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This paper describes and evaluates predictive power
management algorithms that we have developed to minimize
energy consumption and unmet demand in parallel computer
systems. The algorithms are evaluated using workload data
obtained from production servers from several applications,
showing that energy savings of 20% or more can readily

be achieved, with a small degree of unmet demand and
acceptable reliability, availability, and serviceability (RAS)
impact. The implementation of these algorithms in IBM system
management software and the possibilities for future work are

discussed.

1. Introduction

Concern over the power consumption of computer systems
is no longer limited to long-lived embedded applications
such as spacecraft and aerospace systems, but is spreading
to the general-purpose computer market. Power
consumption and dissipation constraints are jeopardizing
the ability of the IT industry to support the business
demands of present-day workloads, especially in the areas
of electronic commerce and Web hosting. Given existing
physical infrastructure, it can be difficult to get power into
and heat out of such large systems, while power shortages
such as those recently experienced in California impose
further, unpredictable constraints.

This is in part because server complex size is growing
dramatically in response to skyrocketing electronic
commerce and Web hosting computational needs, and
in part because processor power consumption is also
growing, to well over 100 watts per processor for some
present-day processors. Modern-day server complexes for
electronic commerce and Web hosting constitute literally
thousands of servers operated in parallel, consuming
thousands of square feet of computer room space and
many kilowatts of power. In some cases there is simply no
additional power and cooling capacity in a given physical
environment to support increases in capacity.

Lower-power processors are now becoming available
from the industry, but it is safe to say that a new market-
acceptable price—-power—performance equilibrium has yet
to be demonstrated in the server space, and in fact the
performance characteristics of lower-power processors may
limit their ultimate penetration into this space. Moreover,
processor power consumption, while significant, does not
account for all the power consumed by a modern server.
Memory controllers, I/O adapters, disk drives, memory,
and other devices consume a non-negligible fraction
of server power cannot be disregarded. Finally,
incorporation of advanced power management
functionality into server hardware architectures, while
proceeding because of market demand, must always be
balanced against the reality of minimizing base server
cost in an extremely price-competitive market.

Fortunately, electronic commerce and Web-serving
workloads have certain characteristics that make them
amenable to predictive system management techniques
that can effectively reduce power consumption for a
broad class of server architectures.' They usually support
periodic or otherwise variable workloads, with the peak
workload being substantially higher than the minimum or

! Other appropriately implemented and managed workloads may also have many of
these characteristics.
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average workload. The dynamic range of the workload is
often a factor of 10; that is, the peak workload can be

ten times the minimum workload. Furthermore, such
stampedes can cause the transition from low to high
workload (and vice versa) to be abrupt. These workload
attributes imply that keeping all of the servers powered on
all of the time might be a waste of power, yet the possibility
of failing to meet an unanticipated surge of demand

must be minimized.

These important workloads have other promising
characteristics from a power management perspective.
They are highly parallel and relatively easy to balance. A
typical Web-serving system has a large number of Web
servers fronted by a load-balancing “IP sprayer,” which
provides a single Internet protocol (IP) address to the
outside world and dispatches requests from the outside
world to the many Web servers in the complex to balance
the load among them [Figure 1(a)].

Simplistically, the IP (address) sprayer sends a given
request to the server having the lowest utilization, and, in
turn, the servers keep the IP sprayer updated with their
utilization, response time, or other indication. Workload is
merely routed around failed servers, and the users having
transactions or sessions on a failed server can click again
to have their request go to another server. This works

D. J. BRADLEY ET AL.

quite well because a given request is locale-transparent:
Assuming that all servers have access to the same back-
end source of Web pages or database, as is common in
practice, that request can be dispatched to any Web server
in the complex. Finally, the requests are short-lived
enough that if a given server is “condemned” and new
workload is withheld from it, its utilization quickly falls,
whereas if a new server is brought on-line, new workload
can readily be dispatched to it and its utilization quickly
rises. These workload attributes imply that it should be
relatively straightforward to power individual systems off
and on with minimal disruption to the overall application.
On the basis of these needs and observations, we
have developed and evaluated an algorithm (called
CoolRunnings) that exploits this environment to manage
power on the basis of measured and predicted workload,
such that both unmet demand and power consumption are
minimized. It does this by

1. Measuring and characterizing the workload on all of
the servers in a defined group.

2. Determining whether any servers need to be powered
on or off in the near future by assessing the current
capacity relative to the predicted capacity needs.

3. Manipulating the existing system and workload
management functions to remove load from servers
to be turned off.

4. Physically turning on or off (or switching into and out
of standby or hibernation) designated servers using
existing system management interfaces.

