in
Figure 5 has no Lorentzian signature, showing successful
suppression of diode-induced noise. This shows that our
SOI technology offers FETs free of SOI-specific noise
mechanisms, with 1/f noise levels as good as or better
than those of bulk FETs.

3. Integration of high-performance passive
devices in a standard BEOL

Scope
For the design of wired or wireless transceivers, high-
performance passive devices are used to build matching
circuits, filters, couplers, transformers, or resonators. The
integration of passive devices is critical for SoCs based on
CMOS technology. Unfortunately, there is no alternative
method of implementing passive devices with performance

comparable to that of discrete passive devices [22], and
sizable real estate is required for the integration of the
discrete passive devices onboard. However, the feature
size of CMOS technology is becoming smaller, and the
back-end-of-line (BEOL) and front-end-of-line (FEOL)
options are now very diversified. There are many
attributes requested for passive devices, such as linearity,
temperature stability, tolerance, matching, and so on,
but one of the most important parameters for reactive
elements is losses. High-performance passive devices have
low losses or a high quality factor. The quality factor,
usually termed Q, is defined at a frequency f by

Q � 2�f (energy stored/average power dissipated),

where Q is dimensionless and is proportional to the
ratio of energy stored to energy lost per unit time.
Intuitively, we can understand that this is a very important
factor for low-power applications, and that a low-power
technology will try to maximize Q by reducing the energy
lost.

Resonant circuits, such as a capacitor (C) in parallel
with an inductor (L), are used in many circuits (e.g.,
amplifiers, mixers, or oscillators). It can be shown that an
L, C parallel circuit is equivalent at the resonance to a
resistor,

R � Q�L/C.

For a certain voltage supply (V), the current consumption is

I � V/�Q�L/C�.

Therefore, by maximizing Q, we can decrease the current
consumption. Passive device losses clearly have a direct
and negative impact on efficiency and chip power
consumption. In this section, we describe the source of
losses and high-performance inductors and capacitors.

Source of losses
Sources of losses are ohmic and radiation losses in metals,
dielectric losses, and eddy currents in semiconductors.
Unfortunately, the silicon substrate usually used in silicon
technologies is very lossy. The substrate quality coefficient
can be derived from the dielectric relaxation equation

Fdrel � 1/�2��	0	r�,

where � is the substrate resistivity in �-cm, 	0 is the
dielectric constant of the vacuum (8.854 � 10�14 F/cm),
and 	r is the dielectric constant of the substrate (�12 for
silicon substrate). The dielectric relaxation frequency
is also equal to the cutoff frequency of the substrate,
1/(2�RsCs), where the substrate is modeled by a resistor
Rs in parallel with a capacitor Cs. Because the Q of the
substrate at a frequency F is 2�RsCsF, one can derive that
it is also equal to F/Fdrel. For mixed-signal technologies,

Figure 6

Example of a hierarchical Cu BEOL in a 0.12-  m SOI CMOS 

technology. (t � metal thickness, X � scale factor) [23].
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substrate resistivities as high as 15 �-cm are used; this is
equivalent to a dielectric relaxation frequency of 10 GHz.
The Q at 1 GHz of the substrate is therefore only 0.1.
This is a very important limitation factor when one
wants to integrate high-Q inductors on chip. An obvious
approach to raising the Q of the substrate is to increase
its resistivity. This is not always feasible in a bulk
technology, because bulk junction isolation requires a
conductive substrate to shunt carriers that might otherwise
transiently forward bias the isolating junctions (latchup).
An SOI technology has dielectric isolation that is
independent of the substrate; therefore, the substrate
resistivity is a free parameter. A high-resistivity silicon
(HRS) substrate can be used to add value to the passive
devices by boosting their performance.

High-performance inductors
There are two main inductor specifications, Q and
inductance density, which are inversely proportional to
each other. Therefore, we need to optimize inductor
designs for different applications. We classify these into
two types of inductors, which are discussed with their
respective optimized design schemes. To boost inductor
Q, we use high-resistivity substrate (HRS 	 100 �-cm)

instead of regular-resistivity substrate (RRS � 12 �-cm).
Two different categories of on-chip inductors target
different applications: single-turn parallel multilayers
(STPML) and multi-turn series multilayers (MTSML).

