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Analytic models provide a simple but approximate method for
predicting the performance of complex processing systems early
in the design cycle. Over the years, extensive use has been
made of various queuing models to analyze the memory
hierarchies of multiprocessor systems in order to estimate
the finite cache penalty and resulting system performance
measured in cycles per instruction executed. Two general
modeling techniques widely used for such performance
evaluation are the open-system and closed-system queuing
theories. Closed-queuing models can be solved by various
methods, but mean value analysis is the most common
for closed systems of the type considered here. The basic
differences between these two approaches have been
somewhat obscure, making them difficult to compare.
This work explores some fundamental issues from a
practical engineering viewpoint with the intention of illuminating
the essential differences in the general techniques at the
very basic level. In addition, the results of a detailed study
comparing the two in a moderately complex multiprocessor
memory hierarchy are presented.

Introduction
In its most simple form, any computer system can be
considered to be composed of a number of servers, each
with some given average service time. A server is any
shared resource with a queue, such as a bus or memory
array. These servers can be arranged in various series
(tandem) and parallel combinations, and inevitably give
rise to queues at each server as a result of contention
from multiple requests. In a real system, queues can
arise only at places where registers or other methods are
provided to maintain a queue ahead of a shared resource.
Such places will thus produce a server with a queue. We
assume that these locations are known and constitute the
system to be modeled.

In a uniprocessor or multiprocessor configuration, any
given processor can typically process instructions at some
idealized performance rate, expressed in cycles per
instruction (CPI) executed with infinite cache, called
CPI[�] [1]. This performance rate includes accesses to
the first-level cache (L1), but not to any other cache or
memory subsystem. The implicit assumption is that there
are no misses in L1 (i.e., infinite L1 capacity) or that any
miss requires zero time to reload. If there is no L1 cache,
CPI[�] is the performance, assuming zero time for any
memory accesses. In either case, this is the maximum
performance that can ideally be obtained. The
performance is proportional to 1/CPI, so a smaller CPI
gives faster performance. Because all real systems have
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one or more finite-speed memory subsystems attached,
there will be some additional cycles per instruction as a
result of this memory access delay for L1 misses. In a
system with a simple memory hierarchy—an L1 and only
one main memory attached— every L1 miss incurs a fixed
delay. In a system with a multiple-level cache hierarchy,
each memory access can incur a different delay, and the
same access at different times can incur different delays,
determined by which level of the hierarchy contains the
desired access (access hit) at the moment. An L1 miss
will first access the fastest, and therefore smallest, cache,
typically L2. If a hit occurs, a block (i.e., cache line) or
several bytes are returned to the processor. If this level of
cache does not contain the request, a miss occurs, and the
request propagates to the next level of cache. A hit at this
cache level returns the data with a longer delay than
would have occurred if the request had been in the first
level. If a miss also occurs here, the request propagates to
the next level, etc., until a level is reached that returns
only hits. This additional-delay adder, measured in CPI,
is called the finite cache penalty (FCP). This quantity is
evaluated in both open and closed queues to give the final
system performance as

CPI � CPI��� � FCP. (1)

The delay path for processing any memory request is
the sum of all sequential queuing times (line plus service
times)1 along its path from input to output. Different
requests can traverse different paths and thus can incur
different delays. An average delay is determined on the
basis of some given request rates such as miss rates or
number of customers in the system, discussed below. Such
behavior can be observed in the pipeline of the processor
itself, the memory hierarchy, or a combination. This work
is focused primarily on queuing analysis of memory
hierarchies, although the fundamentals are applicable
in general.

The major problem in all analytical queuing analysis is
to determine the queue delays (i.e., average residence
time) at each server. Early queuing models were based
mainly on open-network analysis because closed queuing
techniques prior to 1980 were extremely difficult and
cumbersome, requiring excessive computation time. Open
queues require that the number of customers (i.e., reload
requests) cannot be fixed at any point in the system. In
fact, all queues must theoretically be capable of unlimited
length, although the actual value is usually quite small.
However, in an actual multiprocessor system, each
processor typically permits only some fixed number of
outstanding misses to exist within the memory hierarchy

at any time. The reason is that unless there are special
provisions to ensure correct ordering of all operations,
a memory access miss stalls the central processing unit
(CPU), which cannot continue processing until a miss-
reload request is fulfilled (often referred to as a blocking
cache). The number of outstanding misses per CPU is
usually one miss total, or one instruction-cache miss and
one data-cache miss in systems that have two such caches.
Newer systems are beginning to allow more simultaneous
outstanding misses (i.e., nonblocking cache), but still
permit only a small, fixed number per CPU. Some systems
allow additional misses for prefetches, which are not real
misses in the sense that they need not halt the CPU, but
they do add to the queues. In any case, the number of
outstanding misses is fixed. This means that if we were to
look at all queues within the memory hierarchy at any
instant of time, the maximum total requests for reloading
misses would be this fixed number. Of course, there could
be fewer at any instant; only the maximum is fixed.

Mean value analysis (MVA) is an analytical technique
that allows the total number of customers (n) in the full
system to be arbitrarily fixed at a constant value. The
theoretical aspects of MVA that permit practical analysis
were first developed in 1980 [2]. Since then, numerous
approaches have been used to apply fundamental MVA
concepts to practical cases [2–5]. However, the internal
queue lengths at individual servers cannot be specified;
rather, only the time-averaged sum of all must equal the
allowed n. The direct effect of this difference in n on
the results of a closed compared with an open model
is extremely difficult to gauge for memory hierarchy
networks of the type considered here. For instance, while
an open-queue analysis must theoretically allow unlimited
queue length, the actual queues are inherently small and
self-limited by an internal negative feedback process
present in a memory hierarchy. This negative feedback in
an open-queue model occurs as described at the end of
the section on open-queue calculation. A similar feedback
occurs in MVA, but affects only the distribution of
customers among the various queues, not the total
number of customers in the queues.

It is not clear that fixing the total number of customers
in the total system, as is done in MVA, is fundamentally a
more accurate representation of the actual system than
the open model. (A brief discussion of this issue is
presented in Appendix C.) Unfortunately, there are no
simple, direct methods of comparing open and closed
systems, so we must rely on comparing the final results of
these two techniques for cases in which multiple factors
affect the final results, as will be seen.

Performance calculations
As previously indicated, it is desirable to calculate the
FCP measured in CPI, which is the average extra delay

1 Standard queuing theory nomenclature defines a queue as consisting of a line
plus the server, so the total queue time is the time in line plus time to be serviced.
We follow this standard queuing theory nomenclature. Unfortunately, common
usage generally refers to the line alone as the queue, and papers and books
sometimes mix the definitions, leading to confusion.
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per instruction introduced by the finite delays of the
memory system. Fundamentally, the calculation is simple:
For an average memory access, calculate the average delay
in terms of CPI encountered in the full memory hierarchy.
When the memory hierarchy consists of several layers of
caches, an average access to the memory will experience
a certain percentage of hits and misses at each level. The
FCP delay is simply the weighted sum of hits at each level
multiplied by the delay per hit at that level. At some level,
misses no longer occur, so the summation terminates.
Details of FCP calculations for an open queue are given
in [6], and the equation for FCP of a k-level memory
hierarchy is shown to be2

FCP � �
k�2

z

�mrk�1 � mrk�Trk � �
k�2

z

hrkTrk . (2)

Assuming no misses in main memory, a hierarchy having
four levels below main memory would have

FCP � �mr1 � mr2�Tr2 � �mr2 � mr3�Tr3 � �mr3 � mr4�Tr4

� mr4Trmain

� mr1��1 �
mr2

mr1
�Tr2 � �mr2 � mr3

mr1
�Tr3

� �mr3 � mr4

mr1
�Tr4 � �mr4

mr1
�Trmain� , (3)

where

mr1 , mr2 � miss rate of cache L1, L2, etc. in misses per
instruction executed;

hr2 � (mr1 � mr2), hr3 � (mr2 � mr3), hr4 � (mr3 � mr4),
hrmain � mr4 are respectively the hit rates of levels 2, 3, 4,
and main;

Tr2 � TL2/Tcpu, Tr3 � TL3/Tcpu, Tr4 � TL4/Tcpu, etc. are
respectively the average residency or hit access delays in
processor cycles per hit of level 2, 3, 4, etc., including
queues and all other delays, with

TL2, TL3, TL4, . . . � average reload delay for L2, L3, etc. in
seconds per hit (or seconds per request); and

Tcpu � processor cycle time in seconds per cycle.

These delay terms must also include a probability of
being visited, as is discussed in detail below.

