On the
performance
and use of
dense servers

Dense servers trade performance at the node level for higher
deployment density and lower power consumption as well

as the possibility of reduced cost of ownership. System
performance and the details of energy consumption for this
class of servers, however, are not well understood. In this
paper, we describe a research prototype designated as the Super
Dense Server (SDS), which was optimized for high-density
deployment. We describe its hardware features, show how they
challenge the operating system and middleware, and describe
how we have enhanced its software to handle these challenges.
Our performance evaluation has shown that dense servers are
a viable deployment alternative for the edge and application
servers commonly found at conventional Web sites and large
data centers. Using industry benchmarks, we have shown that
SDS outperforms a comparable traditional server by almost a
factor of 2 for CPU-bound electronic commerce workloads for
the same space and roughly equivalent power budget. We have
observed the same advantage in performance when SDS is
compared to the alternative solution of virtualizing a high-end
server to handle “scaled-down” workloads. We have also
shown that SDS offers finer power management control than
traditional servers, allowing higher energy efficiency per unit
of computation. However, for high-intensity Web-serving
workloads, SDS does not perform as well as a traditional
server when many nodes must be configured into a cluster

to provide a single system image. In that case, the limited
memory of each SDS node reduces its performance scalability,
and a traditional server is a better alternative. We have
concluded that until technology advances allow denser
packaging of memory or more efficient use of memory across
nodes, the best performance and energy efficiency can be
obtained by heterogeneous deployment of both traditional
high-end and dense servers.

W. M. Felter

T. W. Keller

M. D. Kistler

C. Lefurgy

K. Rajamani

R. Rajamony

F. L. Rawson

B. A. Smith

E. Van Hensbergen

1. Introduction

Recently, several companies have begun to offer dense
servers containing components designed for mobile
computing systems [1-4]." Typically, such servers contain a
low-power x86 processor, designed for mobile computers,

! The IBM BladeCenter* product offering [5] uses a different approach for
improving server density and employs traditional server components rather than

mobile computing technology.

generally clocked at frequencies between 300 MHz

and 1 GHz, with memory ranging from 128 MB to

1 GB, up to 40 GB of disk storage, and one to three
100-Mb/s Ethernet connections. Some of these servers are
configured as single-purpose appliances, while others are
intended for general use. However, little is understood
about their performance, their energy efficiency, or the
application classes for which they are best suited. For

©Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

this paper must be obtained from the Editor. 671
0018-8646/03/$5.00 © 2003 IBM

W. M. FELTER ET AL.

672

Domain of energy-efficient servers

A -
— S — —
= c— — —
= = = =
First tier: Second tier: Third tier:
HTTP caching, HTTP server, Database
firewall, load application server

server, content

balancing, etc. ‘
generation, etc.

Three-tiered structure for a Web site.

instance, there is a perception that the limited processing
resources available on these servers invariably lead to
poor performance compared with high-end servers.
Additionally, their energy efficiency is difficult to quantify
given the lack of standard and agreed-upon metrics.

This paper addresses these issues, with a focus on the
performance, energy efficiency, and class of applications
for which these servers are well suited. We also describe
the additional operating system and system management
support that is needed to overcome some of the perceived
performance and management problems with dense
Servers.

In Section 2, we provide background material and
describe our prototype implementation of a dense server.
Section 3 describes the necessary operating system and
system management support, and Section 4 provides
the bulk of the quantitative performance analysis. In
Section 5, we provide a further, qualitative analysis
of our research prototype. We discuss future work
in Section 6 and related work in Section 7. Section 8
concludes the paper.

2. Dense servers

The case for energy efficiency in servers

There is a growing industry trend to outsource computing
services to large data centers accessible through the
Internet. These data centers use economies of scale to
amortize the cost of ownership and system management
over a large number of servers—typically hundreds or
thousands, densely packed to maximize floor space
utilization, providing the customer with a more cost-
effective approach than the alternative of operating the
same services in-house.

Large-scale deployment, however, pushes the limits of
power-supply and cooling systems in data centers. Power
and cooling costs are already a significant portion of total
operating costs—as high as 25% for some data centers.

W. M. FELTER ET AL.

Intermittent system failures due to insufficient cooling in
densely packed data centers also add to operating costs.
Furthermore, in many data centers, the power supply to
the server racks is a key inhibitor to increasing server
density, with a practical limit ranging from 5 to 7 kW per
rack. This amount of power is often insufficient to allow
the rack to be fully populated with servers, thus exacting a
loss of revenue due to under-utilization of space. Dense
servers solve these problems.

Built using components designed for low-power
operation, dense servers are suitable for environments
that require a high level of deployment density without
violating power-supply limits or generating excessive
heat. They also enable sophisticated cluster-based power
management techniques at a fine-grained level of control
[1, 6-8], further reducing energy consumption. While the
use of low-power components such as mobile processors
implies a reduction in the computing resources at each
server node, the resulting reduction in power and heat
enables more aggressive packaging that increases the
density of server deployment for a given volume and
power budget. Thus, dense servers trade the level of
performance at each server node for a larger number of
servers that can be deployed within the same space. In
Section 4, we examine the impact of this tradeoff on
system performance and power consumption.

Where do dense servers fit?
Computing services accessible through the Internet are
typically organized in a three-tiered structure, as shown
in Figure 1. The first tier consists of an interface to the
network, including routers, load balancers, firewalls, and
Web servers, among others. Servers deployed in this tier
are often referred to as the “edge-of-network servers,”
or simply “edge servers.” The second tier consists of
application servers that implement a rich user interface,
data presentation, and user interactions with the service.
Several technologies exist to implement this tier, including
the IBM* WebSphere* [9], the Oracle** Application
Server [10], and the Microsoft** .NET [11]. The second
tier also connects the first and third tier, with the latter
implementing a data warehouse using traditional database
technology [12]. The typical workload for a first- and
second-tier server is highly parallel, consisting of many
independent threads of execution. These workloads are
well suited to cluster architectures, in which work is
transparently distributed to a set of independent machines.
This makes dense servers reasonable candidates for
deployment in these two tiers, given that they offer a
higher density of processing nodes that can exploit this
parallelism.

On the other hand, the database workload on the third
tier usually requires frequent inter-thread synchronization
to ensure data coherence, and traditional symmetric

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

multiprocessor servers are better suited for these
applications than are dense servers [12]. Therefore, we
focus on evaluating dense servers using benchmarks that
approximate the typical workloads in the first and second
tiers of a Web host.

The Super Dense Server

We have developed a research prototype designated as the
Super Dense Server (SDS), which consumes a maximum
of 13 W during operation. The SDS consists of a custom-
designed board, often referred to as a “blade,” that plugs
into a standard CompactPCI** [13] backplane. The
physical and logical design of the SDS blade is shown in
Figure 2. The blade contains an Intel** Ultra Low
Voltage (ULV) Pentium** III processor,” which has a
256K L2 cache and uses SpeedStep** technology [14] to
adjust its speed from 300 MHz to 500 MHz. It also
includes up to 512 MB of double data rate (DDR) 266
synchronous dynamic random access memory (SDRAM), a
universal serial bus (USB) port, two 100-Mb/s Ethernet
(designated as Enet in Figure 2) connections along with
their physical transceivers (designated as Phy in Figure 2),
and a highly integrated Silicon Integrated Systems (SIS)
635 chipset’ that provides the memory controller, bus
controllers, and an integrated drive electronics (IDE) disk
interface. Since the chipset was originally intended for
mobile devices, it provides a variety of power-saving
operation modes from low-latency processor sleep modes
to full system hibernation. The SDS blade contains a
peripheral component interconnect (PCI) bridge allowing
it to interact with standard blades across the CompactPCI
backplane. It also contains a service processor that can be
controlled remotely through an inter-integrated circuit
(I2C) bus. The service processor is responsible for blade
power-on, power-off, and hot-swap isolation sequences
and supports system management functions.

Up to 32 blades can be mounted in a CompactPCI
chassis that supplies power, cooling, and backplane
connections to the blades and support hardware mounted
in the chassis. The chassis is a 6-U enclosure, where “U”
is the unit of height (1.75 inches) for rack-mounted
components. Standard data center equipment racks can
accommodate 42 U of components. We designed the
SDS blade to be 3 U high, and the connections in the
backplane of the chassis were slightly modified to
allow two blades to be mounted into a single 6-U-high
backplane slot. The CompactPCI backplane carries the
Ethernet, 12C, and power connections for the blades,
eliminating any need for cables to them. We do not
currently use the backplane PCI bus. We modified
the connections in the backplane slightly in order to

2 Intel Corporation, Santa Clara, CA.
3 Silicon Integrated Systems Corporation, Sunnyvale, CA.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

TI ULV P III Clock HS &
TPS5300 |, |300/500 MHz | | generator | | System monitor X
0.95-1V 35 X 35 mm and power 2

MVP I controller ‘;
Power 35X35mm |« o §
Q
DDR SDRAM S
GTL socketed 3
h}fst 22X 12mm X 4|| TIPCI2050 g
;deT 122X 2mm x 4 PCItoPCL =% 3|
bridge —
conn I 14 X 14 X 1 mm N
SIS -~ X
bus controller| 33 MHz 32b PCI e
USB 35 X 35 mm S
)
f NS DP83815 g
' 10/100 Enet |+l 5
National 14 X 14 X 1 mm 9
Semi 3
DP83846A Ethernet: Pre-transformer §
10/100 Phy 3
[RJ45 with
~— " transformer
and LEDs

An SDS server blade.

accommodate the half-height blades, since the standard
connections are for 6-U-high blades. We chose this
packaging format to reduce development time and
expense, since it eliminated the need to design a custom
mechanical enclosure, reduced the cabling requirements,
and allowed us to leverage standard system management
and network switching components.