STPML inductors
Figure 6 shows a cross section of an eight-level copper-
metal interconnection of 0.12-�m SOI CMOS technology
[23]. The substrate resistivity can be changed from 12 �-cm
(RRS) to 300 �-cm (HRS). The BEOL consists of groups
of levels of common pitch and thickness, where the pitch
and thickness of each group are an integer multiple of
the minimum (hence, the group names 1X, 2X, and 4X).
Figures 7(a) and 7(b) show a metal-stack technique to
improve conductivity for STPML inductors [24]. We
can stack up to four metals, M8 to M5, and via contacts
are used between metal layers. The maximum copper
thickness with four stacked metals is 3.6 �m for the metal
and 3.8 �m for the vias. The dc resistance is dramatically
reduced via parallel metal stacking.

Figure 7(c) shows the measured Q [24]. The data prove
that the parallel metal-stack geometry improves the Q
factor, but the self-resonant frequency is slightly reduced
because of the substrate effect. The highest Q is about 52

Figure 7

(a) STPML inductor cross section and (b) microphotograph [24]. (c) Measured Q for STPML on RRS and HRS substrates for two to four 

stacked metal layers [24].
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at 4 GHz via the use of a parallel metal stacked inductor
on an HRS substrate. The inductor density of 6 fH/�m2 is
the lowest. Figure 7(c) shows that, owing to HRS,
inductor Q values can be improved up to 80%.

STSML and MTSML inductors
Figures 8(a) and 8(b) show the series-connection
geometry of the MTSML inductor [24], which emphasizes
inductance density and is a tradeoff between Q and
density. The end of M8 is connected to the end of M7,
and the front of M7 goes to the front of M6. The end of
M6 is connected to the end of M5. After all series metal
connection, the two terminals of this inductor are the
front of M8 and the front of M5. The total inductor
length can be extended four times longer than that of
the parallel metal connection.

Figure 8(c) shows the measured Q for STSML and
MTSML inductors [24]. For high-inductance density, we
can use as many metal layers and turns as possible. The
MTSML3T8 inductor produces the highest inductance
density, but Q will be relatively damped, as shown in
Figure 8(c). However, the STSML1T4 can improve Q and
self-resonant frequency. Measured inductance values are
42 nH for MTSML3T8 and 2 nH for STSML1T4. The
inductance density of MTSML3T8 is a record 320 fH/�m2.
This inductance density is at least 50� higher than that of

the STPML inductor. MTSML inductors can be used as
choke coils for RF amplifiers and in broadband applications.

Figure 9 shows a comparison of reported state-of-the-
art inductors [25–32]. It demonstrates that a standard
microprocessor SOI BEOL can compete very well with
micromachined inductors or inductors requiring special
GaAs or sapphire substrates as well as thick dielectric and
metal. Note that these specialized BEOLs require extra
processing steps and are therefore much more costly.

High-performance capacitors
The requirements for high-performance capacitors are
high capacitance density, low capacitance tolerance,
and high Q. These three factors can be traded off and
are dependent on capacitor geometries. New CMOS
technologies are currently offering many options for
BEOL as well as FEOL to improve circuit integration
and performance. Here we focus on two types of high-
performance capacitors: the metal–insulator–metal (MIM)
capacitor, suitable for low-tolerance requirements, and the
vertical-parallel-plate (VPP) capacitor, suitable for high-Q
applications.