The L1 cache access time for hits, whether one, two,
or more cycles, is assumed to be included in the infinite-
cache performance, CPI[�]. Equation (2) merely sums
the percentage of all other hits at each level below L1,

multiplied by the average total delay per hit at each level.
The same expression is used for both open- and closed-
queue models. However, the manner of calculating the
queues and residency delay terms (Tr2, Tr3, Tr4, etc.) is
quite different for the two cases, as will be shown.

Open-queue calculation
For a simple open-queue system, the queue at an
individual server is determined by the utilization (U),
which itself depends on the request rate (RR) and service
time (St) of each server. These two parameters alone
allow us to determine the individual server utilization,
a dimensionless fraction, from

U � RRSt , (4)

where RR is in units of requests per second and St is in
units of seconds per request. This is the usual expression
given in textbooks, but it has an implicit assumption,
namely that the visitation factor is unity. A modification
required for a memory hierarchy is considered shortly.
For now, assume that the visitation factor is unity and
Equation (4) is valid. The queue length and delay can be
determined directly from U for various assumed server
types (exponential, constant, general service time) as
given respectively in rows one and three of Table 1. The
individual queue delays can then be used for the delay
terms (Tr2, Tr3, Tr4, etc.) in the average FCP delay of
Equation (3), provided the utilizations are all much less
than about 60% for constant service or general service
time cases, while an exponential service time model is
correct for all U. The sum of these open queues cannot
be specified ahead of time and hence is unknown until
calculated. This is unlike a closed model, for which the
total sum of all queues must be some specified number.3

In an open-queue model, the memory hierarchy input
request rate emanating from each L1 cache, per processor,
is given by

RR �
mr1

CPI Tcpu

requests per second, (5)

where mr1 is the L1 cache miss rate in misses per
instruction executed,4 CPI is the total processor cycles per
instruction executed, including the degrading FCP effect
of the memory hierarchy, and Tcpu is the cycle time of the
processor in seconds per cycle.

For other cache levels of a general memory hierarchy,
the request rates will have similar expressions, but the
miss rates to the various levels will be different. For a

2 The L1 cache is typically not included in the memory hierarchy analysis of a
multiprocessor system because it is considered to be part of the processor. Its
misses, expressed as the miss rate, mr1 , are the input process to the memory
hierarchy of the processor.

3 A caveat: It is not quite so simple for a closed model in which a delay center
such as a CPU is necessary (see the section on the processor CPI in a closed MVA
model).
4 See [6] for a detailed discussion of open-model queuing analysis of both simple
and complex memory hierarchies.
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Table 1 Open-queue equations for delays and queue lengths

M/M/1
Poisson (exp) input

Exponential service time

M/C/1 or M/D/1
Poisson (exp) input

Constant service time

M/E/1
Poisson (exp) input
Erlang service time

Total, mean
no. in Q
(line �
server)

QM �
U

1 � U
QC �

U �
U 2

2

1 � U
�

1

2 � U

1 � U
� U�

�
1

2
�QM � U�

�
U

1 � U
for small U

QE �
U

1 � U �1 �
U

2
�1 � Cs

2��

Mean no.
in line
(line only)

LM �
U 2

1 � U
�

U

1 � U
� U

� QM � U

LC �
1

2

U 2

1 � U
� �QC � U�

�
1

2
�QM � U�

Mean no.
at server

U

1 � U
�

U 2

1 � U
� U U

Note: mean waiting line is shorter than total Q length by U, the number at server.

Total queue
delay (line
� server)
� mean
residence
time Tr

TrM �
U

1 � U

St

U

� St�1 �
U

1 � U�
� St�1 � QM�

� St � TLM

TrC �

�U �
U 2

2 �
1 � U

St

U
�

1

2

USt

1 � U
� St

� St�1 �
1

2
U

1 � U�
� St � TLC

St

1 � U �1 �
U

2
�1 � Cs

2��
Cs

2
�

� 2

St
2

�2

� 1 for exponential service time

� 0 for constant service time

� variance of interarrival times

In general, T [total] � T [line] � T [service].

Delay, Q line
only, TL

TLM �
U 2St/U

1 � U
� St

U

1 � U

� StQM � TrM � St

TLC �
1
2

U 2St/U

1 � U
�

1
2

USt

1 � U �	 St � QC except for
U 2

2


 U�

� TrC � St

Delay, server
only

St

1 � U
�

USt

1 � U

� St � TrM � TLM

�1 �
U

2�St

1 � U
�

1

2

USt

1 � U

� St � TrC � TLC

Utilization U � RRSt � �St for all, where � � RR � request rate for service (requests/time) and St � service time (time/request).

Note: For exponential or constant service time, delay of waiting line only � (line length) � St /U � (line length)/RR.
Delay of total queue (line � server) � (total Q size) � St /U � (total Q size)/RR, where St /U � 1/RR .
In all cases with Poisson input, U fixes size and delay of Q.
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multiprocessor system with many shared resources, the
utilization of each server can be composed of many
different types of accesses and is most conveniently
broken into the various components and summed, as
detailed in [6].

From Table 1, for an open queue, the total queue delay
times (residence) for service centers with exponential
service time per request (M/M/1 queue) and constant
service time per request (M/D/1 queue) are given
respectively by

Total delay �line � server� per request

� TrM �
St

1 � U
� St�1 �

U

1 � U�
� St(1�QM) exponential St, (6)

where QM �
U

1 � U
�dimensionless�

and

Total delay �line � server� per request

� TrC �

�1 �
U

2�St

1 � U
�

1

2

USt

1 � U
� St

� St�1 �
1

2

U

1 � U� constant St (7)

in units of seconds per request, where U is given by
Equation (4) and RR is given by Equation (5). Thus, for
open-queue models we can calculate the delay of each
server on the basis of given input parameters. While the
calculation for each server in a complex multiprocessor
system can be rather tedious [6], the fundamentals are
quite trivial for a simple system. For instance, consider a
uniprocessor system consisting of one CPU, an L1 cache,
and a main memory. All misses in L1 are reloaded from
main memory. Assume that the L1 miss rate is mr1 misses
per instruction executed, the CPU execution rate with
infinite cache (i.e., no misses) is CPI[�], processor cycle
time is Tcpu seconds per cycle, and the average reload
(service) time from main back to L1 is Tm seconds per
request or Tm/Tcpu processor cycles per request. For this
case, the server service time is St � Tm seconds per
request. The memory utilization, from Equation (4), is

U � RRSt �
mr1

CPI Tcpu

Tm . (8)

The above utilization expression is valid for the simple
case of all L1 reloads satisfied in main memory, because
all L1 requests propagate to main memory with a
probability of 1. In a memory hierarchy in which misses
occur at various levels, the probability of requests reaching

any given server will vary as determined by the given miss
rates for each component. The utilization must include
these probabilities because if the probability of all
requests reaching any given server is 0, that server
obviously has an average utilization of 0, regardless of all
other parameters. Each traffic component that accesses a
server must include the probability of each request visiting
(i.e., hitting) each of the downstream caches. This is often
expressed as the visitation probability, which is simply the
hit probability per L1 miss request. For the case of a
uniprocessor with tandem caches, this visitation factor
at each downstream level can easily be expressed as

Visitation probability�k� Vk � �Lk hits/I�/�L1 misses/I�

�
mrk�1 � mrk

mr1

(9)

in units of fractional percent (dimensionless).
The denominator is always mr1 because the probability

is measured per L1 miss. Note that the numerator is
always the hit rate at level k, and this numerator term
occurs repeatedly in Equations (2) and (3) for calculating
the FCP. The visitation probability at each level is used
as a multiplying or weighting factor for the utilization of
each level in open queues or the residency time in MVA,
as discussed later in this paper. For open queues, the
visitation probability is easily included in the utilization
by modifying Equation (4) to become

U � VkRRStk � Vk

mr1

CPI Tcpu

Stk , (10)

where Stk is the service time of server k in seconds per
request.

The total queue delay time for level k with constant
service time is obtained by substituting Equation (10)
into Equation (7) to obtain

Trk � Stk �
1

2
Stk

U

1 � U

�
1

2
S tk

2
Vk mr1

CPI Tcpu � Vk mr1Stk

� Stk seconds per access.

(11)

Once the various total queue delay times are
determined for each level, the final FCP, as in Equation (3),
is given by

FCP � mr1�Tr1 � Tr2 � · · ·

� Trkmax�/Tcpu cycles per instruction. (12)

The given value of CPI[�] is added to the FCP above
to obtain the final system CPI as in Equation (1).