Figure 3 shows a diagram of the resulting configuration.
The standard 6-U-high chassis contains slots for two
Ethernet switch blades, two system management blades,
and four independent power-supply cards. The remaining
slots in the chassis are used to hold SDS blades. The
Ethernet connections provide the communications among
the blades through the Ethernet switches, which in turn
connect the chassis to the external network. The 12C bus
connections allow the system management blades to

W. M. FELTER ET AL.

673

674

SDS blades (1-36)

Switch
System controllers (S1 and S2) bﬁiﬂzs
_— — —

19120(21]22{23|24/25/26|27|28|29(30) 313233343536 >6U

01]02J03]04]os|o[o7]0sJog]10] 1 1]12[13[14[15]16[17]18[s2] a [b |

—

o o
Fans 2U
o o
——— I
——
19 in.

CompactPCI chassis configuration.

communicate with the service processors on each of the
blades for control and management.

Although resource constraints allowed us to build only
11 working blades, our design point potentially allows up
to 360 systems per standard rack of 42-U height, 19-inch
width, and 30-inch depth, including the necessary cooling
fans, system management blades, power supplies, and
Ethernet switches. The SDS uses conservative packaging
for cost reasons, but a more aggressive design could
substantially increase the implementation density. The
maximum power rating for the rack is within 7 kW, where
5.7 kW of power is allocated for the servers and the
remaining power operates the fans, the Ethernet switches,
and the power supply. Our design yields a density of 8.57
server blades per 1 U. In raw processing terms, this
translates to 180 GHz of x86 processing, 184 GB of main
memory, 71.4 Gb/s of Ethernet bandwidth, an aggregate of
92 MB of L2 caches, and 360 independent memory and
I/O buses. To put this density in perspective, a rack of
42 traditional high-performance servers that fit in the
same space and use contemporary server technology can
accommodate raw processing resources of up to 100 GHz
of x86 processing, 168 GB of main memory, 84 Gb/s of
Ethernet bandwidth, an aggregate of 42 MB of L2 caches,
and 42 independent memory and I/O buses.

Our system differs from other dense server designs
[1-4] in two important aspects: It does not contain a disk
or keyboard, video, and mouse (KVM) connections.

W. M. FELTER ET AL.

Eliminating the disk provides four important advantages.
First, it reduces maintenance costs because we eliminate
the only source of mechanical failure on the blade.
Second, it allows the hardware designer to focus on
increasing the design density. Third, it conforms with
trends in data centers of consolidating storage into an
independent storage area network (SAN) or network
attached storage (NAS) for improved reliability and
simplified storage management. Fourth, it allows the easy
re-tasking of a particular blade by simply pointing its root
file system to a different external partition during boot.
The elimination of KVM connections also offers several
important advantages. The first of these is elimination

of cables, which reduces cost, improves reliability, and
simplifies server installation and management. The second
advantage is improved server density, since the physical
connectors and support chips for KVM devices would
otherwise reduce space for other components. Elimination
of KVM connections is consistent with typical server
deployments in modern data centers, where the video
capabilities of a server are never used. In fact, the KVM
connections seem to be used only when the system
administrator has to walk to a malfunctioning machine
and connect I/O devices to reboot or reinstall software,
which is not a viable solution with the increased blade
density.

Implications for operating system and middleware
The hardware design point that we chose for the SDS has
several implications that affect systems software. Some of
these constitute challenges, such as increased system
management requirements and the performance
implications presented by the lack of a local disk and
relatively small processing power and memory on each
prototype blade. Other implications include the need to
overcome the lack of KVM connections and the need to
implement full console functionality for debugging and
management. There is also the opportunity to exercise
fine-grained control over power management.

Of these challenges, system management and
performance are crucial to establishing these servers as
viable alternatives for Internet sites. System management
is complicated by the increased density, the need for
scalable algorithms, and the desire to have a central point
of control that allows the system administrator to easily
manage the cluster. Performance is also affected by the
need to do swapping across the network and by the need
to carefully manage the limited resources available on
each node. Inefficiencies in the software are likely to
have more serious effects, and relatively sophisticated
middleware is needed to enable the blades to function
as a single system image with scalable performance.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

3. Operating system support

In this section, we describe the operating system support
for the SDS. This support adapts the operating system

to the lack of traditional hardware features such as disk
storage or KVM connections, reduces the complexity of
system management, improves performance, and manages
power consumption.

Linux** DSA

A key enabler for SDS is a server-class operating system
for a node without a local disk or console. While there are
many real-time and client operating systems for hardware
without a local disk or any disk access at all, it has
generally been assumed that all server systems have a
locally attached disk, and a number of operating system
and standard subsystem functions such as boot, shutdown,
swapping, and system management depend on its
existence. During the early 1980s, the developers of
diskless workstations encountered a similar set of
assumptions and reacted by developing variants of
UNIX** for the diskless workstation environment.
Although, as described in Section 7, our approach to
diskless operation is somewhat different from that used
for diskless workstations, it incorporates a number of the
same ideas.

We have constructed an operating system environment
suitable for diskless servers based on the Red Hat 7.1
Linux distribution and the Linux 2.4.17 kernel.* We
designate this environment as the Linux Diskless Server
Architecture (Linux-DSA), and it runs on each blade. This
environment was supported by a MetaServer, a Linux
configuration based on Red Hat** 7.1 Linux that we
constructed to run on a CompactPCI system management
blade from Ziatech** [15]. This management blade,
equipped with a low-power, 20-GB laptop disk, is
dedicated to supporting Linux-DSA on the server blades.
A laptop disk is used instead of a standard server-class
disk to reduce power consumption. Later in this section
we describe the techniques used to minimize the space
consumed by the system images stored on the MetaServer
disk. One MetaServer system management blade is
capable of supporting all 36 server blades in an enclosure.

The MetaServer provides several functions in support of
the SDS blades. It acts as a dynamic host configuration
protocol (DHCP) server that assigns a fixed IP address to
each blade on the basis of its media access control (MAC)
address, giving the blade an infinite lease. In addition to
the IP address, the DHCP server informs the blade which
kernel to boot and what to mount as the root file system.
It also serves as a boot server for each of the server
blades, transmitting the kernel using the standard trivial
file transfer protocol (TFTP). For storage access, we used

4 Red Hat Corporation, Raleigh, NC.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

the Network File System (NFS) for root and other system-
related file access, and a new network block driver that we
have developed, called the Ethernet block driver (EBD)
[16], for swapping. EBD implements a high-performance
protocol for block data transfer that is optimized for
modern high-speed local area networks. We have used this
protocol successfully to support the performance-critical
swapping from the server blades running Linux-DSA to
and from the MetaServer or an alternative swap server.
Finally, the MetaServer is also the master of the 12C bus,
allowing it to collect system status from individual blades,
issue system resets, select blade operating frequency, and
individually power on or off each blade. These features
are critical to our cluster-based power management
techniques, which are described later in this section.

File system layout

To simplify system management and software maintenance
while ensuring a uniform level of software across all of
the blades, Linux-DSA uses a file system layout that
maximizes the amount of standard Linux file space that is
shared by all of the blades. Files stored on the MetaServer
that are used by the diskless blades are kept in a separate
subtree, / dsa. Rather than maintain a separate root file
system image on the MetaServer for each blade, files

are installed only once in a common root file system,

/ dsal r oot . The root file system used by the blades
during runtime is a standard Red Hat Linux 7.1 root file
system image. It is mounted on a non-root directory on
the MetaServer and is exported using NFS and is mounted
read-only by the blades. Thus, the vast majority of the
standard system and subsystem binaries, libraries, and
configuration files are common across all blades. This
greatly simplifies system management, especially software
maintenance and upgrades.