Thus, there is a measurement component, an
algorithmic component, a workload management
component, and a physical server power management
component, as shown in Figure 1(b).

The CoolRunnings algorithm is not intended to replace
emerging power management techniques internal to the
architecture of a server, such as processor clock and
voltage modulation, nor workload-balancing techniques
such as those provided by existing workload and system
management infrastructures. It is intended to supplement
them with computing facility-scale power management
techniques that are capable of supporting a wide range of
systems. CoolRunnings also differs from recently deployed
IBM functions and products, notably Capacity Manager
[1] and Software Rejuvenation [1]. Capacity Manager is
designed to measure long-term (e.g., weeks and months)
trends in resource utilization, and to instruct the customer
to procure additional appropriate resources before system
performance suffers. Software Rejuvenation is designed
to detect long-term (weeks) resource exhaustion due to
bugs such as memory leaks. All or part of the system is
restarted at a convenient time (automatically or by the
customer) before exhaustion of the resources causes an
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unplanned outage. CoolRunnings shares some technologies
from these products, notably the workload characterization
and saturation definitions of Capacity Management, and
some prediction concepts from Software Rejuvenation,
but it is primarily intended to provide short-term (e.g.,
minutes to hours in advance) projections of workload,
and power systems off or on appropriately to meet the
objective function. Thus, CoolRunnings is interested
only in projecting workload far enough forward in time
to allow adequate resources to be powered on and
readied for work when the workload requires them.

This paper describes some predictive power management
algorithms we have developed that attempt to minimize
energy and unmet demand. These algorithms are evaluated
using historical workload data obtained from production
servers from several different application domains, and
we show that energy savings of 20% or more can be
readily achieved with a very small amount of unmet
demand. We then describe how this technology can be
implemented in IBM system management software, and
point to interesting possibilities for future work.

2. Related work

There has been much activity in the study of power
conservation in computing devices. This can be
accomplished at the single system image level [2-4], as
well as at the multisystem level [2, 5-8]. The application
of power management to Web applications [9] is especially
interesting because there is often a widely varying
workload [10], such that dynamic decisions in support of
power management policies can be made through the use
of feedback mechanisms [11]. This paper focuses on the
algorithms for making those decisions on the basis of
current workload conditions in a multiserver infrastructure.
This technique could be especially useful when applied to
servers with a blade form factor [12] in a common chassis.

3. Power management algorithms

Objective
The objective of our power management algorithm is
to meet the offered workload at all times, subject to
minimizing power consumption and not unduly increasing
server failure rate or client disconnection rate due to
excessive power cycling.

Specifically, the figures of merit that the algorithm
attempts to minimize are the following:

1. The energy consumption of the server aggregate,
normalized to the energy consumption when all servers
are powered on. This is computed as the energy
consumption per server (including all of its ancillary
components such as disks, fans, and additional logic
components times the number of servers that are
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powered on. We do not differentiate between the
energy consumption of a completely utilized powered-
on server and an unutilized powered-on server.

2. The unmet demand relative to integrated demand over
a history window, suitably normalized to obtain a
number between 0 and 1. As mentioned below, this
can be extended to incorporate response time
characteristics of met demand.

3. The number of power-on cycles incurred by each
system, normalized to power-on/off cycles per day. This
must be minimized in order to reduce reliability
degradation due to power cycles.

Workload characterization

A server has several resources whose consumption renders
it unable to accommodate additional load. On the basis of
experience with server workloads, we use the following
metrics for utilization:

e CPU utilization.

e Physical memory utilization.

e Local area network adapter bandwidth utilization.
e Disk bandwidth utilization.

These parameters are readily measured® and are the same
as those used to characterize server workload in the IBM
Capacity Management product.

The system workload traces that we had available
for this study always contained CPU utilization, and
sometimes contained proxy information for these other
parameters. We chose to use CPU utilization alone to
test our algorithm, recognizing that other resources
may ultimately constrain performance. Incorporating
additional performance parameters into our algorithm
is straightforward. If the utilization of any resource is
greater than a threshold, additional capacity should be
added; in our case, if any servers are powered off, enough
should be powered on to reduce all utilizations on all
servers to below that threshold. If all utilizations are
lower than this threshold (correcting for hysteresis), and
assuming that there is adequate capacity in the resulting
server group to absorb the load of at least one server
without any resource on any server being over-utilized,
at least one server can be powered off.