For our previous simple system with L1 misses reloaded
directly from main memory with a service time of Tm
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seconds per request, there is only one delay term, and
the visitation probability is 1. Equation (1) can easily be
solved directly by substituting Equations (11) and (12)
with Stk � Tm into Equation (1) to obtain

CPI �
mr1

Tcpu
�0.5Tm

2
mr1

CPI Tcpu � mr1Tm

� Tm� , (13)

where CPI[�] � CPI[�] is the given value of CPI at
infinite L1 cache (i.e., no L1 misses), and CPI is to be
calculated. All other parameters are given. Obviously,
we could solve for CPI directly by several methods. For
instance, we could obtain a quadratic equation in CPI by
multiplying through by the denominator term above, and
collect terms giving

CPI 2
� CPI�2mr1

Tm

Tcpu

� CPI����
� �mr1

Tm

Tcpu

CPI ��� � 0.5mr 1
2

Tm
2

T cpu
2 � � 0, (14)

which has the standard quadratic form ax 2 � bx � c � 0,
with x � CPI.

For this case, a relatively simple quadratic equation
represents the solution. In general, the CPI equation will
be the sum of all queue delay terms in the network.
There will be as many such delays as there are queues
in the system, with each queue adding another term to
Equation (13) and each having a denominator term involving
CPI and its service time, similar to that above. A single
polynomial can be obtained by multiplying through by all
of the denominator terms. As a result, the order of the
single CPI equation to be solved is equal to the number of
servers plus 1. A system with eight servers would produce
a polynomial of order 9, 20 servers produces a polynomial
of order 21, etc.

For complex systems with many servers and queues,
the determination of all utilization components and final
queues from a direct solution to such a polynomial can be
quite messy, tedious, and prone to error. While a more
direct solution to such a large polynomial is possible, it
is expedient to leave all of the individual equations for
queues and other delays expressed in a spreadsheet or
other convenient equation solver. These equations can
then easily be solved by using the recalculation or
equation-solving capabilities of the methodology.
Any recalculation method, such as those provided in
spreadsheets, that allows all component equations to be
expressed in natural form is very useful. In any case, the
solution for an open system follows a simple algorithm
in principle.

Note that RR in Equation (5) is proportional to 1
over the total CPI [� CPI[�] � FCP], which makes the
analysis nonlinear. It is also the connection that provides

the negative feedback to keep the queues from becoming
large. This feedback occurs as follows.

All queue delays increase as the request rates for
reloads (i.e., misses per second) increase. The request
rates, in turn, are inversely proportional to CPI—the
smaller the CPI, the faster instructions are processed,
thereby generating more memory misses and therefore
more reload requests per second. But any increase in
memory requests per second (due to a decrease in CPI)
creates larger queue delays, which then increase FCP,
which increases CPI, which makes the queue delays
smaller, which decreases CPI, etc. This then reduces the
number of requests per second (number of customers in
the system), and a balance is eventually achieved. In other
words, any decrease in CPI will increase the queue delays,
but any increase in queue delay will increase the CPI,
which then decreases the queue delay, until a balance is
reached. Thus, there is an inherent self-limit to the total
number of customers in the system, but we cannot specify
it; we can only determine its value after the final CPI has
been determined.

Open-queue example of memory hierarchy
with L2 directory, L2 array, and L3 array
The calculation of the utilizations, queue delays, FCP, and
final CPI of an open-queue memory-hierarchy network is
relatively straightforward using the above relationships.
Memory hierarchies typically contain translation
directories, but they may or may not have to be included
in the delay path, depending on the organization of the
cache level. A late-select organization in which the cache
directory is accessed at the same time in parallel with the
cache array will see only the delay of the slowest path,
typically the array. However, a sequential organization, in
which the directory is accessed first before accessing any
array, will see the additional directory delay component.
Our model assumes a sequential organization for the L2
level and ignores any L3 directory delay components. This
is shown in Figure 1, which consists of a second-level
cache, L2 with its associated directory, and a third-level
cache array, L3. It is assumed that there are no misses in
L3, only mr2 misses per instruction in L2 and, of course,
mr1 misses per instruction in L1. With a sequential L2
directory organization, all miss requests arriving from
L1 first access the L2 directory. Subsequently, only L2
directory hits—namely mr1(1 � mr2/mr1) � (mr1 � mr2)
hits per instruction—access the L2 array and have a return
path to the input, as indicated. All L2 directory misses,
namely mr2 misses per instruction, access the L3 array.
All L3 accesses are hits, and hence have a return path
to the input, as shown. Thus, the respective visitation
probabilities for the directory, L2 array, and L3 array
from Equation (9) are
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Vd � 1, V2 � �1 �
mr2

mr1
� , and V3 �

mr2

mr1

. (15)

Clearly, if mr2 is 0, the L2 visitation probability, V2 ,
is unity, the L3 visitation probability, V3 , is 0, and all
accesses are directed to the L2 array as if L3 were not
present. Similarly, if mr2 � mr1 , all accesses are directed
to L3 as if L2 were not present.

The calculation of the utilization of each server using
the above probabilities, the total queue and queue delay
for each, the final FCP, and CPI is illustrated in detail
in Figure 2 (in Appendix D) for the case of

Service times: L2 directory, St � 2 cycles per access;
L2 array, S2 � 12 cycles per access; and L3 array,
S3 � 140 cycles per access;

mr1 � 0.01, mr2 � 0.001 misses per instruction;

CPI[�] � 1.2 cycles per instruction;

and

Tcpu � 1 ns per cycle.

For these parameters, the sum of all queues, shown in
column K of Figure 2, is 0.56 customers. This number, of
course, increases as the miss rates increase, but cannot
exceed 1. The FCP in column L is 1.53 and is larger than
the assumed CPI at infinite cache of 1.2. Thus, this design
with the given parameters loses more than 50% of the
ideal processor computing power. The utilizations
(columns B, C, and D) for the three servers show that
the L3 is most heavily used, and the total delay times
(columns H, I, and J) similarly show that L3 has the
largest delay component. Thus, improvements to the
system would concentrate first on reducing L3 access time

or improving the L2 miss rate via a larger L2. Of course, a
larger L1 with a correspondingly smaller miss rate would
also improve the FCP, but this usually is not an option.
Nevertheless, the queuing analysis can reveal potential
bottlenecks and show where improvements are possible.

Closed-queue network (MVA)
For a closed-queue model (MVA) the FCP is evaluated
similarly to that for an open system, but the queue delays
or, more commonly, the server residency time, must be
evaluated for the boundary condition that the total time-
averaged number of customers (n) in the system is fixed.
This is quite different from an open queue where we do
not, and cannot, know the number of customers in the
system until the full set of queue equations are solved—
and then we can find the number of customers only by
adding all of the queues in the system, as was done in
the previous, open-model example. For a closed queue, it
should be apparent that we must express the request rate
in terms of n. This can be done by using the following
relationships, which represent the essential equations of
MVA:

1. Forced-flow law applied to the entire system, input to
output,

RR � n/¥Trk requests per second. (16)

2. Little’s law applied to individual servers in tandem,

Qk � RRTrk . (17)

3. Total residency time in queue (line � server),5

5 From Lazowska et al. [4, p. 112], Qk is the average number of customers seen at
the server node k at the instant a new customer arrives.

Request rate from CPU/L1

R
R
 � mr

1
/CPI T

cpu  L2 directory

service time � S
D

 

Visitation probability �
(mr

2
/mr
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Open-queue example of memory hierarchy with L2 directory, L2 array, and L3 array.
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Trk � St�1 � Qk�n � 1�� �queuing centers�, (18)

and

Trk � St (delay centers, i.e., no queue), (19)

where

Qk , Qk(n � 1) � the total queue length at server k,
including the queue line and server, when there are
n and n � 1 customers, respectively, in the system;

Trk � total residency time per request in server k for
both queue line and service (in seconds per request);

RR � throughput � input event request rate � output
rate at steady state in requests per second;

St � service time per request of the server alone, not
including the queue (in seconds per request); and

n � total number of customers (requests) in the system.

Note that when we solve Equations (16) and (17) for n,
we obtain

¥Qk � n, (20)

which is basically an input specification for a closed
network, namely that the sum of queues must be fixed
and specified. However, the actual value of any individual
queue cannot be specified; only the sum may be specified,
as indicated.

Equation (17) for Little’s law can be understood
conceptually from Figure 3.6 On average, events or
requests for service occur at the rate of RR requests per
second as indicated. Within any window of width Tr, there
must be TrRR such events, which is the total queue as
specified above. This relationship must clearly be true for
any system in steady state, because otherwise the queues

will grow to infinity or diminish to zero if the input rate
is respectively greater than or less than the output rate.

The entire analysis is based on the assumption of forced
flow. This simply means that in steady state, output rate
equals input rate at all tandem queues in the system.
However, instantaneously, we can have input rate different
from output rate, so queues can increase or decrease until
the steady-state time-averaged mean value is reached. The
queue calculations are contingent on steady-state behavior.
Thus, at steady state we have RR[in] � RR[out] � RR at
each serial server.