MIM capacitor
Figure 10(a) shows a typical layout for a MIM capacitor
[23]. The MIM capacitor is built between M5 and M6 with

Figure 8

 (a) MTSML inductor geometry and (b) microphotograph [24]. (c) Measured Q for STSML and MTSML inductors [24].
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special mask layers for the bottom and for the top. The
silicon nitride dielectric is deposited between the layers
to increase capacitance. The core capacitance density
achieved is 1 fF/�m2. Depending on the material used
for the top and the bottom plates, the Q of the MIM
capacitor will be damped. However, instead of using a
single device structure, as in Figure 10(a), we can improve
the capacitor Q by designing a multi-finger structure.
Figure 10(b) shows the difference in Q between a single-
finger device and a multi-finger device of the same total
capacitance. The quality factor of a small capacitor finger,
QB, is higher than that of a large single-finger device, QA,
because a large device has higher access resistance than
a small finger. If many small fingers are connected in
parallel to achieve the same total capacitance, the Q of
the multi-finger capacitor, QM, is ideally the same as QB.
Therefore, the multi-finger geometry can boost the Q of
equivalent capacitors.

Figure 10(c) shows a multi-finger MIM capacitor in
which eight single-finger capacitors are connected in
parallel [23]. As we can see in the microphotograph, we
must trade off capacitance density and Q. The multi-finger
structure can improve capacitor Q, while the capacitance
density is degraded as a result of the required extra
interconnect area. We must then recalculate the

capacitance density by taking into account the extra wiring
area needed, such as effective area I and effective area II,
as shown in Figure 10(a). The effective MIM capacitance

Figure 9

Inductance as a function of peak Q [24]. (The numbers near the 

symbols are the reference number and the peak-Q frequency in 
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MIM capacitor integrated in a Cu BEOL: (a) MIM capacitor layout view [23]. (b) Q enhancement due to multi-finger layout. (c) Micro-

photograph [23].
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density can easily be reduced by a factor of 2 to 3. The
MIM capacitor tolerance is 
15%. We can apply MIM
capacitors for RF matching circuits as accurate reactive
capacitors.

VPP capacitor
A MIM capacitor is a lateral device, and it is not easy to
implement symmetrical structure. In general, asymmetrical
passive devices are not recommended because their
use usually produces layout limitations. Therefore, we
proposed a VPP capacitor, taking advantage of the
many combinations possible in advanced BEOL. A three-
dimensional geometry view of a VPP capacitor is shown in
Figure 11(a) and a microphotograph in Figure 11(b) [23].
There are three different metal connections noted: Q1,
Q2, and Q3. Q1 is composed of 1X metals (M1, M2, M3,
and M4), Q2 is 2X (M5 and M6) metals, and Q3 has 4X
metals (M7 and M8). Capacitance C3 is formed of 4X
metals (M7 and M8) and the top via contact (V7). C3
has the lowest capacitance density because of the wider
distance between 4X metals. C1 is generated with 1X
metals and the bottom via contacts (V1, V2, and V3). C1
has the highest capacitance density, since these metals can

be placed more closely. C2 is formed by the 2X metals
and via contacts (V4).

VPP capacitors use all combinations of metals to boost
the capacitance density. Vias are used for the contacts
between metals, and these contacts significantly increase
the capacitance density. The VPP capacitance density
increases with the number of interconnections and is now
comparable with MIM capacitor density. As shown in
Figure 11(c), we measured the Q of VPP and MIM
capacitors. The 1.1-pF VPP capacitor occupies a 625-�m2

area. Therefore, the capacitance density is 1.76 fF/�m2.
On the other hand, the 0.8-pF MIM capacitor occupies an
800-�m2 area, and its capacitance density is 1.0 fF/�m2.
The VPP achieves at least 80% higher capacitance density
than the MIM capacitor, which requires the use of multi-
finger devices to improve Q, but the capacitance density is
decreased because of the extra wiring required. Figure 11(c)
also shows that MIM capacitor Q is lower than for the
VPP capacitor beyond 2 GHz. The VPP capacitor can be
fabricated without any extra integration process, while the
MIM capacitor requires extra masks and process steps.
The Q of the VPP can be increased by layout optimization,
and another of its advantages is capacitor symmetry.