For our work, we defined the saturation threshold
for any resource to be 70%, as in the IBM Capacity
Management product. This figure reflects the realities
of the performance characteristics of industry-standard
servers, which suffer rapidly degrading performance as any
resource utilization approaches this value. Also, below this

2 In the Microsoft** Windows** operating system, the parameters can be derived
from the performance counters. In Linux**, they can be derived from data residing
in the /proc directory structure. 705
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utilization, nonlinearities due to queuing are not so large
that approximating response time from utilization is too
misleading. Thresholds can be increased or decreased

on the basis of the load curve of a given system and
application or the degree of conservatism of a system
administrator, and different resources can be given
different thresholds.

If enough is known about the system, the measured
performance parameters can be combined into a fairly
simple closed-form queuing model, and the projected
response time can be incorporated into the objective
function. In this case, the algorithm would attempt to
minimize the unmet demand, plus the response time
associated with the met demand. In some architectures,
the response times can be measured directly, as in [5].

Gain-based algorithm

The gain-based version of the CoolRunnings algorithm
attempts to estimate a capacity envelope at a time in the
near future, and power servers on or off to maintain that
capacity envelope at a desired amount (but not too far)
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above the projected workload. The entire capacity
envelope must always be above the current utilization;
otherwise, unmet demand will result. The projection time
is equal to the time required to power up a server and
ready it for work.

The lower limit of the capacity envelope, that is, the
minimum amount of capacity deemed necessary given
the current workload, is projected by taking the current
workload and adding to it an “uplift” that is based on the
maximum sample-to-sample deviation that was observed
over a given workload history. The upper limit of the
capacity envelope, that is, the maximum amount of
capacity deemed necessary given the current workload,
is projected by taking the current workload and adding
to it an “excess” that is similarly based on the maximum
sample-to-sample deviation that was observed over a given
workload history.

The uplift is equal to the “uplift gain” times this
maximum deviation value, and the excess is equal to the
“excess gain” times this maximum deviation value. If the
current capacity is between the uplift and the excess, no
action is taken. If the current capacity is less than the
uplift, one or more servers are scheduled to be powered
on; if the current capacity is greater than the excess, one
or more servers are scheduled to be powered off. Note
that if the workload is roughly constant and the uplift is
equal to the excess, the algorithm will alternately power
servers on and off at each sample point. The basics of the
method are shown in Figure 2(a) for a sample window size
of six points.

For example [Figure 2(b)], if the current capacity is
1100, the current workload is 1000, the history window is
20, the uplift gain is 20%, and the excess gain is 100%,
the algorithm runs as follows:

1. Scan the last 20 workload samples and calculate the
maximum point-to-point deviation. Suppose that this
value is 200.

2. Calculate the projected capacity envelope. The uplift
is 1000 + 20% X 200 = 1040, and the excess is
1000 + 100% X 200 = 1200.

3. The capacity is 1100, which is greater than the uplift
yet less than the excess. Thus, no action has to be
taken, as illustrated in Figure 2(b). If the capacity were
less than 1040, one or more servers would have to be
powered on to maintain it in the desired capacity
range, and if the capacity were greater than 1200,
one or more servers would have to be powered off.

The history window size, uplift gain, and excess gain are
fundamental to the performance of the algorithm, and
must be judiciously chosen. We show the effects of these
parameters on a variety of workloads below.
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Algorithm based on seasonal characterization
The short-term algorithm does not account for sudden
spikes in workload, because these are not presaged by
variations in the recent sample window. Figure 3(a)
illustrates the unfortunate situation in which a short-term
algorithm, applied to the numerical example above, fails
to predict a sudden spike in workload, thus resulting in
unmet demand.

Fortunately, many workload spikes are repetitious
[Figure 3(b)], based on weekly or daily activity such
as nightly backups, weekly logons on Monday, market
openings and closings, etc. For epochs that are not daily
or weekly, it is a straightforward matter to perform a
calculation such as an autocorrelation to determine the

workload periodicity, and define the epochs appropriately.

For our initial exploratory purposes, we assume (and
our data reinforces) that weekly and daily periods
predominate.

To accommodate seasonal phenomena, we have
developed another algorithm that is based on collecting
workload data over a prior epoch in time, characterizing
the workload of future epochs based on prior epochs, and
setting up a short-term power-on/off schedule based on
that characterization. This approach has the benefit that
it can speculatively power-on systems before periodic
surges in workload. Such a quasi-static epochal capacity
schedule can be overridden by exigencies of the moment,
by augmenting it with a gain-based policy. For example,
if in the next time increment the schedule states that
certain capacity is needed, but a gain-based policy as
described above indicates that more capacity than that
is needed, the capacity indicated by the gain-based
policy can be powered on.