From Table 1, column 1, the total queue delay for an
open, M/M/1 queue (exponential service time) is given by

Tk � St�1 � Qk�n��. (21)

This expression indicates that for an open system, the
time-averaged queue lengths Qk(n) can be used for the
arrival instant queue length in evaluating residency time.
A similar expression can be used for a closed queue,
provided we use the queue length seen at arrival when
there are a total of n customers in the system. The
following argument is used in MVA closed queues to
achieve this, and is crucial. Because there are always n
customers in the system, when a new customer arrives,
one must leave at the same instant, on average. Thus, the
queue length seen by the arriving customer will be the
same as the time-averaged queue that would exit there
with one less customer in the network; i.e., the incoming
customer sees a mean delay of only n � 1 customers, not a
mean delay of n. Thus, the equation for Trk of each queue
must use the Qk length evaluated with n � 1 customers in
the system, as expressed in Equation (18). This assertion
relates strictly to steady-state time-averaged performance.
(On an instantaneous basis, there can be a transient
buildup of queues.) The resulting throughput or request
rate from substituting Equation (18) into Equation (16)
is thus

RR�n� � n/¥St�1 � Q�n � 1��. (22)

In a closed MVA system, the total number of customers
in the system is fixed, so the value of n is given. It is
necessary to calculate the value of the input request rate
(RR) which will give this number of customers (n). This
can be obtained from Equation (16), but requires the sum
of all individual residency times (Trk). The latter can be
obtained from Equation (18) if we know the individual
queue values with n � 1 customers in the total network.
But we do not know the value of each queue for n � 1
customers in the system. However, we can start an iterative
solution from n � 1, where all queues at n � 1, namely
Q[n � 1], are known and equal to 0, which allows us to
calculate RR at n � 1, then queues Q[n] for n � 1 which
are valid for finding RR at n � 2, etc., up to n � the

6 This is not a proof; it is only a conceptual way to understand and remember the
relationship. The proof must include the dynamics of the queues changing as new
events occur [4, p. 42].

Figure 3

Graphical representation of Little’s law.
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maximum number of customers in the system. An example
is given in the following section.

MVA solution

Exact solution: Iterations on n
For a given system of servers, each having a mean service
delay time of St and a total of n customers in the system,
the throughput (the value of RR) can be found by an
iterative process as follows. The problem is to determine
the value of residency time (Trk) for all servers with all
customers present from which RR can be found using
Equation (16). However, we need each queue length (Qk)
to find Trk ; see Equation (18). But we do not know the
value of Qk even at n � 1. Thus, we start at a point where
we do know Qk[n � 1], namely, one customer in the
system, which gives the first value of Trk . We then
increment to the solution from there by continually
adding one more customer, as follows.

● Step A: Start with n � 1, or n � 1 � 0, so there are
no customers in the system when the first one arrives.
For such a case, all queue lengths (Q[n � 1]) must
obviously be 0, so we can specify the first iteration
values for each residence time (Tk). It is obvious from
Equation (18) that

Trk � Stk (23)

for each server, k, at n � 1. These values of Trk are
used in Equation (16) to obtain the first iteration of
request rate as

RR � 1/¥Stk � 1/�St1 � St2 � St3 � · · · �. (24)

Now that we have a first value for RR and Trk , these can
be used to evaluate the first iteration of each Q[n] from
Equation (17) to obtain

Q1 � Tr1/�St1 � St2 � St3�,

Q2 � Tr2/�St1 � St2 � St3�, (25)

Q3� Tr3/�St1 � St2 � St3�, etc.,

where Tr1 � St1, Tr2 � St2, and Tr3 � St3 (for this
iteration only).

● Step B: Next, increment to n � 1 � 2 customers in the
system and reevaluate all Trk using Equation (18), noting
that the queue lengths (Qk[n � 1]) for this iteration are
those evaluated in Step A above at n � 1. These new
values for Trk are used in Equation (16) to find RR for
n � 2. New values for all queue lengths are also evaluated
using these values of Trk and RR in Equation (17).
These Qk evaluated at n � 2 will be the lengths used

in Equation (18) to evaluate Trk at the next iteration
of n.

● Step C: Increment to n � 1 � 3 and reevaluate all Trk ,
RR, and Qk as above.

This process is repeated until n � the desired number of
customers, giving the final value of RR as the desired
throughput.

An example from a spreadsheet evaluation is illustrated
in Figure 4 (see Appendix D) for four servers with service
times of St1 � 2 s, St2 � 4 s, St3 � 8 s, and St4 � 20 s.

The progression of the iteration can easily be followed
with hand calculations, and a spreadsheet allows many
configurations to be quickly analyzed. It can be seen in
column K that the sum of the four individual queues
always equals n, the number of customers in the system
(column A), as it should. The lengths of the shorter
queues, Q1, Q2, and Q3, reach a constant, steady-
state value very quickly, at n � 4–6, respectively,
and additional customers are added to the end of
the longest queue, Q4, as n increases further.

Approximate solution: No iterations on n
The above MVA process of starting from n � 1 and
incrementing up to large n can be avoided by use of the
Schweitzer approximation [7], which is

Q�n � 1� � ��n � 1�/n� Q�n�, (26)

with accuracy increasing as n increases. The resulting
nonlinear problem still requires a recalculation method
similar to that required for open queues, but is
computationally simpler in large networks and can be
solved for any one given n.

The above analysis is sufficient for many types of
models and represents the general procedure given in
standard books on MVA. In dealing with memory
hierarchies, the queue analysis requires additional
analytical constructs, presented below.

Processor CPI in closed MVA model: CPU as delay
center
As seen above for the simple MVA examples, n customers
visit k servers, each with a queue. The request rate was
the same for all, and we easily calculated the queue for
each server. In a memory hierarchy model, the situation
is somewhat different. The processor is not a server in
the usual sense and does not have a queue for memory
requests. The essential question is, How do we include the
processor CPI and simultaneously the miss rates of the various
cache levels? In an open queue, we saw that the CPU/L1
was just a requestor, issuing requests to the hierarchy
at a rate proportional to mr1/CPI as in Equation (5).
The miss rates for L2, L3, etc. determine the hits for
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each delay component of the FCP as in Equation (3). In a
closed-queue model, the miss rates for the various cache
levels are still introduced as in Equation (3), but the
request rate must be calculated as in Equation (16). This
is accomplished by treating the CPU not as a direct
requestor, but as a delay center [4, p. 115]. The n
customers (i.e., reload requests) visit the various cache
components, and reloads are sent back to the CPU. The
CPU subsequently sends these reload requests back to the
memory hierarchy after being delayed, with the delay
given by

CPU �delay� � TC � CPI Tcpu /mr1 seconds per miss request.

(27)

This is the CPU residency time, and it provides the
feedback coupling between the cache queue delays and
FCP. This delay time is the CPU delay component in
calculating the request rate as in Equation (16), but it
does not appear directly in the FCP calculation because
the CPU does not have a queue and does not contribute a
delay component to the FCP. Only the L2, L3, etc. caches
have queues as part of their residency times, and only the
cache delays contribute to the FCP. In essence, the delay
time of the CPU is the time the CPU must spend
executing other, non-memory instructions until the next
miss or reload request is encountered. Obviously, the CPU
delay time should depend on the L1 miss rate in such a
manner that, as mr1 goes to 0, the delay goes to infinity;
i.e., there is an infinite time interval until the next reload
request is issued. This is seen to be the case in Equation (27).
The use of the CPU as a delay center avoids the need
to include the processing of non-memory instructions and
introduces the CPI and mr1 as desired.

It is interesting to note that the CPU delay as a delay
center in the MVA model (and in the subsequent model)
is exactly the reciprocal of the request rate used in the
open model, Equation (5). The only difference between
these two models is the method of calculating the queues
and residency time delays. Even the visitation probabilities
are identical, as discussed next.

Residency time and visitation probability
MVA requires the determination of the residency time as
given by Equation (18). This residency time is essentially
the mean time spent in the queue per request. In a
memory hierarchy, any given reload request from the
CPU/L1 can result in a request to any of the downstream
caches with a certain probability given by the various miss
rates. The probability of this request visiting (i.e., hitting)
each of the downstream caches must be included, as is
done in calculating the utilization factor for servers in
open-queue models. This is the same visitation probability

as given by Equation (9) and is used as a multiplying or
weighting factor for the residency time of each level. Thus,
we can express the MVA residency time of Equation (18)
more generally as

Trk � VkStk�1 � Qk�n � 1�� seconds per request. (28)

Once the residency time of each level has been
determined from the above, the final FCP is calculated
identically to that for an open queue as in Equation (3).
As previously, the given value of CPI[�] is added to the
FCP to obtain the final system CPI, as in Equation (1).