Figure 11

Vertical parallel plate capacitor integrated in a Cu BEOL: (a) Three-dimensional view. (b) Microphotograph [23]. (c) Measured Q for 

capacitors. (A: single VPP capacitor with 25   m2; B: multi-finger MIM capacitor with 4 
 200   m2; C: VPP625 model value.)
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Summary of passive devices
For SoC applications, a large variety of high-performance
passive devices are required. We have described high-
performance inductors and capacitors in this section and
showed that many different types of passive devices can be
integrated in a modern SOI microprocessor BEOL. We
have also proved that passive devices are improved with
the use of high-density BEOL and HRS. Owing to the use
of HRS, vertical structure can be built with less penalty
from substrate losses. Also, inductor Q and inductor
density can be traded off with serial or parallel metal
stacking.

4. Circuit examples and circuit isolation

Low-power, low-jitter clock generation
Key to SoC clock generation are low-power, low-phase-
noise VCOs that use on-chip inductors and varactors.
A tuning range of more than 15% is usually required
to cover the frequency band and to compensate for
temperature and process variations. Beyond a 20-GHz
oscillation frequency, wide-tuning-range LC CMOS VCOs
are difficult to design. For example, a 51-GHz VCO in
0.12-�m CMOS with less than 3% tuning range was
reported [33]. A higher tuning range of 9% on a 1.5-V
supply has been reported at 40 GHz on SOI [34]. We
report here a 15% tuning range for a 40-GHz VCO
on HRS at 1.5 V, demonstrating for the first time the
potential manufacturability of such a high-frequency VCO.
A VCO that oscillates from 35.2 GHz to 40.9 GHz from
0 V to 1.5 V across the varactor is shown in Figure 12.
In contrast to the work of [33], where only n-MOS
transistors are used to generate negative resistance, a
more symmetrical cross-coupled inverter using n-MOS and
p-MOS is used, as illustrated in Figure 12(a). This circuit
demonstrates the high-speed and low-parasitic capabilities
of SOI technology. The power consumption is only 12 mW
in the core and 5.7 mW in the buffer from a 1.5-V supply.
The measured phase noise is �90 dBc of the 35.6-GHz
carrier, as shown in Figure 12(c). The measured output
power is more than �20 dBm across the full tuning range,
as shown in Figure 12(b).

High-speed, low-power CML
For high-speed digital processing, current mode logic
(CML) is the preferred architecture. The static frequency
divider-by-two function is usually the slowest because of
the feedback loop used. Figure 13(a) shows the block
diagram and latch of the implemented static CML
frequency divider-by-two [35]. Resistor loads of 400 �

were used for the latch, and no inductive peaking was
used to extend the bandwidth frequency. Figure 13(b)
shows the divider sensitivity as a function of frequency for

different voltage supplies [35]. Because three transistors
are stacked between Vdd and ground, we can use voltage
supplies as high as 2 V without compromising the
reliability of the transistor. A maximum operating
frequency of 30 GHz is achieved for a power consumption
per latch of 6 mW from a 2-V supply. At a 1.5-V supply,
a maximum operating frequency of 28.6 GHz is achieved,
for a power consumption per latch of 3.83 mW. A CMOS

Figure 12
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0.12-�m-frequency divider-by-two using the same CML
latch architecture without inductive peaking operates at
up to 18.5 GHz [36], for an input power of more than
10 dBm, with a power consumption of 13.5 mW per latch
from a 1.5-V supply. At a 1-V supply, the SOI frequency
divider is still operational up to a maximum frequency of
25 GHz, with a power consumption of 1.35 mW per latch.
The SOI CML frequency divider is also more sensitive at
maximum frequency than the bulk version [36].