However, it is necessary to maintain separate versions
of certain files because they contain configuration
information that is specific to a particular blade. Each
blade also requires its own copy of certain files written
during normal system operation such as logs, subsystem
lock, and process ID (PID) files. Since the majority of
these files are already under the / var directory, Linux-
DSA uses a separate / var file system for each blade,
which the MetaServer exports read—write to the particular
blade. The / var file systems are configured as directories
within a single physical file system on the MetaServer.
There are a few cases in which the standard Linux
implementation writes into a file in the root file system.
Most of these are easily handled using symbolic links.
However, most of the configuration files, including most of
those found in the / et ¢ directory hierarchy, are common
across all of the blades. Finally, / t np space is also
provided by the / var file system by linking / t np to
[var/tnp. 675

W. M. FELTER ET AL.

676

There are several aspects of our use of NFS that are
worth noting. First, the current Linux implementation
requires that the root file system of the blades be owned
by the root user ID on the MetaServer system; this is
clearly wrong, but Linux NFS does not support user ID or
group ID relativization, which would allow us to have a
non-root user own the / dsa subtree but have it exported
to the blades as root. Second, NFS is often considered to
have performance and scalability problems. However, for
the purposes of supporting a number of server blades
running a typical server workload, the number of root file
system references is quite low and well within the capacity
of our server. Moreover, although there is more logging
activity, logging to the / var over NFS has never been
the performance bottleneck in our benchmarking. Third,
the use of the shared read-only root is critical in our
installation; the laptop drive on the system management
blade simply does not have space for a full, separate
read-write root for each server blade. Moreover, the use
of NFS has the advantage that all of the / var file systems
are actually directories within a single file system on the
system management blade, and thus draw new blocks for
allocation to the files being written from a common pool
of free blocks. This has the advantage of making better
use of the available disk space.

Boot and shutdown

The combination of diskless operation and a well-defined
configuration tremendously simplifies the boot and
shutdown procedures. As indicated above, Linux-DSA
obtains its IP address using a kernel-level DHCP client
during initialization before mounting the root file system
over NFS. Although kernel-level DHCP-based IP
configuration is a standard feature of Linux 2.4.17, we
used a different implementation that simplified the

code and was more easily extended to pass additional
configuration information using DHCP. Since the blade is
a known hardware environment and in practice has only
a single network controller to support, the kernel was
statically configured with the correct network driver and
no other device drivers. This eliminated the boot-time
delays associated with device probing. During the user-
level portion of initialization, the blade, on the basis of
the host name given it by DHCP, determines which / var
file system to mount and sets up any blade-specific
configuration needed.

Shutdown is also very simple and very fast. Since the
blade is diskless and has no nonvolatile state, it can simply
terminate the processes that are currently running,
unmount the file systems, and either turn itself off or
reboot. No lengthy file system synchronization is required.
The MetaServer and any data servers maintain the
integrity of the file system meta-data.

W. M. FELTER ET AL.

Installation, upgrade, and management

Wherever possible, we used standard administrative
commands and management features of Red Hat Linux.
However, in contrast to standard server systems or even
other diskless Linux implementations, many administrative
commands are run on the MetaServer rather than on the
blades themselves, and thus they are run only once, rather
than once for each blade. For example, to install and
manage software packages in the file system image in

/ dsal r oot , we used the standard r pmcommand, which
has a parameter that allows it to operate on an alternative
root file system. For those commands that do not offer the
flexibility needed by our environment, we have written
special scripts to perform the required function. Although
the existing chr oot function provides a partial solution to
the problem, a better, more general way to deal with it
was to use private name spaces such as those in Plan 9
[17]. Changes to the common configuration files affect

all of the blades rather than a single one. Blade-specific
configuration files are located in the / var file system of a
blade and, if necessary, are symbolically linked from their
standard location in the root file system.

Using a single disk image of the system software that
runs on the blades effectively eliminates two problems that
plague disk-based, clustered server systems—the difficulty
of ensuring that all of the nodes in the cluster run the
same software and the time and effort required to
perform a separate software install on each node.
However, there are environments in which different blades
may require different versions of the system software; this
can occur, for example, because an installation has
incrementally upgraded the blades from an older to a
newer level of a set of software packages. Although there
are good reasons to do such upgrades one enclosure or
one MetaServer at a time, it is quite easy to support
multiple system images with a single MetaServer. The
name of the / dsa directory that contains the system
images for the blades is only a convention; by changing
the DHCP configuration file and the file that maps
individual blades to their associated / var file systems,

a system administrator may have different blades use
different system images. Once this is done, the
administrator can make any alterations required to the
request distribution mechanism used by the cluster and
restart any blades that are to run the new software; the
major cost of this is the disk space consumed by the
additional system images.

Swapping

Much of our work with Linux-DSA has been done without
enabling swapping by running entirely within memory.
However, this is impractical for certain workloads.
Normally, if we do use swapping with a Linux-DSA
system, we set up the MetaServer to act as the swap server

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

as well by running the EBD server on it with a separate
disk partition for the swap space of each blade. However,
because of the limited capacity of the disk on the Ziatech
board, we used a separate Linux-based swap server for our
performance evaluation.

Blade monitoring

Although Linux-DSA supports the standard sar and
sadc programs, it also provides a special performance-
monitoring feature that collects performance and
utilization data from the blade and sends it, using user
data protocol (UDP) packets, to a system-monitoring
application. From an architectural perspective, the system-
monitoring application should run on the MetaServer

for the blades, but in practice we run it on a different
machine because the MetaServer is too limited to handle
this function in addition to its other responsibilities. This
mechanism acts as a distributed replacement for the sar
and sadc and allows the system-monitoring application

to collect information about the individual blades and
combine it into an overall view of the resource utilization
of the blades as a whole. The mechanism is also used

to provide the monitoring data used by the request-
distribution mechanism described in the section on power-
aware request distribution.

Other system software enhancements
Beyond Linux-DSA and the MetaServer infrastructure that
it requires, we have also implemented the following:

e A mechanism for distributing requests coming from the
network across the blades in such a way as to reduce
overall power consumption.

e Boot-time firmware that supports very fast boot of our
prototype blades.

e Network-based console and logging support.

e Distributed file caching to optimize the use of blade
memory when running Web-oriented workloads.

Power-aware request distribution

We implemented a power-aware request distribution
(PARD) policy to distribute service requests to the
minimum number of servers in the cluster required to
maintain the desired quality of service, allowing the
remaining servers to be turned off to reduce power
consumption. Each blade runs the performance-monitoring
feature described above to periodically report its resource
utilization to a PARD server. Although this server could
be the same system as the MetaServer, as indicated above,
in our prototype it is a separate machine. Our PARD
server implementation [18] is based on the Linux Virtual
Server (LVS) [19] which has been extended with the
PARD algorithm to direct the load balancing. The PARD
server turns idle blades off by requesting the MetaServer

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

blade to send a power-down command to the server blades
over the I2C bus. The policy for power management itself
is relatively simple and uses the aggregate workload and
well-defined thresholds to decide which machine to turn
on or off. We used a connection-counting approach in
PARD to estimate the current workload; that is, the
incoming workload is estimated by the total number of
active connections established with the blades in the
cluster. Prior measurements were used to determine the
capacity of each blade, or connection_capacity, which is
the maximum number of connections possible while
maintaining an acceptable quality of service (response
time) and allowing for estimated spurts in workload

over short time intervals. Overprovisioning the
connection_capacity allows for power-up delay as newly
activated blades join the cluster and start providing
service. PARD steers requests only toward blades that are
currently powered on, and it selects the blade for each
new connection as the one with the lowest number of
current connections.

PARD uses the LVS to do the request steering, running
it in direct routing mode so that incoming packets go
through the LVS distributor but outgoing packets from
blades go directly back to the client. Since the incoming
request packets are small, LVS is not a bottleneck for our
system. The pre-calibrated connection_capacity is used to
estimate the number of blades required to serve the
current workload, and PARD turns blades on as
necessary. When the number of requests to the cluster
decreases so that fewer blades are required, PARD selects
a blade to turn off, stops sending requests to it, waits until
there are no connections to it, and then directs the
MetaServer blade to turn it off. More sophisticated
policies can be implemented [1, 6, 8, 18].

Although we have not experimented with blade failure
detection and recovery, the combination of the blade
monitoring, PARD, and the rapid reboot of our blades
provides the mechanisms needed to support them. If a
blade does not provide monitoring information to the
PARD server within a suitable timeout, the PARD server
can assume that the blade has failed and mark it as
unavailable to receive new requests. Using the MetaServer
blade, the PARD server can then force the blade to
reboot. When the blade again begins providing monitoring
information to the PARD server, the PARD server detects
that it is running and marks it as available to receive new
requests. If the blade fails to reboot successfully after
some number of tries, the PARD server can declare it
broken and notify the system administrator of the
problem.