MVA example with CPU/L1, L2 directory and array,
and L3 array
This example is the memory hierarchy model shown in
Figure 1, which was analyzed as an open-queue network.
The same model is analyzed using the MVA techniques
described above. The MVA model is shown in Figure 5,
where it is again assumed that all miss requests arriving
from L1 first access the L2 directory. Subsequently, only
L2 directory hits access the L2 array and have a return
path to the input as indicated. All L2 directory misses,
namely mr2 misses per instruction, access the L3 array,
and all are hits with a return path as indicated. The CPU
does not have a queue, but rather is a delay center, as
discussed above.

The request rate according to Little’s law [Equation (16)]
is similar to the previous MVA case of simple servers
without a CPU and misses, except that the total delay
(denominator) is the sum of the CPU delay plus the L2
(directory and array) and L3 residence times (line � server).
The L2 and L3 residence times are determined as in
Equation (18), where the queuing time is once again
that seen with n � 1 customers in the system. However,
the CPU residency delay time is given by Equation (19)
for a delay center, which is equal to Equation (27).

At steady state, the input request rate, RR, must equal
the output service rate as shown. The servers L2 and L3
are in parallel because only one or the other is accessed
on any request from the L2 directory. Thus, the visitation
probabilities for these components, from Equation (9), are
identical to those for the open queue model:

Vd � 1, V2 � �1 �
mr2

mr1
� , V3 �

mr2

mr1

. (29)

The residency times for the L2 directory, L2 array, and
L3 array of a server are calculated in a manner identical
to that done previously, with the iteration starting at n � 1,
for which all queues at (n � 1) are 0, etc., using the
relations

Trd � VdStd�1 � Qd�n � 1�� � Std�1 � Qd�n � 1��, (30)
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Tr2 � V2St2�1 � Q2�n � 1��

� �1 � mr2/mr1�St2�1 � Q2�n � 1��, (31)

and

Tr3 � V3St3�1 � Q3�n � 1�� � mr2/mr1St3�1 � Q3�n � 1��.

(32)

The CPU delay time is calculated as given previously by
Equation (27), namely

TC � CPI Tcpu/mr1, (33)

RR � n/¥�Trk � TC� � n/�Trd � Tr2 � Tr3 � TC�, (34)

FCP � mr1�Trd � Tr2 � Tr3�, (35)

FCP � Std�1 � Qd�n � 1�� � �mr1 � mr2�St2�1 � Q2�n � 1��

� mr2St3�1 � Q3�n � 1��, (36)

and

CPI � CPI��� � FCP. (37)

The new individual queue lengths are determined as
before from Equation (17) as

Qd � TrdRR, Q2 � Tr2RR, Q3 � Tr3RR. (38)

These queues are then used to evaluate the individual
residency times on the next iteration of n, next RR, FCP,
new Q values, etc., until the maximum value of n is
reached.

A spreadsheet example of this iterative calculation
is given in Figure 6 (see Appendix D) for assumed
parameters (same as the previous open-queue example):

Service times: L2 directory, St � 2 cycles per access;
L2 array, S2 � 12 cycles per access; and L3 array,

S3 � 140 cycles per access;

mr1 � 0.01, mr2 � 0.001 misses per instruction;

CPI[�] � 1.2 cycles per instruction;

and

Tcpu � 1 ns per cycle.

It can be seen by comparing columns A and N that the
number of customers in the memory hierarchy queues is
smaller than n and smaller than the number of customers
delayed in the CPU, as given in column J. Comparison of
this MVA model with the open model of Figure 2 shows
that the FCP of the open model, namely 1.53, is nearly
the same as the MVA value of 1.54 for n � 2. However,
the sum of customers in the memory queues is 0.56 for
the open model and 0.72 for MVA. If we linearly
interpolate the MVA value to a number of customers in
memory queues equal to 0.56, as for the open model, the
MVA value of FCP becomes 1.45, which is about 5%
smaller. Thus, they give nearly the same performance
estimate. The MVA model, of course, shows how the
FCP will increase as the number of customers increases.
However, this is not particularly meaningful because we
cannot get large numbers of customers in a blocking-cache
model, only in a nonblocking case. For a multiprocessor
system or for a multi-issue processor with nonblocking
memory, the average FCP should initially decrease rather
than increase as n increases because some of the memory
access times are overlapped with continued processing
time. This model cannot handle such nonblocking systems
(see Appendix C). Various other types of MVA
calculations can also be performed, including coherency
protocol and other aspects of the system [8 –10].
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MVA model of memory hierarchy with L2 directory, L2 array, and L3 array, with CPU as delay center.
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Open- and closed-queue approximations
Some assumptions were inherently necessary in order to
be able to represent the queue calculations above in
simple analytical form; these should be understood,
because they may not be valid for a given real system.
Some of these basic assumptions are as follows.

An open-queuing network—the only known system for
which useful queuing equations can be obtained—requires
the assumption of a Poisson customer arrival process for
the miss requests. For tandem queues, this requirement
further implies that the servers must also have exponential
service time, because this is the only service time that gives
a Poisson process output to the next server in tandem.
These assumptions simply require that the arrival process
and the server be memoryless in the statistical sense (for
an explanation of the term memoryless, see Appendix B).
This is referred to as an M/M/1 queue, meaning memoryless
input process/memoryless service time/one server. The
queues and delays for such a case can be expressed as
shown in the first column of Table 1.

A single open queue with constant service time can also
be treated analytically. Such a server is typically referred
to as M/C/1 or M/D/1 and, assuming a Poisson input
process, it obeys the queue and delay expressions given
in the second column of Table 1. However, for a series
of tandem queues with constant service times, with the
original input equal to a Poisson process, the separate
inputs at each individual server will not be a Poisson
process. For a network of tandem queues, this requirement
can be satisfied at any given server only if the preceding
server has exponential service time. For an open network
of k servers in tandem, only the first k � 1 must have
exponential service time, and the last server can be

general service time. For such a case, the first k � 1
servers have Poisson departures and feed into the
subsequent queue so that the input conditions are
satisfied. At the last queue, which has Poisson arrivals, it
does not matter what the departure process is because its
output is not used.

For closed queues, it is necessary that all servers have
exponential service times. This is inherent in the product-
form solution, which is the starting point for MVA and
requires the assumption of exponential servers for an
exact solution. In a closed system of tandem queues, if all
servers have exponential service times, all inputs will be
a Poisson process and each server can be treated as an
M/M/1 type. Thus, the situation with service time is
similar to that for an open queue.

While memory hierarchies can have an input miss
stream that is approximately a Poisson process,7 service
times for the various memory levels are typically constant,
not exponential. The question arises, How good is the use
of exponential service time approximation for MVA and
constant service time with Poisson input (input from
exponential service time server) for open-queue delays?

Servers with exponential service time and constant
service time have a total residency time given respectively
by the first and second column, fourth row of Table 1, or

Tre � St�1 �
U

1 � U� and Trc � St�1 �
1

2

U

1 � U� . (39)

These two equations are plotted in Figure 7 as a
function of utilization, U. From extensive experience, it is
well known that systems for which the utilization of any
server is much above 40 –50% is a marginal design; i.e.,
any server with high utilization is a major bottleneck in
system performance. Thus, server utilizations should
always be maintained below these values. It can be seen
from Figure 7 that for small utilizations [less than about
0.4 (40%)], the residency time for constant service time is
about 20% smaller than that for exponential service time.
This is intuitively correct because, for small U, the
additional queuing delays are negligible in all cases.
Hence, equations for exponential service times can be
used as reasonable engineering approximations for
constant service times, provided U is small. As U increases
above 40%, the error increases substantially, as can be
seen. The U values for each server must include the
visitation probability and, for MVA, can be determined
for each value of n only after the request rate has been
calculated. The validity of the approximation can then be

7 This has been explored with a number of traces from SPEC** benchmarks. Some
have been found to have approximately Poisson (exponential) interarrival time
distributions and some are far from a true exponential, but all have some gross
similarity to a 1 � e�x function.
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determined. For most cases of interest, the utilizations
are reasonable, and the approximation is acceptable.
For instance, the utilizations for the three servers of the
previous open model of Figure 1—L2 directory, L2 array,
and L3 array—are shown in columns B, C, and D of
Figure 2. It can be seen that they are quite reasonably
small, with the maximum of 0.256 for L3.