One way to compare the power and speed performance
of different circuit dividers is to compute the power– delay
product. At 1 V, the SOI divider exhibits a record energy
per gate of 13.5 fJ, assuming two gate delays per flip-flop
and an equivalent complexity of four logic gates [37].
Figure 14 shows a comparison of state-of-the-art static
dividers in several technologies [35, 38 – 41]. To the
authors’ knowledge, the lowest static divider energy
reported for any technology at an operating frequency

higher than 20 GHz is that of 0.12-�m SOI technology.
The closest energy is 24 fJ for an AlInAs HBT technology,
which is 78% higher than that reported in this work. The
mechanism for energy reduction is very different for an
SOI CMOS technology than for an HBT compound
technology. Owing to the threshold- and supply-voltage
scaling, a low operating voltage supply can be used. This
allows a dramatic reduction of switching energy. If we
compare with bulk CMOS, the lower parasitic capacitance
offered by SOI technology is an important factor in
reducing power consumption. This demonstrates the
speed and power advantages of SOI technology for the
CML latches used extensively for RF and high-speed
communications. These results, combined with the
ultralarge-scale integration (ULSI) capabilities of the
technology, are very promising for the integration of
multiple high-speed serial links on the same chip. This
integration could lead to the aggregation and processing
of greater amounts of data than ever before.

High-speed, low-power digital library
We have described above how the active and passive
elements of an SOI technology support the various
functions of an SoC. However, SoCs on SOI will not be
truly producible until designers can access digital libraries
that enable the design of millions of gates of power-
efficient digital logic. The design and production of such
a library, the first on SOI in the industry, is currently
underway at IBM for 0.12-�m technology. The library
supports a wide variety of digital logic gates, a PLL, and

Figure 13
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analog and mixed-signal blocks to support a high-speed
serial interface. These are all designed to operate at a Vdd

of 0.9 V, chosen to provide simultaneous performance
benefits and active power savings.

This library can be described as foundry-friendly
because all key density-limiting ground rules of the
technology are compatible with those of bulk technologies
offered by foundries. Thus, migration of bulk designs does
not necessitate wholesale physical layout changes. The
performance and leakage characteristics of the SOI
technology transistors are similar to or better than those
of the bulk transistors offered by foundries for 90-nm
technology. Thus, the SOI digital library offers an
attractive migration path for designers needing a
performance and power enhancement, but who also
seek to avoid the costs and risks of not-yet-stable 90-nm
technology. The schematic match between floating-body
SOI transistors with bulk transistors makes it possible to
use the same netlist to run circuit simulations in bulk and
SOI technologies.

Designers may anticipate difficulties when migrating
a design from bulk to SOI as a result of SOI-specific
effects, such as the floating-body effect, local heating, and
parasitic bipolar current. The higher leakage levels of an
aggressively scaled technology are also an issue. However,
in the experience of the IBM team that designed the SOI
digital library, some problems were easily prevented, and
enough design options were available to solve the others.
For example, local heating in circuits with substantial dc
current was found to be unimportant, because the physical
layout of the starting-point bulk design provided ample
thermal conductance. Transistors with high threshold
voltage are available and were used to control leakage.
Body-contacted devices were used in analog circuits for
which transistor matching and output conductance are
critical. Latches must always be handled with care in SOI
because floating-body voltages make transistor strength
drift, causing problems in weak feedback-style latches
where keepers and inverters compete for control of the
same node. Clocked feedback, in which the clock turns
off the keeper during the write operation, is preferred
and was used where possible to eliminate keeper–inverter
competition and to allow large keeper devices to protect
against noise. In an SOI technology, noise must be treated
with special care because the parasitic bipolar current is
an extra noise source.

During migration of the digital library design from bulk
to SOI, the IBM design team found that much of the
physical layout was reusable, which greatly simplified the
process. Figure 15 shows the physical layout of the chip.
Almost all placement and wiring was reused. The thick-
oxide transistors of the SOI technology were used to
maintain the library’s 2.5-V I/O. Though ESD diodes in

SOI consume more chip area than their bulk counterparts,
this discrepancy was handled without changing the I/O pin
number or configuration.