Boot-time firmware

We used a version of Linux BIOS [20] to initialize the
blade hardware and execute the DHCP protocol to obtain

W. M. FELTER ET AL.

677

678

the Linux-DSA kernel image to be booted on the blade.
With Linux BIOS, our SDS blades complete the boot
process much faster than a traditional server. Even with
the Linux-DSA boot sequence over the Ethernet, a typical
boot from initiation to an operational Web server takes
about twenty seconds. This rapid boot time dramatically
reduces the time needed to recover or reconfigure a blade
server. It also benefits our PARD policy, since it reduces
the amount of extra capacity that must be kept in the
active state to handle rapid increases in workload. We also
considered fully embedding the OS in electrically erasable
programmable read-only memory (EEPROM), which
would have reduced boot time to only five seconds,

but rejected this alternative because it would require
reprogramming the EEPROM for every kernel change.
One limitation of our implementation of Linux BIOS and
Linux-DSA is that the blade has to run DHCP twice, once
at the BIOS level to get the kernel and once at the kernel
level to configure the IP information: It would be better to
pass the IP information from the BIOS to the kernel and
run DHCP only once.

Console and logging over Ethernet

To reduce space and cabling requirements, the SDS blades
do not have standard KVM or serial ports. To support
normal console access to the SDS blades, we developed
console over Ethernet, which extends the recently
developed Linux netconsole feature [21]. Here we provide
an overview of our console over Ethernet support; a
detailed description is available in [22].

We have extended netconsole in three important ways.
First, console over Ethernet is built into the kernel and
enabled at boot time, and thus starts operation much
sooner than netconsole so that messages generated
during system boot can be observed remotely. Messages
generated prior to network activation are buffered and
transmitted once the network is available. We also added
console over Ethernet support to our Linux BIOS code to
relay power-on self-test and BIOS messages over Ethernet.
This is useful for fault isolation. Second, we have added
tty support, so that we can connect to the system console
through a slightly modified terminal emulator program
that allows full console input and output, including special
console key combinations, escape sequences, and tty
functions. Third, while netconsole transmits messages as
UDP packets, our implementation sends messages using a
special Ethernet frame type. This means that console over
Ethernet does not depend on the correct configuration
and operation of the full network stack. A console monitor
program receives and displays messages contained in these
special Ethernet packets and allows us to selectively
monitor any particular blade or all of them.

Much of the disk output generated by the SDS blades
during normal operation goes to system and application

W. M. FELTER ET AL.

log files. In the Linux-DSA environment, these log

files reside in the per-blade / var file system on the
MetaServer and are accessed by the blades using NFS.
This allows each blade to have its own set of log files.
Postprocessing techniques can merge these files into a
single set if desired. With the exception of the Web-server
logs, most of this log information passes through the

sysl og daemon, which can alternatively be configured

to filter and relay the log messages over the network.

Distributed file cache

To remain cost-competitive with traditional servers, blade
servers must contain significantly less memory per server.
This can limit the performance of blade servers when
running memory-intensive applications such as static Web
serving for large Web sites. To address this issue, we
implemented a set of Linux file cache and Web server
modifications to maximize the effectiveness of the limited
amount of on-board memory.

The primary goal of our distributed file cache design
was to coordinate the contents of the file cache on the
blades within a blade cluster to improve the cache hit
ratio for applications such as Web servers. The file system
containing the content to be cached is accessed through
the Linux network block device (NBD) [23]. Additionally,
each blade also makes the dataset available to every other
blade in the cluster through NFS. We modified the TUX
Web server [21] to hash and rename incoming requests so
that a particular request is always accessed through one
SDS blade in the event of a local file cache miss; when a
miss occurs, TUX uses NFS to obtain the file from its
associated blade. We also augmented the Linux file cache
so that one of three rules would be applied to each file in
the file cache: never evict, aggressively cache, aggressively
evict. An interface we provide through the / proc file
system is used to associate files with rules. Then we
modified TUX to use this mechanism to prevent large files
from displacing smaller, more popular files that it wants to
retain in the file cache.

4. Experimental analysis
This section describes our evaluation of our prototype
hardware and software.

Benchmarks

Industrial benchmarks for three-tiered Web sites focus on
server throughput subject to conformance to a specified
maximum response time [24, 25]. These benchmarks are
designed to represent high-intensity workloads that stress
the capacity of a Web site. The response-time requirement
corresponds to the quality of service stipulations in typical
service-level agreements. Following standard research
practice, we use modified versions of industry-standard

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

benchmarks’ to drive our experimental evaluation. These
benchmarks are widely available and understood, allowing
others in the field to put our results in a familiar context.
While there may be some debate on whether industrial
benchmarks represent actual workloads, they nevertheless
serve as a fair vehicle for comparing different designs and
implementations under the same conditions.

Our first benchmark, (t pc- w), was a modified version
of the e-commerce benchmark, TPC-W**, from the
Transaction Processing Council [24]. TPC-W is a
benchmark for evaluating sites supporting e-commerce
and is modeled after an online retail bookstore. We used
(t pc- w) to evaluate the different server alternatives for
the application server tier. Our implementation was based
on the TPC-W specification, with a few modifications to
provide us with a general-purpose tool for testing our
servers running work typical of the application server tier.
We used the open-source database software MySQL [26]
v3.23.49a as the database server and Apache [27] v1.3.23
with PHP [28] v4.1.2 as the content-generation module.
We used the in-kernel TUX Web server/cache [29] for
serving the static image content. We used query result
caching [30] on the database server and the APC [31]
extension to PHP for script compiling and caching on the
application servers for increased scalability. All of our
tests used a separate machine as the database server. Our
evaluation used a TPC-W scale factor of 100K entries
and the (shoppi ng) workload. We used multiple client
machines emulating concurrent users to the site, as
outlined in TPC-W. Our comparisons were based on the
peak performance of the different server alternatives
defined as the maximum number of WIPS (Web
interactions per second) while meeting the 90th-percentile
total response time constraints specified for all of the
client-site interactions. Since our evaluation focused on
the first two tiers of the Web site, we eliminated the
database tier from affecting our comparisons by always
maintaining a fixed load of 2000 concurrent Web site
users, resulting in a CPU utilization of ~37% on the
database server. This was done by using additional client
and application service machines to maintain the
appropriate background load on the database tier.

Our second benchmark, (web99), was a modified version
of SPECweb**99 [25]. We used the metrics, request types,
and conformance rules of the benchmark. In this
benchmark, one or more clients generate connections to
the HTTP server that consist of a sequence of requests in
the pattern “sleep—HTTP request—wait for response.”
Server throughput was measured as the number of
simultaneous connections per second that satisfy the
bandwidth requirement of 40 000 bytes per second. The

5 For legal reasons, we cannot publish official benchmark results except for
generally available products.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

sleep interval in the request pattern was determined
dynamically to achieve a connection bandwidth between
40 000 and 50 000 bytes per second. The bandwidth
requirement and the way in which it is implemented
enforces a de facto responsiveness requirement of

0.03 seconds per operation. The primary difference
between SPECweb99 and our (web99) benchmark is
the distribution of request types issued by the client.

In our benchmark, 50.4% of requests were dynamic
GETs, 9.6% were dynamic POSTS, and 40.0% were
static GETs. We used the TUX in-kernel Web server
[21] from the standard Linux distribution, modified

as described in the section on the distributed file cache,
as the Web server when running the (web99) benchmark.

Evaluation methodology

System configurations

We used the benchmarks described in the preceding
section to carry out a comparative study between the SDS
and a traditional server configuration. To conduct a fair
and conservative comparison, we fixed the deployment
space and configured both servers to represent the
respective resource densities possible within that space.
For the traditional server configuration, we chose a server
with a 1.2-GHz Pentium III Intel processor, 512-KB cache,
2 GB of RAM, and one 1-Gb/s Ethernet interface. This
server has a 1-U form factor, and it is hercafter referred
to as the 1-U server. The 1.2-GHz processor was the best
available server-grade processor at the time of the SDS
design. Although the 1-U server contains a local disk, we
used it only for system files and swapping, following the
industry trend to use remote disks accessed by NFS for all
data storage. The requirements of some of the software
that we used on the 1-U server (for example, VMware
ESX 1.5 [32]), precluded fully diskless operation. Our SDS
design allows a standard 42-U rack to contain up to 360
blades, so an SDS configuration that uses space equivalent
to a 1-U server would contain between eight and nine
SDS blades. Thus, we configured the SDS deployment to
consist of eight SDS blades, each configured to run the
processor at its low speed of 300 MHz, with 256 MB of
RAM and one active 100-Mb/s Ethernet connection. In
several of our experiments, we used clustering mechanisms
to make our eight server blades appear as a single server
to network clients. We refer to this configuration as a
blade cluster.

Power measurements

We measured power by sampling the ac current and
voltage levels using a sense resistor in-line with the power
cord of the system being measured. Throughout this
paper, the term watts refers to ac wattage input to the ac-
to-dc converting power supplies. Voltage and current were

W. M. FELTER ET AL.

679

680

Table 1

Performance of (t pc-w).