Similarly, the utilizations for the same three servers of the
previous MVA model of Figure 5 are shown in Figure 8.
For small values of n (	3), the utilizations are indeed
small. Values of n greater than 3 for a single processor
are not typical, so the approximation is acceptable.
However, as n increases above 3, the utilization of
L3 and, to a lesser extent, that of the L2 array
increase substantially above 0.4, so the approximation
becomes less accurate. There is no simple rigorous method
for calculating such cases. For constant-service-time
servers, one heuristic approximation for the mean
residual service time (the remaining service time of
a customer currently in service when a new customer
arrives) is

Mean residual service time � St / 2, (40)

where St � mean service time [11]. This approximation
requires random arrival time, but the arrival time in a
closed network will not be random if a customer spends
little time (relative to the constant service time) before
coming back to the server. In such cases, the mean
residual service time is closer to the service time St.

8

Intuitively, this seems correct because, for constant service
time, the maximum mean residual service time is St. For
all cases studied here, the utilizations are small enough
that the exponential server approximations are acceptably
accurate for our purposes. The approximations are that
the equations for a single server with constant service
time can be used for open queues in tandem, and
queue residency delay for a single server with
exponential service time can be used for MVA tandem
queues as long as all server utilizations—and hence
the queues—are small.

8 From the work of Men Chow Chiang, IBM Austin, private communication, memo
June 18, 2001.

Figure 8

Server utilizations for previous MVA memory hierarchy with L2 directory and array, L3 array, and CPU as a delay center.
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1 1.34 2.54 0.35 0.026 0.139 0.180

2 1.54 2.74 0.72 0.047 0.252 0.326

3 1.77 2.97 1.12 0.063 0.342 0.443

4 2.01 3.21 1.54 0.077 0.413 0.536

5 2.27 3.47 1.98 0.087 0.470 0.609

6 2.55 3.75 2.43 0.095 0.515 0.667

7 2.83 4.03 2.89 0.102 0.550 0.714

8 3.13 4.33 3.36 0.107 0.580 0.751

9 3.43 4.63 3.83 0.112 0.603 0.782

10 3.73 4.93 4.31 0.115 0.623 0.807

11 4.05 5.25 4.79 0.118 0.639 0.829

12 4.36 5.56 5.27 0.121 0.653 0.846

13 4.68 5.88 5.76 0.123 0.664 0.861

14 5.01 6.21 6.25 0.125 0.674 0.874

15 5.33 6.53 6.74 0.126 0.683 0.885

16 5.66 6.86 7.23 0.128 0.690 0.895

17 5.99 7.19 7.73 0.129 0.697 0.903

18 6.32 7.52 8.22 0.130 0.702 0.910

19 6.65 7.85 8.71 0.131 0.707 0.917

20 6.99 8.19 9.21 0.132 0.712 0.922
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Comparison of MVA closed- and standard
open-queue models of a moderately complex
16-way multiprocessor memory hierarchy
To obtain a definitive comparison of closed- and open-
queue model performance results, a moderately complex
16-way multiprocessor system that had previously been
modeled as a closed MVA system was chosen. The model
is based on the general MVA constructs described above
and was constructed using an IBM modeling system known
as EZMVA.9 For comparison, an open model using a
standard spreadsheet10 as the vehicle was constructed in
detail by the author, with very particular attention to using
the same parameters. A 16-way system was chosen that
was constructed from four cards. Each card, as shown in
Figure 9, contains two processor modules, a switch-chip

module, and an L4. Each processor module contains
one processor chip and an on-module L3, as indicated.
Each processor chip contains two processors, each
with its own L1, plus one on-chip L2. The two
processor modules are connected to the switch chip
by means of unidirectional buses. Interconnections
to the on-card L4 are provided by bidirectional buses
that connect through the switch chip as shown. Thus,
each card contains four processors, two private L2s,
two private L3s, and one private L4. In principle,
cross-interrogates should be performed on all L2,
L3, and L4 misses. However, cross-interrogates at the
L3 and L4 level are too small to have any significant
impact on performance and are neglected. Only cross-
interrogates for L2 misses are included in the various
utilization components.11

9 A description of this system and the model would require several separate papers
and is not attempted. This system has been used and verified extensively.
10 Detailed analysis is described in [6]. The model example in [6] is very similar
but not identical to that used for comparison here.

11 See [6, Section 5] for definition and inclusion of cross-interrogates in open-
queue analysis.

Figure 9

Organization of basic four-way card having large L3 on the processor module and large L4 on card.
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A miss in L4 that necessarily incurs a reload from main
is loaded through to L3, L2, and, of course, to L1. More
generally, a hit at any given level is reloaded to all
upstream levels. All main memory and I/O are address-
sliced shared, and there is one shared slice per processor
chip (for details on the address-sliced sharing process, see
[6]). Each of these slices (memory and I/O) is connected
via a separate bus to a memory controller chip, and
the latter is connected to a processor chip via one
bidirectional bus. Thus, each processor chip contains
one slice of main memory and one slice of I/O.

A 16-way multiprocessor configuration is obtained by
interconnecting four cards via buses that all pass through
the switch chip, as shown in Figure 10. Each of these
buses is assumed to be two unidirectional buses. There are
four CPUs per card, and four separate cards with direct
simple interconnections between the cards, which results
in simple bus delays and utilization calculations for off-
card communications.

Results of open- and closed-model
comparison
The open model was not as detailed as the closed MVA
model, but the neglected details were second-order
degradation effects and were not important enough to
justify extensive additional work. Because of this, it was
anticipated that the open model would give slightly more
optimistic results than the closed model. This was found
to be true in all comparisons.

The first comparison is that between the CPI and the
L2 and L3 miss rates for L2 cross-interrogates of 50%
and 10%. The second comparison is the utilization of the
major unidirectional buses compared with the L3 miss
rate, namely CPU-to-switch and switch-to-CPU buses.
Varying the miss rates is equivalent to varying the size of
the caches, where we can assume to a first approximation
that the miss rates vary as the inverse of the square root
of cache-size ratios.

The CPI compared with L2 and L3 miss rates for L2
cross-interrogates of 50% are shown in Figures 11(a) and
11(b), respectively. As can be seen, the open model gives
approximately an 8% (or less) more optimistic CPI than
the closed MVA model for both the L2 and L3 varying in
miss rates. However, the trends of the curves track each
other quite accurately. It is the latter that is of most
significance, because the absolute values are always in
some doubt.

Similar comparisons of CPI as a function of L2 and
L3 miss rates, but for L2 cross-interrogates of 10%, are
shown in Figures 12(a) and 12(b). It can be seen that the
curves are much the same as for the previous case, with
cross-interrogates of 50%, except that the CPI is slightly
smaller, as would be expected for a smaller cross-
interrogate ratio.

Bus utilization is an important parameter in any
multiprocessor configuration because it can have a
significant effect on the finite cache penalty. One of the

Figure 10

Configuration of 16-way multiprocessor on four cards with direct-

connected buses between each card.
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Figure 11

CPI as a function of (a) L2 and (b) L3 instructions per miss com-

paring spreadsheet (open) and MVA (closed) models. L2 cross-

interrogates � 50%.
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major buses in this model is that between the CPU and
switch. These buses are unidirectional because of the high
expected traffic, with the traffic on the bus from the CPU
to the switch being somewhat different than that from
switch to CPU, and are thus modeled separately. This
traffic is summarized in Figure 13. The utilization of the
switch-to-CPU bus as a function of the L3 miss rate is
shown in Figure 14(a) and that of the bus in the opposite
direction, from CPU to switch, in Figure 14(b), both for
an L2 cross-interrogation ratio of 50%. Once again, the
open model is slightly more optimistic than the closed
model, but both are within approximately 3% or better
and have identical trends against the L3 miss rate.

Summary and conclusions
Comparisons of various mathematical formulations and
general behavior of both open-queuing models and closed
MVA queuing models of memory hierarchies indicate that
the two methods are comparable in many respects. The

detailed comparison of the behavior of one rather complex
multiprocessor memory hierarchy using MVA with the
more standard open-queue model gave similar results and
distinctively identical trends in performance against L2
and L3 miss rates. This suggests that the two methods
include the important performance-determining
parameters in similar ways and gives some confidence that
both are reasonable models. However, it should be noted
that both cases were obtained for servers with relatively
modest queues and therefore small queue delays. Thus,
we would not expect large differences, although it is
not obvious that the trend curves should be identical.
Nevertheless, one major conclusion is that the choice
between open- and closed-modeling methodology is of
secondary importance, while ease of use and difficulty in
constructing the model are major considerations. The
skills and current knowledge of the user will determine
the choice. The experience of the author is that if one has
no knowledge of either method, the open model is easier
to understand and construct.

Additional studies are required to compare various
methods of analysis. Very few such comparisons have been
done; rather, models are constructed on the basis of the
particular knowledge and skills of the implementer, who
typically is familiar with and uses only a single analytical
methodology. The application of queuing models to
memory hierarchies has potential for improvement and
is an area with substantial payoff as the complexity and
design time of systems continue to increase and require
continued refinement and improvement.