Details of hybrid gain-based/seasonal algorithm
The details of an implementation of this algorithm are
described below. As before, the algorithm consists of a
component to monitor and characterize workload and a
component to adjust capacity.

The utilization-monitoring component measures the
difference in utilization from one point to the next, with
the intent of detecting and recording for future reference
a workload spike that may not have been accommodated
by the short-term algorithm. It does this by detecting
whether the difference in utilization is greater than a pre-
programmed amount, and setting flags accordingly for
future reference.

For example, if the most recent sample is greater than
the previous sample by a given amount (called the
threshold up parameter), the utilization-monitoring
component can set a flag for that particular point in time,
indicating that in one epoch minus one sample interval,
the additional capacity should be added. The amount of
capacity scheduled to be added in one epoch minus one
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sample interval depends on the difference in the most
recent and the next most recent samples. If the most
recent sample is less than the previous sample by a

given amount (called the threshold down parameter), the
utilization-monitoring component can set a flag for that
particular time, indicating that in one epoch minus one
sample interval from the current time, capacity should be
removed. The utilization-monitoring component performs
this characterization for every single sample and stores the
results for future reference.

The capacity-adjustment component adjusts capacity
for the next sample point on the basis of utilization from
prior epochs. At each sample point, it examines the flags
for the time point that is one epoch in the past. If the
flags indicate that capacity must be added or removed,
the capacity-adjustment component does so (Figure 4).

A workload usually exhibits multiple concurrent epochs
of differing periodicities. For example, a workload may
exhibit a daily, weekly, and monthly repetitiveness that can
be detected and exploited. Thus, the capacity adjustment
component must look one day, one week, and possibly one
month into the past to make the capacity-adjustment
decision.

Because of sample time quantization, the monitoring
system may estimate the occurrence of a spike
inaccurately. Thus, when calculating the flags for a given
point in time, it is useful for the algorithm to examine not 707
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only the sample immediately following the point one
epoch back in time, but several samples after that point
(lookahead horizon).

The resulting hybrid algorithm has the capability
of reacting to random workloads using the gain-based
algorithm, and the capability of accommodating periodic
workloads. The algorithm uses the gain-based algorithm
as described above to decide whether recent variations in
utilization justify adding or removing servers, and uses the
epochal algorithm to make the determination on the basis
of long-term (i.e., one or more epochs) variations in
utilization.

Algorithm pseudocode
The following pseudocode outlines the algorithm:

Wor kl oad characterization step:
Measure Current Utilization
If current utilization — last utilization
> Threshold Up
Record Adjustnment Up = current
utilization — last utilization for
| ater use
If last utilization — current utilization
> Threshol d Down
Record Adjustnent Down = current
utilization — last utilization for
| ater use

Capaci ty adjustnent step:
Measure Current Utilization
Short - Term Phase
Over last N points, calculate DV =
max(abs(point-to-point variation))
Calculate Uplift = DV = Uplift Gin
Cal cul ate Excess = DV * Excess @Gin

D. J. BRADLEY ET AL.

Long- Ter m Phase
For each epoch
Retrieve Adjustnment Up for sanple one
epoch back in tinme, mnus one
sanpl e interval
Retri eve Adjustnent Down for sanple
one epoch back in tine, mnus one
sanpl e interval
I f any epoch has Adjustnent Up,
Adj ust ment = nax(Adj ust ment Up
over all epochs)
El se Adj ustnment = nax(Adjustment Down
over all epochs)

Conput e threshol ds step:
If Adjustrment >= 0 (i.e., Adjustnent
Up)
m nCapacity = CurrentUtilization +
max( Adj ustnent, Uplift)
maxCapacity = Current Utilization +
max( Adj ust nent, Excess)
El se (i.e., Adjustnment Down)
m nCapacity = Current Utilization +
max(0, Uplift + Adjustnent)
maxCapacity = Current Utilization +
max(0, Excess + Adjustnent)

Power on/of f processors step:

Determ ne Capacity = Total Avail able
processi ng power * Desired
Utilization

If Capacity < minCapacity

Power On processors until Capacity >
m nCapacity

El se if Capacity > naxCapacity

Power OFf processors until Capacity <
maxCapacity, while ensuring that
Capacity > mnCapacity
(i.e., after powering off
processors, Capacity nay be <
maxCapacity, but will definitely
be > m nCapacity)

Self-tuning implementation
The algorithm has the following tunable parameters:

e Uplift gain.

e Excess gain.

e Desired utilization.

e Window size.

e Threshold up.

e Threshold down.

e Lookahead horizon (not evaluated in this work).