Server WIPS Power WIPS/MHz WIPS/watt CPU Network
W) (%) (Mbfs)
SDS 117 104 0.049 1.13 76 (avg) 7.6 (avg)
Traditional server 68 102 0.059 0.67 96 28.4

sampled at 10 kHz with a National Instruments** SCXI-
1102C filter module® and transmitted to a PC employing
a National Instruments PCI6052E measurement card.
Software running on the PC computes cumulative energy
consumption from the measured voltage and current and
broadcasts a packet over the local subnet containing the
cumulative energy consumed and other data, including a
time stamp, at a rate of once per second. Simultaneously,
the monitoring application (see the section on blade
monitoring) running on each blade sends out a packet
containing performance and utilization data at a rate
of once per second. The power and performance
measurements were collected and stored by a separate
system. These measurements were the basis for the results
presented in this paper. The measured power data and
performance data were independently validated by other
instruments and benchmarks for accuracy and reliability.
In collecting our power data, we made some decisions
about which components to include and exclude in the
measurements of both our SDS prototype and the 1-U
servers. In the SDS configuration, we excluded the power
consumed by the MetaServer, the PARD server, the NFS
servers holding the test data, the network switches, the
chassis management blades, and the fans. We did this for
two reasons. First, and most significantly, although the
design point of our prototype allows us to support at least
36 blades with the parts and servers that we excluded, all
of our measurements use an eight-blade configuration;
thus, they cannot take into account how the power
consumed by the excluded items is amortized across a
much larger number of blades in a fully configured
environment. Second, the prototype environment imposed
some practical constraints on the collection of the power-
consumption data. In the case of the MetaServer, the
PARD server, and the NFS servers, the systems are
housed in different chassis than the blades, and the fans in
the SDS chassis are powered separately from the blades.
To exclude the power consumed by the network switches
and the chassis management blades, we measured a
chassis with no server blades powered on and subtracted
the result from our measurements with one or more
blades active. As a result of these exclusions, we measured
the power consumed by all of the blades that were
powered on. In the case of the 1-U servers, we measured

6 National Instruments Corporation, Austin, TX.

W. M. FELTER ET AL.

the total power consumed by the servers excluding that
consumed by the disk drives; we excluded the disk power
by connecting the drives to a separate power supply. We
did this because none of the power consumed by the disks
used to support our SDS was included in our power
measurements of it.

Efficiency metrics

We employed two efficiency metrics in our evaluation to
quantify the performance of our server configurations with
respect to their processing capacity and power usage.

We measured the performance efficiency as delivered
performance, expressed in terms of the benchmark rating,
divided by raw processing power, in aggregate CPU MHz.
For (t pc- w), performance efficiency is expressed as
WIPS/MHz; for (weh99), it is expressed as connections/MHz
(conn/MHz). We also measured power efficiency as the
delivered performance, in terms of the benchmark rating,
divided by average power consumption in watts. Power
efficiency is expressed in WIPS/watt for (t pc- w) and
connections/watt (conn/watt) for (web99). For both
efficiency metrics, a higher value indicates a more
efficient configuration.

Results for e-commerce workloads
This section reports the results of our evaluation using
e-commerce workloads.

Results for {tpc-w)

Table 1 summarizes the performance of SDS and
traditional server configurations on the application

service workload (t pc- w). SDS obtains 1.72 times the
performance of the traditional server at comparable
energy costs. The CPU is the performance-limiting factor
for both the SDS blades and 1-U server for (t pc- w). Thus,
the key advantage of SDS for this application workload

is the superiority of its CPU density (8 X 300 MHz)

over that of the 1-U server (1.2 GHz). This result is
somewhat surprising, since the conventional wisdom is that
blades are good only for the edge-server type of workload
(tier 1), and that application servers require far more
resources than can be found on dense blades. Table 1 also
presents the performance and power efficiency results for
our two server configurations. The SDS configuration has
a slightly lower performance efficiency, primarily because

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

Table 2 Details for (t pc-w) for both servers.

Traditional server SDS
CPU Network Disk CPU Network Disk
(%) (Mb/s) (ops/s) (%) (Mb/s) (ops/s)
NFS server 2 0.60 5 11.1 128
Database server 37 5.5 49.9 38 5.7 47.3

CPU utilization is lower for SDS than for the traditional
server. Note that the SDS system is significantly more
power-efficient, by almost a factor of 2. Additional
experiments indicate that roughly 3 W per blade could be
conserved during system idle time simply by halting the
processor in the idle loop. We could not implement this
power-conservation strategy because of a problem with
our prototype hardware. Voltage and frequency scaling
could have reduced our energy consumption further
during idle periods. In short, we feel that these results
provide a conservative estimate of the energy efficiencies
possible under varying workloads.

Looking in greater detail into the performance outlined
in Table 2, we see significantly greater NFS server activity
for the SDS blades as opposed to the 1-U server. The
image data set for our evaluation problem size, 100K,
would fit into 4 GB of memory, the amount available on
a fully configured 1-U server, which it could share with a
second processor on a 1-U server. To avoid penalizing the
1-U server by the choice of our comparison point, we
reduce the image data set size to that for 50K while
keeping the problem size the same. After warmup, this
allows the 1-U server to serve all of the images from its
memory, resulting in NFS activity for only server logs.
Each blade has only 256 MB of memory, which could
cache only about a fourth of the uniformly accessed image
data set, resulting in significantly higher NFS server
activity. The increased NFS usage to serve images also
explains the lower average CPU utilization figures for the
blades when compared to the 1-U server—they are waiting
for NFS. There are techniques for avoiding this, such as
static partitioning of the data set with clever request
routing at the switch or connection handoff. Thus,
our numbers present a conservative picture of the
power—performance advantage enjoyed by SDS over
traditional servers. It is worth noting that despite the
dependence of the blades on the network due to diskless
operation and the use of only one network interface by
our prototype hardware, the per-blade network utilization
is quite low; blade network bandwidth is not the
performance-limiting factor for (t pc- w).

The 1-U server poses no load on the NFS server, since
the 2 GB of RAM is sufficient to cache all files. Only log
writes contribute to the traffic. The log writes of the

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

blades force 128 disk I/O operations per second, or one
I/O operation every 8 ms on average. Thus, we can
conclude that NFS is not a bottleneck.

Time-varying (t pc- W) results
In reality, servers seldom operate at full load for long
periods of time. Several studies have found that Web
workloads are bursty in nature, and support the intuitive
notion that Web servers tend to be busiest during some
peak hours during the day and almost idle in others [33].
Our SDS design enables fine-grained power management
of a blade cluster to achieve energy savings during periods
of low to moderate workload. Our blade cluster uses the
power-aware request distribution (PARD) described in
Section 3 to lower the energy consumed by the blade
cluster. The ability to turn blades off and bring them back
up quickly allows our SDS design to achieve much higher
power efficiency than traditional servers.

To evaluate the benefits of SDS systems equipped with
PARD, we developed a time-varying workload based on
(t pc- w). Figure 4(a) illustrates the variation in request
rate over the course of this workload. This request pattern
is based on the diurnal logs of a major financial Web site.
The 24-hour request log was reduced to two hours by
averaging over consecutive 12-minute intervals in order to
produce short, repeatable runs. Further, its peak load was
scaled to the peak sustainable by the SDS system to avoid
overstating the energy savings by having excess capacity
that is always off. To determine the effects of closing
down connections in this accelerated time frame, the
(t pc- w) average user session length was also reduced,
from 15 minutes to two minutes. This reduction is still
significantly less than the 12X reduction in wall-clock
time, giving conservative estimates on the power savings.

Figure 4(b) shows the power consumed by the blade
cluster over the course of the workload both with and
without the PARD mechanism. We did not include the
traditional server in this analysis because there is no
straightforward analog of PARD for a monolithic server
that operates as a single host. Note that power consumed
by the blade cluster without PARD is relatively constant
over the course of the run. In contrast, power for the
blade cluster with PARD is significantly lower during
periods of light to moderate user activity. The total energy 681

W. M. FELTER ET AL.

682

900

800

700

600

500

400

300

Number of concurrent users

200

100

(@

120

100 _lWithout PARD

Power (W)

(b)

Time-varying <tpc-w>: (a) Request rate profiles; (b) power
consumption.

consumed during the run is the area under each curve,
which is 698 joules without PARD and 415 joules with
PARD. Thus, our PARD mechanism generates 40%
savings in energy for the time-varying (t pc- w) workload.
Additional tuning with more aggressive LVS timeouts to
speed up the detection of inactive connections and tuning
the connection_capacity value to match expected workloads
would further improve the energy savings. This experiment
provides evidence of the viability of even simple schemes
to provide significant energy savings using SDS servers for
time-varying workloads.

Results for Web-serving workloads

We used (web99) to study the performance of our blades
on Web workloads containing a mix of static and dynamic
content. We performed two sets of experiments. The first
set of experiments simulated a data center environment

W. M. FELTER ET AL.

that hosts a large number of small, independent Web sites.
In this environment, the workload for each Web site is
typically small, and even though engineers configure such
sites for peak activity, the peak workload is typically
insufficient to drive a single traditional server near its
capacity. In this experiment, each SDS blade handled
one independent Web site. The traditional server, on

the other hand, has to “scale down” by using partitioning
or virtualization. We use VMware ESX 1.5 to partition
the traditional server into up to eight logical partitions.
Each of these handles an independent workload, at the
expense of the virtualization overhead.