Appendix A: Queue formulas: Some interesting
observations and intuition
Table 1 shows various queue lengths and queue delays for
exponential and constant service times (and a few for
general Erlang service time). Several general and
important observations concerning exponential and
constant service times are as follows:

1. Total number of customers in queue (line � server) is
smaller for constant service time by an amount

U 2
1

2�1 � U�
. (A1)

For small U, this term becomes negligible, so the total
queue lengths become the same for both exponential
and constant service times.

2. The mean number of customers at the server is always
U for both cases.

3. The mean number of customers in only the line is always
Qx � U, where Qx is the total number in line � server
for the respective service time. This follows from point 2

Figure 12

CPI as a function of (a) L2 and (b) L3 instructions per miss com-

paring spreadsheet (open) and MVA (closed) models. L2 cross-

interrogates � 10%.
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above because the average number in the server is
always U.

4. The total queue (line � server) delay, i.e., the mean
residence time, is always

Tr �
St

U
Qx , (A2)

where Qx is the respective total queue, as in Table 1.
5. Delay for the line alone with exponential service time is

TLe � St

U

1 � U
. (A3)

For constant service time, the line delay is exactly one
half of this, or

TLc �
1

2
St

U

1 � U
. (A4)

6. The average delay at the server is always the respective
service time (St), where St is the time constant of the

Figure 13

Data bus utilizations for CPU chip to and from switch.
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exponential e�t/St for exponential service time, and St

is the given value for constant service time.
7. Utilization of the server always fixes the size and delay

of the queue; this requires knowledge of the request
rate and, of course, the service time. However, note
that this is useful mainly for open queues. For
closed-queue systems, a different method is
required to determine average residence times
and queue delays.

Appendix B: Meaning of memoryless process
In queuing theory, a memoryless process, distribution, etc.
is often necessary and requires the use of an exponential
function involving e�
 x . The actual simple meaning of this
memoryless process is seldom clearly explained, but can
easily be understood as follows.

Suppose we plot a curve of 1 � e�
 x as a function of
x for x � 0 to infinity (large x). This gives the classical
exponentially rising function shown in Figure 15(a). Now
plot a similar curve of 1 � e�
 x , but start from any
value of x 
 0 to infinity (large x). This gives some
upper portion of the first curve. The second curve is
subsequently stretched in the vertical and horizontal

directions to have the same physical size as the first
curve, and results in a curve like the one shown in
Figure 15(b) for x starting at 1. These two curves
are identical in functional shape and cannot be
distinguished from one another if superimposed.
This is true for all such curves, no matter what initial
value of x is chosen. In other words, the curves have
the identical functional form and shape, no matter
where they start. Hence, the future behaviors have
no memory of what initial value of x was chosen (i.e.,
they are memoryless), and the future functional behavior
is independent of past inputs. Unfortunately, only the
exponential function is memoryless, which greatly limits
the range of analysis for problems requiring memoryless
behavior.

Appendix C: Some observations on the number
of customers in the memory hierarchy and
model complexity
MVA easily allows us to fix n as the number of requests
or customers in the total network, which includes the CPU

Figure 14

Utilization of (a) switch-to-CPU bus and (b) CPU-to-switch bus as 

a function of L3 instructions executed per miss, comparing spread-

sheet (open) and MVA (closed) models.
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as a delay center. In such cases, we saw that the number
of customers in the memory hierarchy itself was not, and
could not, be fixed; i.e., we do not have this option. In an
open queue, we could not specify any queues; rather, we
could determine the number in each queue only after
calculating all utilizations and then queues separately. The
negative feedback mechanism via CPI limits open queues
from becoming very large, but nevertheless they cannot be
pre-specified. In reality, neither of these cases represents
the actual working of a system with a memory hierarchy.
In an actual system with multiple outstanding reloads
(nonblocking caches), the average maximum number of
allowed reloads, or at least a large fraction of these,
ideally appear as customers in the memory hierarchy
rather than the full system. In other words, the L1 miss
rate is temporarily and partially decoupled from the
system CPI during this time and, it is hoped, an improved
CPI results. The FCP calculation would be valid only
during periods when the CPU is actually stalled. An exact
model of this will not be trivial, because more statistics
will be required about the detailed behavior. Especially
important will be some average time during which the
CPU actually stalls because memory accesses can no
longer be hidden. This will be very difficult to obtain and,
in fact, is the essential parameter desired. A significantly
more complex model will be required [9], and the model
should be able to calculate this on the basis of other
parameters.

A simple alternative model is an MVA network without
the CPU as a delay center, so that the maximum number
of customers is specified in the memory hierarchy itself.
Such a network can be obtained from the previous

model of Figure 5 simply by eliminating the CPU/L1
components, as shown in Figure 16. The CPU/L1
residency delay term is removed from the throughput RR

term, and all other components remain the same. The
MVA calculations for such an example are shown in
Figure 17 (see Appendix D) for the same parameters
as in Figure 6. Interestingly, the calculated FCP of 7.14
in Figure 17 at n � 10 is close to, but smaller in value
than, the FCP of about 7.5 (extrapolation between 7.32 and
7.66) in Figure 6, which also has ten customers in the
memory hierarchy queues (column N of Figure 6), requiring
n to be between
21 and 22 total customers. The same is true for all other
values of n; that is, the model without the CPU as a delay
center always gives slightly improved (smaller) FCP than
the model that includes the CPU as a delay center for the
identical number of customers in the memory hierarchy
queues. The deviation between the two models increases
as n approaches 1. The problem with this model without a
CPU is that the final CPI is not used anywhere in any of
the queue nor FCP calculations, and must ultimately be
included. However, the nonblocking nature of the cache
decouples this dependency, at least temporarily, so that it
has some elements of the real system. It is tempting to
speculate that this improvement in FCP is related to the
improvement from using a multi-issue, nonblocking cache,
but this remains to be proven.

Appendix D: Spreadsheet figures
Spreadsheet figures 2, 4, 6, and 17 appear in Appendix D
on pages 514 –516.

Input rate � throughput

R
R
 � n/�T

rk  L2 directory

service time � S
D

 

Visitation probability �
(mr

2
/mr

1
)

Visitation

probability �
(1� mr

2
/mr

1
)

No CPU and L1

Customers return

to L2 directory

immediately

 L3 array

~ main memory 

service time � S
3

 L2 array

service time � S
2
  

Figure 16

MVA model of memory hierarchy with L2 directory, L2 array, and L3 array, but no CPU delay center.

Residence time in each queue Total queue size (Little’s law) 

Directory

L2 array

L3 array

Q
D

 � R
R
T

rD

Q
2
 � R

R
T

r2

Q
3
 � R

R
T

r3

T
rD

 � S
D

(1 � Q
D

[n � 1])

T
r2

 � (1 � mr
2
/mr

1
) S

2
(1 � Q

2 
[n � 1])

T
r3

 � ( mr
2
/mr

1
) S

3
(1 � Q

3 
[n � 1])

Total reload rate

R
R
 � n/�T

rk

IBM J. RES. & DEV. VOL. 47 NO. 4 JULY 2003 R. E. MATICK

513



Figure 2

Spreadsheet performance calculation of open-queue memory hierarchy with L2 directory and array, L3 array, and CPU/L1 as a requestor. 
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Figure 4

Simple MVA example showing iterative solution for queues, residence times, and request rates with four servers, each having a different service time. 
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4 2.20 4.88 12.19 63.08 0.05 0.11 0.24 0.59 3.06 4.00
5 2.21 4.95 12.74 81.27 0.05 0.11 0.24 0.63 4.02 5.00
6 2.22 4.98 13.04 100.33 0.05 0.11 0.25 0.65 4.99 6.00
7 2.22 4.99 13.19 119.86 0.05 0.11 0.25 0.66 5.98 7.00
8 2.22 5.00 13.27 139.64 0.05 0.11 0.25 0.66 6.98 8.00
9 2.22 5.00 13.30 159.53 0.05 0.11 0.25 0.66 7.97 9.00
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18 2.22 5.00 13.33 339.44 0.05 0.11 0.25 0.67 16.97 18.00
19 2.22 5.00 13.33 359.44 0.05 0.11 0.25 0.67 17.97 19.00
20 2.22 5.00 13.33 379.44 0.05 0.11 0.25 0.67 18.97 20.00
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Figure 6

Spreadsheet calculation of MVA model with L2 directory and array, L3 array, and CPU as a delay center.