Uplift gain, excess gain, threshold up, threshold
down, desired utilization, and window size comprise a
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multidimensional search space which contains an optimum
figure of merit that is dependent on the workload
characteristics as well as the relative weighting of energy
consumption and unmet demand. In general, finding the
optimum values of these figures of merit within this search
space is tedious and ad hoc at best, and certainly not
practical or optimal for all workloads and system
administration policies encountered in the field.
Therefore, we developed a self-tuning gain-based
algorithm that calculates energy consumption and unmet
demand on the basis of a workload sample for a large set
of values of the input parameters of the algorithm. Then,
the algorithm searches through this set of input values to
find the settings that optimize the figures of merit for

the given workload. Any search algorithm can be used;
typically, because the state space is small, an exhaustive
enumeration could even be used. The self-tuning approach
has the advantage that it can dynamically adapt not only
to any workload that is encountered in the field, but to
changes that occur to the workload over time on any given
system.

4. Empirical workload measurements and
algorithm performance

Simulation methodology

To evaluate candidate power management algorithms
under controlled experimental conditions, we constructed
a workload generator and algorithm simulator that can
generate a variety of synthetic workloads, ranging from
random to periodic, with varying amounts of noise.
Various figures of merit such as energy consumption and
unmet demand can be calculated and displayed. The
algorithm simulator can also read files containing
empirical workload trajectories, as discussed below. This
simulator has been valuable in rapidly working out
algorithm details under closely and easily controlled
laboratory conditions.

The simulator makes certain assumptions about the
dynamics of the workload. The algorithm works by taking
a sample of utilization, looking at recent and epochal
workload history, and computing whether one or more
servers should be powered on or off. For energy
calculation purposes, the simulator assumes that when we
command a server to be powered on, it consumes power
immediately but delivers no capacity until the next sample.
This has the effect of overestimating the unmet demand,
since it is likely that demand will be served in a shorter
time than the sampling interval. Upon shutdown, the
simulator assumes that once a server has been commanded
to shut down, it requires an entire sample interval to shut
down, during which it consumes power but provides no
capacity. This simplification probably overemphasizes the
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energy consumption, since it is likely that a server
can actually shut down in less time than one sample
interval.

Startup and shutdown durations are also a function of
workload inertia, which influences the time required for
the workload from a given server to decay and for full
load to be applied to a newly powered-on server. Even
if a system can be put into and taken out of standby or
hibernation in a few seconds (for servers, this remains to
be seen), if the workload takes minutes to decay or ramp
up, the effective startup or shutdown time will be
constrained by the time constant of this workload.
Furthermore, we do not discriminate between the power
consumption of a fully utilized and an unutilized server,
and the power consumption of the system is calculated as
the power consumption of a single whole server times the
number of powered-on servers.

For convenience, we set the power-on/off latency to be
equal to the sample period of the raw data, which is 15
minutes for the IBM Domino* server [13], two minutes
for the Divahouse server,’ and five minutes for the IBM
server containing data from the 2000 Olympic Games
held in Sidney, Australia® (these workloads are described
below). We have not explored the effect of the frequency
of power-on/off opportunities on algorithm performance,
except to note that as the algorithm tries to minimize
power-on/off cycles, it will not be able to take advantage
of frequent opportunities to cycle power, so we would
expect the effect of power-on/off latency to be weak.

Further assumptions are made about the persistence
of unmet demand. We assume that unmet demand is lost
forever, whereas in actual usage it is possible that unmet
demand could actually be deferred until the requisite
capacity is brought on line. We do not model such
demand deferral, which once again probably causes us
to overstate unmet demand.

To develop the results presented in this paper, the
simulator was set up to automatically evaluate the
algorithm using a large combination of input parameters,
and compute the energy as a function of unmet demand
for all of them. In all subsequent evaluations, no self-
tuning of parameters was performed in order to allow us
to readily observe the effects of varying each parameter.

Lotus Domino database server workload

We obtained workload data as a function of time for a
number of Lotus Domino servers in use at IBM facilities

in Poughkeepsie, New York. These servers support business
applications of the IBM Corporation such as databases

and email. Although the workload is not necessarily
fungible, in other respects as an aggregate it seems to

3 Divahouse is the name of the University of North Carolina (UNC) server.
4 The site is no longer available. 709
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exhibit realistic workload behavior such as periodicity,
high dynamic range, and sudden workload transients.