Table 3 presents the performance in number of
connections per second (conn/s) and power consumption
in watts for a single blade and single logical partition.
Power consumption for the logical partition was computed
by dividing the aggregate measurement by 8. Table 3 also
shows the performance and power efficiency for both
configurations. To compute the performance efficiency
of a logical partition, we used 1200/8 = 150 MHz as the
effective MHz. These results demonstrate that blades are
a better solution than logical partitioning on a per-unit
basis because each blade can sustain a larger number
of connections per second than a partition. A blade is
also more power-efficient by about a factor of 2. The
superiority of the blades in this environment is due to the
ability to pack twice as much processor capacity into the
same space as the 1-U server. Under this load, the blades
need not communicate with one another to serve the
requests. We also note that during this experiment, no
significant paging activities were detected on either a
blade or a partition, and that the NFS server workload
was similar between the two systems.

Note that a logically partitioned server, however,
provides a “safety valve” in situations in which the actual
workload exceeds the configured peak capacity for one
partition. If one partition undergoes a load spike that
exceeds its peak capacity while the other partitions are
underloaded, the overloaded partition can steal CPU
cycles from the other partitions to handle the spike. In
a separate measurement, we determined that one logical
partition can handle a load spike of up to 420 connections
per second when the remaining seven partitions are idle.

The second set of experiments model the case in which
a single Web site has enough traffic to warrant dedicating
an entire 1-U server to the site. Here we compare a single
dedicated 1-U server and a blade cluster collectively
servicing the site. It does not make sense to group
virtualized servers together here. In the blade case,
we examined two different configurations. The first was
typical of most off-the-shelf software solutions found in
practice, where the blades access the data set of the Web
site through NFS. The second configuration employed
the distributed file cache implementation described in

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

Table 3 Multiple-site (web99) performance.

Server Connls Power Conn/MHz Conn/watt CPU

(W) (%)

SDS blade 125 12.3 0.42 10.2 22.9
Logical partition 65 12.7 0.43 5.1 18.8

Table 4 Results for single-site (web99) workload for two blade-cluster configurations and a traditional server.

Server Power Conn/MHz Conn/watt CPU Network NES disk
(%) (Mb/s) (ops/s)
Blade cluster (NFS) 385 95.3 0.16 4.6 9 (avg) 21 (avg) 130
Blade cluster (Custom) 850 98.6 0.35 8.6 25 (avg) 49 (avg) 188
Traditional server 1250 95.9 1.04 13.0 91 478 89

Section 3. Table 4 shows the results for our single Web
site (web99) workload for a blade cluster using NFS,

a blade cluster using our distributed file cache, labeled
Custom, and a traditional 1-U server.

In contrast to smaller independent Web sites, we find
that large Web sites are best hosted using 1-U servers.
The SDS blade cluster using NFS delivers less than
one third the performance of the 1-U server for this
workload. The distributed file cache support improves the
performance of the blade cluster by more than 100%,
but still achieves only 68% of the performance of a 1-U
server. The power efficiency of the SDS blade cluster is
about 34% less than that of the 1-U server. When serving
1250 connections, the CPU is the bottleneck for the 1-U
server.

The low rate of NFS disk requests for the traditional
server relative to the connections served indicates that it
retains most of the data set in its file cache. In contrast,
disk access is the constraining factor for both the NFS and
custom blade cluster configurations. Because the custom
blade cluster aggressively evicts large files from its page
cache, most of the disk requests in this configuration are
for large files, which enables the disk to attain a higher
number of I/O operations served per second. In the NFS
blade cluster configuration, the file system cache on the
blade servers routinely becomes polluted, so that both
large and small files must be fetched from the remote
disk. Network bandwidth does not limit performance for
any of our configurations.

5. Qualitative assessment and discussion
The previous section characterized quantitatively the
benefits of energy-efficient, dense servers in terms of
performance and energy consumption. In this section
we focus on how systems software contributed to
improvements in other key areas such as reliability,

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

manageability, price/performance, and deployment choices.
We first discuss how our software is an enabler for energy-
efficient servers and then speculate on future opportunities
for system-software research on dense servers.

We believe that the operating system and middleware
enhancements we developed were instrumental in building
a working SDS prototype that was physically dense and
easy to administer and had superior performance and
energy characteristics. One of our fundamental design
decisions was to configure the blades without local disks.
We made this decision because a local disk would increase
power consumption, decrease server density because of
increased volume and cooling requirements, and negatively
affect blade reliability by introducing a mechanical
component into an otherwise completely solid-state design.
Another important design decision was to provide each
blade with only network connections and no other I/O
devices. Since the network connection is carried on the
backplane of the CompactPCI chassis, this effectively
eliminates any direct cable connections to the server
blades. Eliminating cable connections decreases cost and
improves system reliability. Cabling is a nontrivial problem
in environments with large numbers of densely packed
systems: It is hard to find places to put all of them, easy
to connect them incorrectly, and even easier to disconnect
or loosen them accidentally. Fixing a cabling problem can
be a slow and labor-intensive procedure.

Linux-DSA provides the operating system support
required by this design at a minimum overall system cost
by allowing all of the server blades in an enclosure to
share a single read-only root file system stored on a single
disk attached to the management blade. At the same
time, this approach improves system manageability by
centralizing much of the system maintenance and
configuration activity on the MetaServer. Our console over
Ethernet support allows the consoles for all of the blades 683

W. M. FELTER ET AL.

684

to appear at a single, conveniently located workstation,
reducing the need to go to the blade enclosure itself to
perform low-level administrative tasks. Moreover, our use
of console over Ethernet eliminates the need for graphics
hardware and KVM connections on the blades, allowing a
more space-efficient design.

Even though the SDS blades are prototypes and not
production hardware, they are constructed from high-
volume components and therefore could have a
price/performance ratio competitive with those of
traditional 1-U servers. Moreover, server blades should
offer lower cost of operation than traditional servers
because of lower power and cooling expenses. This
suggests that new metrics are needed to properly evaluate
new server architectures that offer different tradeoffs
between purchase price and operating costs. One possible
metric is the ratio of the sum of purchase price and
projected operating costs to the performance of the
machine.

6. Future work

There are a number of opportunities for further research
in the area of energy-efficient servers. We believe that the
ability to partition a server at relatively fine granularity
into multiple components reduces the cost of any single
failure, since only a small fraction of the entire cluster
becomes unavailable. Our very short boot time makes a
fail-and-recover strategy attractive at the blade level.

For reliability, since the CompactPCI architecture
requires a management blade, two system management
blades are configured in each CompactPCI chassis such
that they act as a backup for each other with capability of
hot swap and instantaneous fail-over. The hardware-level
high-availability mechanisms and algorithms are properties
of the Ziatech hardware [15] we are using for the system
management blades. However, to avoid making the
MetaServer a single point of failure, we have to be able
to use the second management blade as a MetaServer
backup. To do this, we must be able to

e Detect MetaServer failure.

e Bring up DHCP on the backup MetaServer.

e Switch the blades’ mounts of their root and / var file
systems from the original MetaServer to the backup.

e Change swap servers if necessary.

Of these items, the most difficult is switching the mounts.
Some of aspects of this process may be easier if EBD
rather than NFS is used to access the root and / var file
systems, since the switch is done at the device rather than
the file system level. Given our very short shutdown and
reboot times, restarting the blades may remain a better
alternative in some environments. In addition, the PARD

W. M. FELTER ET AL.

server is also a single point of failure. Fail-over techniques
similar to those used for the MetaServer should work
reasonably well, but the feasibility of preserving the state
of any open connections and the best techniques for doing
so are topics for further investigation.

Conventional wisdom holds that systems with many
components are harder to manage and increase the total
cost of ownership. A major challenge for the SDS design
is to reduce the cost and complexity of managing a large
number of servers. Our Linux-DSA environment is a
significant achievement in this area, but further
improvements are possible by centralizing additional
management tasks, providing more granular performance
management, and enabling graceful degradation of service
in the event of failures.

One possibility for future research would be to apply
the basic ideas of SDS to other areas such as RAID
storage devices or clustered database servers. We have
applied these ideas primarily to edge and middle-tier
servers, but we believe massive parallelism can provide
similar benefits of high performance and reduced total
energy consumption for other cluster-style architectures.

It would be interesting to explore the benefits of
allowing one blade to borrow the under-utilized resources
of another. For example, instead of completely powering
down a blade whose processing power is not currently
needed, a means might be provided for another blade to
use its memory as a disk cache. This could enable more
flexible configuration of SDS blades for hosting a set of
independent Web sites.