Low active and standby power SIMD unit
Low-power DSP is a key component for wireless/wired
SoCs. Communication DSP applications typically allow a
high number of parallel single-instruction multiple-data
(SIMD) operations without loss of computational
efficiency. This in turn allows power savings through
the use of many parallel gates running at moderate
frequencies. SIMD width is often limited by the read and
write port pressure on the register files supporting the
SIMD pipelines. Optimal design points require a balance
between high-frequency design and SIMD pipeline width
to support high throughput at low power. The use of low-
threshold voltage, thin-oxide, and short-channel SOI
devices can allow very high frequency at minimum active
power, but at the expense of increased subthreshold
leakage power. These high-performance devices—
combined with custom circuit techniques using low-
power latches [42], data transition barriers, and tuned
circuits—are ideal for maintaining high performance at
low active power. While these technology choices are ideal
for high-performance digital and analog circuits, they
present a challenge for low-standby-power applications for
large SIMD widths. For wireless applications, controlling
standby power is a key issue. The most promising
approach to solving this important issue is the use of high-
Vt, low-leakage FETS as header or footer power switches
[43, 44] that dynamically alter the pipeline width to trade

Figure 15

Low-power Cu-11 on SOI.
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off throughput for power. A test circuit containing a
complete 40-bit pipeline, which can be used in an SIMD
DSP processor, was implemented. It consists of a saturating
adder, a comparator, and a logic unit. Figure 16(a)
shows the measured power of a four-wide SIMD peak
throughput with various pipeline configurations using
either clock gating or Vdd gating with a high-Vt p-MOS
header switch. Each of these measurements shows peak
throughput for voltages between 0.7 V and 1.3 V. As
shown in Figure 16(b), for the same clock frequency, an
active power consumption 2� lower is measured for the
SOI chip as compared with the bulk chip. Even though the
SOI and the bulk chips were fabricated using the same

0.12-�m technology, the SOI FETs benefit from more
aggressive engineering and have higher leakage than the
bulk FETs. Nevertheless, these results demonstrate that
outstanding active power can be achieved using high-
performance SOI technology, and these basic SIMD
building blocks can be used to construct an ultralow-power
high-throughput DSP for wireless communication
applications.

Isolation on SOI
The integration of large digital cores with sensitive analog,
RF, and high-speed functions will require improved
isolation. SOI technology provides a 10� lower coupling
capacitance to the substrate and offers the opportunity to
use higher-resistivity substrates (HRS). For example, a
10-mA SOI n-FET exhibits, at 5 GHz, a 37-k� isolation
between the drain and the substrate. For a bulk device
having the same current density, the isolation impedance
would be 10� lower. In the discussion of sources of losses
in Section 3, we saw that the Si substrate behaves like a
high-pass first-order filter with a cut-off frequency given by

Fdrel � 1/�2��	0	r� � 1/�2�RsCs�.

S-parameter measurements were performed on wafers
from bulk and SOI technologies to quantify the enhanced
isolation of SOI. The measured structure consists of two
50-�m � 50-�m n� diffusions separated by 50 �m. SOI
wafers with 12-�-cm and 100-�-cm substrates respectively
showed isolation improvement of 13.6 dB and 22.4 dB
compared with a bulk wafer with a 2-�-cm substrate. This
demonstrates that significant isolation improvement can be
achieved between large circuit blocks by using HRS SOI
from dc to the GHz frequency range.

Low-power SOI technology also has the advantage of
generating less noise. In the previous section, we saw
an example of a digital circuit exhibiting 2� less power
consumption on SOI and, therefore, 2� less digital noise.

5. Summary and conclusion
As is well known, SOI CMOS—as a result of its low
diffusion capacitance— has inherent advantages as a low-
power technology. But there are numerous other ways,
less well known, to take advantage of SOI CMOS to
enhance power savings and performance, and to do it with
minimal design difficulties beyond standard bulk design.
As shown in this paper, one can take advantage of
the high performance of SOI to integrate high-speed
communications circuitry with digital elements in a SoC
with low overall system power and cost. Advantage can
be taken of the functional equivalence of SOI and
bulk CMOS technology to use existing proven power-
management schemes. The near match between bulk
and SOI physical layout and device behavior can be used
to facilitate migration of bulk designs and libraries,

Figure 16
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preserving their power and performance advantages.
In short, efficient integration of wired and wireless
transceivers with a microprocessor—made possible by
low-power, high-performance HRS SOI technology—
is fundamental to creating the always-connected and
on-demand computing world that defines our future.
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