SD[L2dir} S2[L2 array] S3 [L3 array] mr1 =   0.05 L2 Miss Ratio = 

2 12 140           Tcpu  =   1     CPIinf = 1.2 mr2=   0.005 V3 =  m2/mr1 = 0.10
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0.00 0.00 0.00

1 2.00 10.80 14.00 50.80 0.013 0.03 0.14 0.18 0.65 1.00 1.34 2.54 0.35

2 2.05 12.30 16.53 54.88 0.023 0.05 0.29 0.39 1.28 2.00 1.54 2.74 0.72

3 2.10 13.90 19.40 59.39 0.032 0.07 0.44 0.61 1.88 3.00 1.77 2.97 1.12

4 2.13 15.55 22.59 64.28 0.038 0.08 0.59 0.86 2.46 4.00 2.01 3.21 1.54

5 2.16 17.23 26.10 69.49 0.043 0.09 0.75 1.14 3.02 5.00 2.27 3.47 1.98

6 2.19 18.89 29.89 74.97 0.048 0.10 0.90 1.42 3.57 6.00 2.55 3.75 2.43

7 2.21 20.52 33.94 80.67 0.051 0.11 1.05 1.73 4.11 7.00 2.83 4.03 2.89

8 2.23 22.10 38.22 86.54 0.054 0.12 1.19 2.05 4.64 8.00 3.13 4.33 3.36

9 2.24 23.61 42.71 92.56 0.056 0.13 1.32 2.39 5.17 9.00 3.43 4.63 3.83

10 2.25 25.04 47.40 98.69 0.058 0.13 1.44 2.73 5.69 10.00 3.73 4.93 4.31

11 2.26 26.40 52.27 104.93 0.059 0.13 1.56 3.09 6.21 11.00 4.05 5.25 4.79

12 2.27 27.67 57.31 111.25 0.060 0.14 1.67 3.46 6.73 12.00 4.36 5.56 5.27

13 2.27 28.87 62.51 117.65 0.062 0.14 1.78 3.85 7.24 13.00 4.68 5.88 5.76

14 2.28 29.98 67.84 124.10 0.062 0.14 1.87 4.24 7.75 14.00 5.01 6.21 6.25

15 2.28 31.02 73.31 130.61 0.063 0.14 1.96 4.64 8.26 15.00 5.33 6.53 6.74

16 2.29 31.98 78.89 137.17 0.064 0.15 2.04 5.04 8.77 16.00 5.66 6.86 7.23

17 2.29 32.88 84.60 143.77 0.065 0.15 2.12 5.46 9.27 17.00 5.99 7.19 7.73

18 2.30 33.71 90.40 150.40 0.065 0.15 2.19 5.88 9.78 18.00 6.32 7.52 8.22

19 2.30 34.47 96.30 157.07 0.065 0.15 2.26 6.31 10.29 19.00 6.65 7.85 8.71

20 2.30 35.18 102.29 163.77 0.066 0.15 2.32 6.74 10.79 20.00 6.99 8.19 9.21

21 2.30 35.83 108.36 170.49 0.066 0.15 2.37 7.18 11.29 21.00 7.32 8.52 9.71

22 2.31 36.44 114.50 177.24 0.067 0.15 2.43 7.62 11.80 22.00 7.66 8.86 10.20

23 2.31 37.00 120.71 184.01 0.067 0.15 2.47 8.07 12.30 23.00 8.00 9.20 10.70

24 2.31 37.51 126.98 190.80 0.067 0.15 2.52 8.52 12.81 24.00 8.34 9.54 11.19

25 2.31 37.99 133.31 197.61 0.067 0.16 2.56 8.98 13.31 25.00 8.68 9.88 11.69

26 2.31 38.43 139.69 204.43 0.068 0.16 2.60 9.44 13.81 26.00 9.02 10.22 12.19

27 2.31 38.84 146.12 211.27 0.068 0.16 2.63 9.90 14.31 27.00 9.36 10.56 12.69

28 2.31 39.22 152.59 218.12 0.068 0.16 2.66 10.36 14.82 28.00 9.71 10.91 13.18

29 2.31 39.57 159.10 224.98 0.068 0.16 2.69 10.83 15.32 29.00 10.05 11.25 13.68

30 2.32 39.89 165.64 231.85 0.068 0.16 2.72 11.30 15.82 30.00 10.39 11.59 14.18

V2 = (1 - mr2/mr1)   = probability  of  visiting L2

V3 =   mr2/mr1 = probability of visiting L3   {no misses in L3}
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Figure 17

Spreadsheet calculation of MVA model with L2 directory and array, L3 array, and no CPU.

SD[L2dir} S2[L2 array] S3[L3 array] mr1 =   0.05 L2 Miss Ratio = 

2 12 140 Tcpu= 1 CPIinf= 1.2 mr2=   0.005 V3 =  m2/mr1 0.10

Residence Residence Residence L2 Dir L2 Array L3 Array

# in system time in L2Dir time in Q2 time in Q3 Req. Rate Q length Q length Q length Sum of FCP= CPI = Sum of  Q's

TrD Tr2 Tr3 RR QD QL2 QL3 all QL + #CPU mr1(TrD+Tr2+Tr3) FCP + CPI[inf} QD+Ql2+Ql3

n SD(1+ QD[n-1]) V2*S2(1+ Q2[n-1]) V3*S3(1+ Q3[n-1]) n/(TrD+Tr2+Tr3) RR*TrD RR*Tr2 RR*Tr3 QD+QL2+QL3

0.00 0.00 0.00

1 2.00 10.80 14.00 0.037 0.07 0.40 0.52 1.00 1.34 2.54 1.00

2 2.15 15.15 21.31 0.052 0.11 0.78 1.10 2.00 1.93 3.13 2.00

3 2.22 19.28 29.45 0.059 0.13 1.13 1.73 3.00 2.55 3.75 3.00

4 2.26 23.06 38.28 0.063 0.14 1.45 2.41 4.00 3.18 4.38 4.00

5 2.28 26.46 47.71 0.065 0.15 1.73 3.12 5.00 3.82 5.02 5.00

6 2.30 29.49 57.68 0.067 0.15 1.98 3.87 6.00 4.47 5.67 6.00

7 2.31 32.16 68.15 0.068 0.16 2.19 4.65 7.00 5.13 6.33 7.00

8 2.31 34.49 79.08 0.069 0.16 2.38 5.46 8.00 5.79 6.99 8.00

9 2.32 36.51 90.43 0.070 0.16 2.54 6.30 9.00 6.46 7.66 9.00

10 2.32 38.26 102.15 0.070 0.16 2.68 7.16 10.00 7.14 8.34 10.00

11 2.33 39.75 114.20 0.070 0.16 2.80 8.04 11.00 7.81 9.01 11.00

12 2.33 41.02 126.54 0.071 0.16 2.90 8.94 12.00 8.49 9.69 12.00

13 2.33 42.09 139.13 0.071 0.16 2.98 9.85 13.00 9.18 10.38 13.00

14 2.33 43.00 151.96 0.071 0.17 3.05 10.78 14.00 9.86 11.06 14.00

15 2.33 43.75 164.97 0.071 0.17 3.11 11.72 15.00 10.55 11.75 15.00

16 2.33 44.38 178.15 0.071 0.17 3.16 12.68 16.00 11.24 12.44 16.00

17 2.33 44.91 191.46 0.071 0.17 3.20 13.64 17.00 11.94 13.14 17.00

18 2.33 45.34 204.90 0.071 0.17 3.23 14.60 18.00 12.63 13.83 18.00

19 2.33 45.70 218.43 0.071 0.17 3.26 15.58 19.00 13.32 14.52 19.00

20 2.33 45.99 232.05 0.071 0.17 3.28 16.55 20.00 14.02 15.22 20.00

21 2.33 46.23 245.74 0.071 0.17 3.30 17.53 21.00 14.72 15.92 21.00

22 2.33 46.43 259.49 0.071 0.17 3.31 18.52 22.00 15.41 16.61 22.00

23 2.33 46.59 273.28 0.071 0.17 3.33 19.51 23.00 16.11 17.31 23.00

24 2.33 46.72 287.11 0.071 0.17 3.34 20.50 24.00 16.81 18.01 24.00

25 2.33 46.82 300.97 0.071 0.17 3.34 21.49 25.00 17.51 18.71 25.00

26 2.33 46.91 314.86 0.071 0.17 3.35 22.48 26.00 18.21 19.41 26.00

27 2.33 46.97 328.77 0.071 0.17 3.35 23.48 27.00 18.90 20.10 27.00

28 2.33 47.03 342.70 0.071 0.17 3.36 24.47 28.00 19.60 20.80 28.00

29 2.33 47.07 356.65 0.071 0.17 3.36 25.47 29.00 20.30 21.50 29.00

30 2.33 47.11 370.60 0.071 0.17 3.36 26.47 30.00 21.00 22.20 30.00

V2 = (1 - mr2/mr1) =probability of  visiting L2

V3 =   mr2/mr1 = probability of visiting L3   {no misses in L3}
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