Finally, our evaluation has shown that traditional
servers provide better performance than a blade cluster
for workloads in which processing or data are not easily
partitioned, as in the case of our single-site (web99)
workload. Future research should focus on mechanisms
for efficient distribution of work to the blade with the
correct resources or transparent resource sharing, with the
goal of identifying ways to make more effective use of the
aggregate resources of our blade cluster. In particular, it
would be interesting to explore an extension of our PARD
mechanism that incorporates locality-aware request
distribution [34].

7. Related work

Chase et al. [6] have studied aspects of cluster-based
power management in server systems. They have used

a scheme inspired by economic theory to decide which
servers could be turned off or on depending on workload
variations and desired quality of service. Their report
describes a prototype implementation using traditional
servers and shows up to 29% savings in measured energy
consumption without compromising quality of service or
performance. Pinheiro et al. [35] have described a similar
scheme. Rajamani et al. [18] have examined the issues

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

involved in the design and evaluation of power-aware
request distribution (PARD) schemes for server clusters.
They have identified the key system-workload factors

for PARD schemes and have quantified their impact on
energy-saving strategies. Elnozahy et al. [8] have presented
a theoretical analysis of other power management schemes
for server clusters that support voltage scaling of the
individual servers. Their analysis showed that energy
savings of up to 60% could be possible using coordinated
voltage scaling in conjunction with turning machines on
and off depending on workloads. In a different paper,
Elnozahy et al. [36] have advocated request batching as

a method to achieve energy savings during low-intensity
workloads that would otherwise prevent machines from
being turned off. The work presented here differs from
these efforts in that it focuses on densely packed systems
built out of low-power components and studies the
performance and deployment of such systems as an
alternative to traditional servers.

Dense servers made their product debut in 2001,
subsequent to the initial design of our prototype. RLX
Technologies**” used the Transmeta** Crusoe** chip®
[37] to implement its low-power ServerBlade** [4], but
later switched to low-power Intel processors [14]. More
recently, Amphus**,” Compaq** (prior to its merger with
Hewlett-Packard**), Hewlett-Packard, and others have
offered dense servers that claim excellent energy efficiency
[1-3]. We are not aware of any performance evaluation
of these servers or how they compare to traditional
alternatives. Our blade prototype is similar in spirit to
these offerings in that it uses low-power components and
can potentially pack up to 320 systems in a standard
server 19-inch rack.

After the work described here was completed, several
vendors (including IBM) introduced a new class of
“function-dense” blades which have the same
specifications as 1-U servers but with slightly higher
density. To contrast with this style of server architecture,
the blades described in this paper are now commonly
referred to as “node-dense” blades. Clearly, function-
dense blades are suitable for all workloads that can run
on two-way or smaller servers. We expect that node-dense
blades will retain their density and power advantage for
suitable workloads. In a market in which all two-way and
smaller servers are blades, the question changes from
whether blades or conventional servers should be used
to what kind of blades should be used.

Power management has been studied extensively for
pervasive computing devices and portable computers.
Lorch and Smith have provided a survey of software
techniques for power management [38], and Ellis has

7 RLX Technologies Corporation, The Woodlands, TX.
8 Transmeta Corporation, Santa Clara, CA.
9 Amphus Corporation, San Jose, CA.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

made the case for involving the software in power
management [39]. Vahdat et al. have described operating
system techniques for managing the power of dynamic
memory [40], while Flinn and Satyanarayanan have
described several techniques for adapting the system to
application profiles in mobile systems [41]. There are
also several standards that specify the interfaces between
power management software and the hardware [42, 43].
The difference between all of these efforts and the work
presented here is that they have remained focused on
portable applications, whereas we have focused on server
workloads. Owing to the relatively short time that dense
servers have been in existence, it is not yet clear whether
the differences in application structure and resource
demand will imply the need for additional power
management features and methods, although our initial
work has led us to believe that this will be the case.

8. Conclusions

We have demonstrated that dense servers offer better
performance and lower energy consumption on CPU-
intensive as well as multiple small-scale, independent
workloads than do alternative deployments using
traditional servers. For TPC-W-style workloads, our
prototype SDS implementation, configured as a blade
cluster, outperforms a traditional server by almost a factor
of 2 at comparable energy costs. Similarly, for small-scale,
independent workloads, a group of dense servers running
as individual systems offers better performance and lower
energy consumption than a virtualized server handling the
same workload. On the other hand, the relatively small
amount of memory on each prototype SDS blade makes it
difficult to scale up the performance of a cluster of dense
servers on memory-intensive workloads without either
specialized software or static partitioning of the data.
Even then, a traditional server offers better performance.
We conclude that the choice between dense and
traditional servers currently depends on the intended
usage, and in many cases, installations may be best served
by a mixture of the two. However, the technology trends
are that components designed for low-power processing
continue to increase in the amount of computing resource
they offer. Since our work was conducted, both blades
and traditional servers have increased in performance in
roughly equal proportion; as of the completion of this
paper, the densest blades used 900-MHz Pentium III
CPUs and up to 1 GB of RAM, while 1-U servers had two
2.8-GHz Xeon CPUs and up to 8 GB of RAM. Because
the relative performance of blades and traditional servers
has been essentially unchanged, we expect that our
conclusions will continue to hold. If these trends continue,
we predict that the advantages of dense servers will grow
while their limitations gradually disappear. 685

W. M. FELTER ET AL.

686

Acknowledgments

We would like to thank Jessie Gonzalez, David Pruett,
Chuck Lanier, and Alan Van Antwerp for their help
during server bringup. John Carter had several useful
suggestions concerning the methodology of evaluation.
Chandler McDowell helped in setting up the power
measurement. Alison Smith and Ravi Kokku helped in
the implementation of the PARD infrastructure. Patrick

Bohrer, Bishop Brock, David Cohn, and Hazim Shafi had
several useful comments on the paper and the early stages

of this work. This research was supported in part by the
Defense Advance Research Projects Agency under
Contract No. F33615-00-C-1736. We acknowledge the
trademarks and copyrighted material mentioned here as
the property of their owners.

*Trademark or registered trademark of International Business

Machines Corporation.

**Trademark or registered trademark of Oracle Corporation,

Microsoft Corporation, Intel Corporation, PCI Industrial
Computer Manufacturers Group, Linus Torvalds, The Open
Group, Red Hat, Inc., Ziatech Corporation, Transaction
Processing Performance Council, Standard Performance
Evaluation Corporation, National Instruments, Inc., RLX
Technologies, Inc., Transmeta Corporation, Amphus
Corporation, Compagq, Inc., or Hewlett-Packard Company.

References
1. Amphus Corporation, San Jose, CA, “Virgo: A

ManageSite-Enabled, Fully Manufacturable, Ultra-Dense

Server Design,” 2001.

2. Hewlett-Packard Company, Palo Alto, CA, “Proliant
BL10e Server” (formerly a product of Compac, Inc.),
January 2002.

3. Hewlett-Packard Company, Palo Alto, CA, “HP bc1100,”

December 2001.

4. RLX Technologies, The Woodlands, CA, “Redefining
Server Economics,” May 2001.

5. See http:www-1.ibm.com/servers/eserver/bladecenter].

6. J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R.
Doyle, “Managing Energy and Server Resources in
Hosting Centers,” Proceedings of the 18th Symposium
on Operating Systems Principles (SOSP), October 2001,
pp- 103-116.

7. P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,

C. McDowell, and R. Rajamony, “The Case for Power
Management in Web Servers,” Power-Aware Computing,
R. Graybill and R. Melhem, Eds. Kluwer Academic
Publishers, New York, January 2002.

8. E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-
Efficient Server Clusters,” presented at the Workshop
on Power-Aware Computing Systems, Cambridge, MA,
February 2002; workshop proceedings to be published as
an issue of Lecture Notes in Computer Science (LNCS),
Springer-Verlag, Heidelberg, Germany.

9. See http://www-3.ibm.com/software/infol /lwebsphere/.

10. Oracle Corporation, Redwood Shores, CA, “Application
Server”; see http://www.oracle.com/ip/deploylias/.

11. Microsoft Corporation, Redmond, WA, “Microsoft .Net”;

see http://www.microsoft.com/.

12. J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques, Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 1993.

13. PCI Industrial Computer Manufacturing Group,

W. M. FELTER ET AL.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

“CompactPCI Specifications, PICMG 2.16,” October 2001;
see http://www.picmg.org/.

. Intel Corporation, Santa Clara, CA, “SpeedStep”; see

http://developer.intel.com/mobile/Pentium I11/.

. Ziatech Corporation, Rochester, NY, “Redundant CPU

Architecture for High Availability Systems,” 2001.

. E. V. Hensbergen and F. Rawson, “Revisiting Link-Layer

Storage Networking,” Technical Report 22602, IBM Austin
Research Laboratory, Austin, TX 78758, 2002.

. R. Pike, D. Presotto, K. Thompson, H. Trickey, and

P. Winterbottom, “The Use of Name Spaces in Plan 9,”
Oper. Syst. Rev. (reprinted from Proceedings of the 5th
ACM SIGOPS European Workshop) 27, No. 2, 72-76
(1992).