A typical segment of this data is shown in Figure 5(a).
The data workload shows the total CPU utilization of the
ten servers, sampled every 15 minutes.” The time span is
midnight Tuesday to midnight the subsequent Monday
during January 2000. The periodic nature, high dynamic
range, and sharp transient behavior of the workload are
apparent, as is ample opportunity for power management.

The autocorrelation for this workload is shown in
Figure 5(b). The “lag” is expressed in samples, so one day
corresponds to 95 samples and one week corresponds to

5 The maximum CPU utilization for the ten servers is 1000 “workload units.”
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665 samples. A strong daily autocorrelation is easily
visible, as is a slightly elevated autocorrelation at one
week.

Figure 6 shows the unmet demand versus energy
tradeoff for this workload for a large set of input
parameters. For Figure 6 [as well as Figures 7, 9(b),
and 11(a), shown later], the ordinate shows energy
consumption relative to the energy consumption if all
servers were powered on all the time (with higher energy
consumption at the top of the axis), and the abscissa
shows unmet demand relative to the total demand applied
to the system over the run duration (with higher unmet
demand at the right of the axis). Each circle on the chart
shows the energy and unmet demand for a given setting of
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the six parameters. The energy savings range from 26% to
52%, while the unmet demand ranges from 0.1% to 1.2%.

The color of the circle indicates the number of power-
on cycles. A blue circle indicates that the number of
power-on cycles for the entire system for the entire
evaluation interval (eight weeks) was less than one per
processor per day; a green circle indicates one to two
power-on cycles per processor per day; yellow indicates
two to three power-on cycles, and red indicates more than
three power-on cycles. For reference, a scenario in which
each server is power-cycled once per day is not considered
to unduly reduce server hardware reliability.

The twin-hyperbola curve has a “wishbone” shape, with
energy vs. unmet demand exhibiting a hyperbolic tradeoff
along two distinct arcs. To understand which parameters
cause the figure of merit to traverse a particular arc of the
curve, which ones cause it to cross from one arc to the other,
and, ultimately, what constitute relatively good settings,

a number of vector field plots were produced that show
the effect of changing a single parameter at a time by
the same increment.

The first plot [Figure 7(a)] shows that the effect of
increasing uplift gain is to reduce unmet demand and
increase energy within a hyperbolic arc, but without
crossing to the other arc. An increase in uplift gain causes
the algorithm to be more likely to turn on processors on
the basis of a given degree of variation in the short-term
window. Thus, energy consumption is higher, but the
likelihood of unmet demand is lower.

The next chart [Figure 7(b)] shows the effect of
increasing excess gain. As excess gain increases, the system
is less likely to power-off processors on the basis of a
short-term projected capacity surfeit, so once again energy
consumption increases while the likelihood of unmet
demand decreases, and a change in excess gain does not
cause the point to change arcs.

The next chart [Figure 7(c)] shows the effect of
threshold up on energy consumption and unmet demand.
Threshold up determines how sensitive the algorithm is to
sudden increases in demand that occurred one epoch ago
(for this workload, either one day or one week ago). If a
workload increment in the previous epoch is greater than
the threshold up, the algorithm will immediately schedule
a commensurate increase in capacity at the current time.
Thus, a low value of threshold up causes the algorithm to
closely track the epochal variation, and a high value of
threshold up causes the algorithm to ignore any epochal
variation.

This explains the characteristic “wishbone” shape of the
energy—unmet demand curve. The left arc of the curve
corresponds to low values of threshold up: Because the
algorithm is sensitive to the existing epochal variations in
the workload, and proactively schedules capacity increases
based on those variations, the unmet demand is lower
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than in the right fork in the curve. In the right arc of the
curve, where threshold up is higher, the algorithm does
not take epochal variations into account, is surprised by
the unpredicted workload transients, and incurs larger
amounts of unmet demand.

Thus, the threshold up vector field chart shows that, for
workloads that exhibit periodic workload increments, the
epochal algorithm can be extremely effective in reducing
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unmet demand. We also note that if the workload had no
periodicity, the wishbone curve would collapse into a
single hyperbola, and threshold up would have little if
any effect. We actually see this for other, less periodic
workloads.

The effects of changing the other parameters of the
algorithm are similar to the effect of changing uplift
gain and excess gain, and are not reproduced here. To
summarize,

e Increases in threshold down cause energy to rise and
unmet demand to fall along a given arc of the wishbone.

e Increases in desired utilization cause energy to fall and
unmet demand to rise along a given arc of the wishbone.

e Increases in window size cause energy to rise and unmet
demand to fall along a given arc of the wishbone.

Figure 8 shows energy consumption as a function of
the number of power-on cycles per day per server for the
Domino workload. The first observation is that for this
workload, a large number of parameter settings result in
significant energy savings, with well under one power-
on cycle per server day, and quite reasonable unmet
demand. For example, the point marked by the arrow
shows one such setting, with a 45% energy savings,

a 0.5% unmet demand, and 0.935 power-on cycles per
server day.

UNC ibiblio.org Web server workload

The second workload that we used to evaluate the
algorithm was obtained from the main ibiblio.org file
transfer protocol and Web server called “Divahouse.”
This server, located at the University of North Carolina
at Chapel Hill (UNC), receives several million hits per
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day. The workload, which consists of samples taken every
two minutes, spans 27 days in January 2002.

The autocorrelation is shown in Figure 9(a). Because
the samples are at two-minute intervals, a workload with a
strong daily periodicity would have a peak at a lag of 720
samples, and a one-week periodicity would have a peak at
a lag of 5040 samples. These periodicities are evident from
the autocorrelation, but they are not as pronounced as in
the Domino workload; therefore, we would not expect the
long-term epochal prediction technique to be as effective
as in that case.

Figure 9(b) shows the energy versus unmet demand
tradeoff chart for Divahouse. A 20% energy savings is
accompanied by 0.5% unmet demand, which on the
surface appears to be very reasonable algorithmic
performance. Note the absence of the wishbone shape,
implying that the algorithm is not effectively exploiting
what little epochal behavior is exhibited by the workload.

However, for this workload, it proved more difficult to
obtain large energy savings with a small number of power-
on cycles. As the indicated point in Figure 10 exemplifies,
to achieve energy savings of the order of 20% requires
3.29 power-on cycles per server day, although unmet
demand remains at a comfortable 0.5%. We feel that this
is partly because of the high-frequency components of the
workload, and partly because the algorithm has (and takes)
an opportunity to turn a server off or on every two minutes
(compared to every fifteen minutes for the Domino
workload), resulting in a higher frequency of power cycling.
(The different colors for the points in this energy vs. power-
on cycles chart reflect differing values of normalized unmet
demand. A blue point signifies <1% unmet demand, green
is <2%, yellow <3%, and red >3% unmet demand.)
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Sydney 2000 Summer Olympic Games Web site
workload

The final workload we evaluated was obtained from 12
Web servers located in Sydney, Australia (Figure 11). This
data spans 27 calendar days representing activity before
and during the 2000 Summer Olympic Games, with five
minutes between samples. The energy savings in this
highly overprovisioned application range from 54% to
80%. Unmet demand [Figure 11(a)] was typically <1%,
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and many settings achieved <1 power-on cycle per server
day [Figure 11(b)].

Summary of empirical results

Table 1 summarizes the performance of the algorithm for
the workloads we considered. We also compare the energy
consumption obtained via our algorithm to the energy
consumption for a “perfect” algorithm, in which a) only
sufficient servers are powered on to service the workload
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Table 1  Algorithm performance summary.
Workload Energy Energy Unmet demand, Power-on cycles Comments
consumption, consumption, compared with  per server day
compared with all compared with all  total demand
servers powered  servers powered (%)
on, “perfect”  on, CoolRunnings
algorithm (%) algorithm (%)
Lotus Domino database 37 55 0.5 <1 Strongly seasonal enterprise
database. High dynamic range.
“Divahouse” Web server 32 80 0.5 3.29 Not overprovisioned. Weak
seasonality. Low dynamic range.
Sydney 2000 Summer 14 20 <1 <1 Highly overprovisioned. Low

Olympics Web server

seasonality. High dynamic range.

at any given time, b) servers power up or down
instantaneously and can accept workload immediately
upon power-up, and c) the number of power-on/off

cycles is unconstrained. We think that the poor energy
performance on the “Divahouse” workload, compared with
the perfect algorithm, is largely due to its high-frequency
components, which are difficult to accommodate with a
power-on/off cycle minimization constraint.

5. Practical considerations

In some architectures, power-based workload management
can be accomplished by invoking existing workload-
balancing functionality and informing it that a given server
has to have its workload removed or that a new server is
available for use. This is likely to be the case in the IBM
Director/Network Dispatcher scenario outlined below.
Power control can be accomplished by communicating the

D. J. BRADLEY ET AL.

power control demands to a service processor resident in
the server whose power is to be controlled. This is usually
accomplished over either an in-band or out-of-band
management network, using established application
programmable interfaces (APIs). Depending on its
functional capabilities, a server can be either powered off
or put into a suspended/hibernation state. Note that for
RAS purposes, hibernation is equivalent to a power-off
cycle and thus should not be invoked with total abandon,
but it could result in much shorter power-off/on cycles.