K. Rajamani and C. Lefurgy, “On Evaluating Request-
Distribution Schemes for Saving Energy in Server
Clusters,” Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software, March 2003, pp. 111-122.

W. Zhang, “Linux Virtual Server for Scalable Network
Services,” presented at the Ottawa Linux Symposium,
2000.

R. Minnich, J. Hendricks, and D. Webster, “The Linux
BIOS,” Proceedings of the Fourth Annual Linux Showcase
and Conference, October 2000, pp. 73-79.

Red Hat Corporation, Raleigh, NC, “Netconsole,” 2002;
see http://www.redhat.com/software/rhel/notes/ws)/.

M. Kistler, E. Van Hensbergen, and F. Rawson, “Console
over Ethernet,” Proceedings of the FREENIX Track: 2003
USENIX Technical Conference, June 2003, pp. 125-136.
Linux Network Block Device, “NBD,” 2002; see http://
nbd.sourceforge.net].

W. Smith, “TPC-W: Benchmarking, an Ecommerce
Solution,” The Transaction Processing Performance
Council, February 2000; see http://www.tpc.org/tpew/.
Standard Performance Evaluation Corporation, “An
Explanation of the SPECweb99 Benchmark,” 1999; see
http://www.spec.org/.

P. DuBois, MySQL, New Riders Publishers, Indianapolis,
IN, December 1999.

Apache Software Foundation, “The Apache HTTP
server”; see http://httpd.apache.org/.

Apache Software Foundation, “PHP,” 2002; see http://
www.php.net/.

Red Hat Corporation, Raleigh, NC, “TUX 2.1,” 2001; see
http://www.redhat.com/docs/manuals/tux/TUX-2.1-Manual/.
K. Rajamani, “Multi-Tier Caching of Dynamic Content
for Database-Driven Web Sites,” Ph.D. thesis,
Department of Electrical and Computer Engineering,
Rice University, Houston, TX, October 2001.

APC Community Connect, “APC: Alternate PHP cache”;
see http://lapc.communityconnect.com/.

VMware, Inc., Palo Alto, CA, “VMware ESX Server 1.5,”
2002.

M. Crovella and A. Bestavros, “Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes,”
Proceedings of the 1996 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May
1996, pp. 160-169.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum, “Locality-Aware
Request Distribution in Cluster-Based Network Servers,”
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 1998, pp. 205-216.
E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath,
“Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems,” presented at the
Workshop on Compilers and Operating Systems for Low
Power, September 2001.

E. Elnozahy, M. Kistler, and R. Rajamony, “Energy
Conservation Policies for Web Servers,” Proceedings of the

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

4th USENIX Symposium on Internet Technologies and
Systems (USITS’03), March 2002, pp. 99-112.

37. M. Fleischmann, “Crusoe Power Management: Cutting
x86 Operating Power Through LongRun,” presented at
the Embedded Processor Forum, June 2000.

38. J. Lorch and A. Smith, “Software Strategies for Portable
Computer Energy Management,” IEEE Personal Commun.
Magazine, pp. 60-73 (June 1998).

39. C. Ellis, “The Case for Higher-Level Power
Management,” Proceedings of the 7th IEEE Workshop on
Hot Topics in Operating Systems (HotOS-VIII), 1999, pp.
162-167.

40. A. Vahdat, A. Lebeck, and C. Ellis, “Every Joule Is
Precious: The Case for Revisiting Operating System
Design for Energy Efficiency,” Proceedings of the 9th ACM
SIGOPS European Workshop, September 2000.

41. J. Flinn and M. Satyanarayanan, “Energy-Aware
Adaptation for Mobile Applications,” Proceedings of the
17th ACM Symposium on Operating Systems Principles
(508P99), 1999, pp. 48-63.

42. Intel, Microsoft, and Toshiba, “Advanced Configuration
and Power Management Interface ACPI Specification,”
1999; see http://www.intel.com/ial/WfM/design/pmdt/
acpidesc.htm.

43. PCY9 System Design Guide, Microsoft Press, Microsoft
Corporation, Redmond, WA, 1999.

Received November 10, 2002; accepted for publication
March 28, 2003

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

Wesley M. Felter IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(wmf@us.ibm.com). Mr. Felter joined IBM in 2001 after
receiving a B.S. degree in computer science from the
University of Texas at Austin. He is currently working on
low-power software and systems.

Tom W. Keller IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(tkeller@us.ibm.com). Dr. Keller received a B.S. degree in
physics with honors in 1971 and a Ph.D. degree in computer
science in 1976, both from the University of Texas at Austin.
He currently manages the Power-Aware Systems Department
at the Austin Research Laboratory. Before joining IBM in
1989, he helped inaugurate the first Cray-1 computer at the
Los Alamos Scientific Laboratory and prototyped a parallel
database computer at MCC, where his performance group
created the well-known TPC-C benchmark. Dr. Keller has
served as Associate Director of the University of Texas
Computation Center and Chair of ACM Sigmetrics. He is
the author of 39 refereed publications and several patents.

Michael D. Kistler IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(mkistler@us.ibm.com). Mr. Kistler received a B.A. degree in
computer science from Susquehanna University in 1982 and
an M.S. degree in computer science from Syracuse University
in 1990. He joined IBM in 1982 and has held technical

and management positions in MVS, APPC, and OS/2
development. He also worked (for two years) at Lotus/Iris
on clustering technology for the Lotus Domino product. He
joined the Austin Research Laboratory in 2000 and is
currently working on projects focusing on the management
and performance of clusters of dense servers. He is also
currently a Ph.D. student in the Department of Computer
Science at the University of Texas at Austin. Mr. Kistler’s
research interests are parallel and cluster computing,
particularly for large commercial applications such as Web
application servers.

Charles Lefurgy IBM Research Division, Austin

Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(lefurgy@us.ibm.com). Dr. Lefurgy received B.S.E. (1994),
M.S.E. (1996), and Ph.D. (2000) degrees in computer
engineering from the University of Michigan. His dissertation
work focused on compressed memory systems for embedded
computers. He then joined the Austin Research Laboratory to
work on software optimizations for energy-efficient server
design. Dr. Lefurgy’s other research interests include
microarchitecture, memory management, and simulation

of computers.

Karthick Rajamani IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(karthick@us.ibm.com). Dr. Rajamani is a Research Staff
Member in the Power-Aware Systems Department at the IBM
Austin Research Laboratory. He is a graduate of the Indian
Institute of Technology, Madras, and holds master’s and
doctoral degrees in electrical and computer engineering

from Rice University, Houston, Texas.

W. M. FELTER ET AL.

687

688

Ram Rajamony IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(rajamony@us.ibm.com). Dr. Rajamony received a Ph.D.
degree in electrical and computer engineering from Rice
University in 1998 and a B.Tech. degree in electrical
engineering from the Indian Institute of Technology, Madras,
in 1989. At the IBM Research Division, which he joined in
1998, his research interests have spanned the areas of server
power management, computer architecture, and operating
systems. He is a co-inventor of six patents and has published
more than 15 papers at venues such as USENIX, ISCA, and
SIGMETRICS. In 2002, Dr. Rajamony received an IBM
Outstanding Innovation Award, and in 1997, the ACM
SIGMETRICS Best Student Paper Award.

Freeman L. Rawson IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(frawson@us.ibm.com). Mr. Rawson joined IBM in 1973 in
San Jose, California, after graduating from Michigan State
University and Stanford University. In 1976 he transferred to
the IBM facility in Boca Raton, Florida, where he worked on
systems software development for the IBM Series/1 and its
successors and on the development of OS/2. In 1990, he
joined the group responsible for the development of future
kernel technologies for IBM low-end and mid-range systems
products and became the Technical Team Leader of the Core
Kernel Technology group. In 1995, he moved to the IBM
Austin facility with that group, and in 1996, to the Austin
Research Laboratory. Mr. Rawson is currently working on the
analysis, prediction, and reduction of power consumption in
server systems.

Bruce A. Smith IBM Systems Group, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(bruces@us.ibm.com). Mr. Smith received a B.S.E.E. degree
from the University of Pittsburgh in 1976. He joined IBM in
1977 and has worked mainly on Intel Architecture systems,
beginning with the PC/AT. He was the system lead on seven
high-volume microchannel desktop systems and is currently
involved in x-series development, working on advanced telco
servers. He is the inventor or co-inventor of nine patents, two
of which were recognized in 2000 via an IBM Distinguished
Contribution Award.

Eric Van Hensbergen IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(bergevan@us.ibm.com). After receiving a B.S. degree in
computer science from the Rochester Institute of Technology
in 1997, Mr. Van Hensbergen joined Bell Laboratories to
work on the Inferno operating system kernel. Two years later
he continued his work at the Lucent Corporation, providing
kernel and operating system support work for the PathStar
access server converged network platform. He joined the
Austin Research Laboratory in 2001 to work on the Super
Dense Server Project and contribute to efforts on other low-
power systems.

W. M. FELTER ET AL.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