Standalone implementation

In one implementation, all of the functions of workload-
aware power management could reside in a general-purpose
distributed system environment having the workload
execution, workload measurement, workload balancing,
power management algorithm, and power control means.
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When no distinguished server is designated as being
responsible for the collection of utilization data and
the execution of the power management algorithm,

a leader election algorithm can be run to determine
which server of the currently extant group should run
this algorithm and make the power control decisions.
Subsequently, the leader can also invoke the workload
management and power control functions to implement
the decision.
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Implementation integrated into IBM Director and
Network Dispatcher
Figure 12 illustrates how power management functionality
could operate in an environment containing IBM Director
[1] and Network Dispatcher, a component of IBM
Websphere Edge Server [14].

There are several possible sources of utilization
information for the algorithm. The figure shows it being
provided by a utilization calculation thread that is shown
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as part of IBM Director, perhaps using the Capacity
Manager database, but it could alternatively be obtained
from Network Dispatcher as part of workload status, in
which case actual response time measurements would be
available; or, rather than having the utilization calculation
thread obtain the data from the existing Director
monitoring applications, it could obtain utilization data
from the Network Dispatcher advisor.

6. Conclusions and recommendations for
future work
This paper describes a real-time power management
algorithm that is applicable to a parallel complex of
servers having a parallelizable, migratable workload. The
algorithm is designed to minimize power utilization, unmet
demand, and server power cycles. It accomplishes this by
using short-term and long-term workload history and a
simple workload prediction method to anticipate short-
term fluctuations in workload. The algorithm then issues
power cycling commands as appropriate to reduce power
while meeting this predicted workload, with some upside
reserve. Our experiments with this algorithm on
email/database and Web-serving workloads show that
energy savings of 20% or more can readily be achieved,
with typically less than 1% of unmet or deferred demand
and an average of one power cycle per server day. If the
workload has a high dynamic range, or if the system is
substantially overprovisioned, much higher energy savings
are obtained.

The work we have described has led to several ideas
for future work items. We have assumed daily and
weekly epochs, which is a limiting assumption. It
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should be straightforward to improve the epochal
algorithm to detect epochs automatically, perhaps

using frequency analysis or autocorrelation of the
workload. Another opportunity for improving algorithm
behavior might be to look at the autocorrelation

of upsets or spikes of missed demand, perhaps as

a function of the lookahead window, and dynamically
adjust parameters accordingly. It should also be possible
to reduce the impact of sampling granularity on missed
workload transients by enhancing the epochal algorithm
to detect smeared or jittery epochal behavior, perhaps
by further developing the lookahead concept discussed
in the paper.

The dynamical model of the current algorithm assumes
that it takes one sampling interval to power up and apply
workload, or power down a server. In reality, this interval
can be either significantly greater or significantly less than
one sample interval. For example, a server may be able to
be brought into and out of standby very quickly (instant
on/off), or it may take a long time to adjust the workload
for a given application (high workload inertia). The
performance of the algorithm can be improved by
incorporating these different dynamical constraints on a
scenario-by-scenario basis.

We currently use easily measured indicators of server
workload (CPU utilization, etc.) that are independent
of any application. This of course has the advantage of
generality, but perhaps better algorithm performance
could be obtained for a particular application if
application-specific indicators of utilization were used,
such as transaction response time. However, because high-
level indicators of performance may not offer diagnostic
insight into the root causes of poor performance, it
seems reasonable to formulate diagnostic correlations
between basic utilization parameters that are easily
measured on the server and the application-level figures
of merit.

There are several factors to consider when deciding
which machines in a complex to power on or off.
Ultimately, a decision criterion must be formulated on the
basis of a combination of factors such as trying to equalize
power-on cycles across all machines, preferentially powering
off machines in hot spots, preferentially powering off
machines that are unhealthy or require rejuvenation,
machine characteristics, and other aspects we have
not yet considered. For example, if different machines
have different power dissipations or different capacities,
we need to adapt the algorithm to power on the machines
that maximize capacity subject to minimizing power;
this appears to be a linear programming problem. Our
current position is that we should keep the more powerful
machines powered on all the time, and preferentially
cycle the lower-throughput machines for vernier capacity
control, but analysis remains to be performed.
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In reality, server group membership can change over
time for a variety of reasons, such as failures, recoveries,
new servers being added to a complex, etc. The algorithm
currently assumes a static server group membership, but
can easily be extended to accommodate dynamic groups.
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