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The IBM Virtual Tape Server provides a revolutionary tape
storage solution that emulates tape drives using a disk cache,
providing up to 256 virtual tape-drive images and stacking the
virtual tape volumes onto a maximum of 12 physical tape
drives. The high ratio of virtual to physical drives, combined
with the stacking of virtual volumes, provides tape storage
that is both cost- and space-efficient. Existing IBM products
are used as microcode building blocks to provide the core
functions of the virtual tape server. These core functions are
integrated into a reliable, high-performance storage subsystem

by autonomic computing controls.

Introduction

The year 2002 marked IBM’s 50th year in the computer
tape business, a half-century that began with the
introduction of the IBM 726 magnetic tape drive [1].
Initially, tape drives were directly connected to their host
computers. In 1984, IBM developed the first buffering
tape-control units, which attached between host computers
and tape drives. These control units provided improved
performance, protocol conversion, and improved error
handling. As both control-unit and tape-drive performance
improved, it became apparent that many applications were
unable to make efficient use of the bandwidth provided by
the tape drives.

At that time, IBM analyzed the way in which mainframe
customers were using tape drives. Although customers
were able to use the full tape-cartridge capacity in some
applications, most applications were using smaller volume
sizes that left a large percentage of physical tape-cartridge
capacity empty. It was determined that IBM customers
had an uncompressed average tape-volume size of only
250 MB at a time when tape capacity was approaching
10 GB per cartridge. In addition, many of the applications
customers were running could make use of less than 1 MB/s
of the tape-drive bandwidth.

Only a small minority of customers were fully utilizing
the capacity and throughput provided by IBM high-end
tape drives. The majority of IBM customers were using

tape applications in a manner that prevented them from
taking full advantage of the throughput of IBM tape
drives and the capacity of IBM tapes. In fact, according to
an estimate by IBM and the research firm International
Data Corporation (IDC), of the customers using IBM 3490
technology, only approximately “10% of each data center’s
tape cartridge is filled with data ...” [2]. The advent of IBM
3590 technology with its increased tape-cartridge capacity
further reduced average tape use to only 2-3% of the tape
cartridge.

Many customers did not want to drastically alter their
tape applications. They preferred to continue using these
reliable, fully debugged applications for the long-term
storage of their data. Tape is a physical medium that
offered safe and reliable long-term storage at a lower cost
of storage and a higher storage density per square foot
of floor space than other media. A tape solution was
required to support the large installed base of existing
applications while providing more cost-efficient physical
drive use and higher storage densities.

The virtual tape server

The IBM Virtual Tape Server (VTS) provided a
revolutionary solution. The VTS emulates up to 256
customer-usable tape drives on a direct access storage
device (DASD) cache, with each virtual tape emulated by
a virtual tape daemon operating on a DASD file. It can

©Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 4 JULY 2003

G. T. KISHI

459



460

Automated

O
&
<
£ =
19} S o -
E Manual ~ =~ <
ks
3
.
z
@] function
= ~
. Base
3590 VTS

Comparison of cost per drive image for IBM 3590 tape drive and
IBM Virtual Tape Server.

— — 1 | Host
IBM 3494 Automated RS/6000 Host Host computer

Tape Library adapter | | adapter
IBM3494| = _____ P
. [ Device
Library : driver
Manager :
i e m——
/| Tape Tape || Tape
: 00
i
i

daemon daemon||daemon

Accessor o

i Picker assembly

and support arm o

. A60
microcode

A60 tape controller microcode.

access up to 12 physical IBM 3590 tape drives to move the
customer data onto and off physical 3590 tape cartridges.
The I/O throughput of the virtual tape device is
buffered by the DASD cache. This buffering allows the
consolidation of the virtual-device I/O onto the VTS back-
end physical tape drives. In addition, the buffering of
virtual volumes on DASD allows the VTS to stack, or
concatenate, multiple virtual volumes on each physical
tape cartridge using the back-end drives, thus increasing
storage efficiency. This stacking enabled “users of
cartridge tapes to better maximize the storage potential of
each tape in their library” [3]. Using IBM 3590 Model B
drives, the VTS improved system performance, increased
storage capacity, and reduced the number of tapes
required “by as much as a factor of 59...7 [4].
Customers switching to the newer IBM 3590 Model E
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drives, which write twice as much data on a tape as did
the 3590 Model B drive, can achieve reduction factors
of almost 120.

The virtualization provided by the IBM VTS isolates
tape applications from the physical media used on the
VTS. This allows migration to improved media without
requiring changes to host applications.

Another advantage is the fact that VTS provides
improved scratch-mount performance. A scratch mount
is the mounting of a virtual volume with the intent of
completely overwriting the volume. On a physical tape
drive, a scratch mount requires 20 to 30 seconds to mount
and load a physical tape cartridge. On a VTS, a scratch
mount can be as quick as opening a new file in the DASD
cache, reducing the overall mount time to only a few
seconds.

In addition, the VTS helps provide improved access to
recently written virtual tape volumes. Because the DASD
cache on the VTS stores up to six terabytes of virtual
volumes, these volumes are available for immediate access
as soon as they are written to cache. On a real tape drive,
mounting one of these cached files would require
mounting a physical tape cartridge. In a VTS, a cached
mount offers the same time savings as a VTS scratch
mount, because both are accessed from cache.

The virtualization provided by the IBM VTS makes
possible the mapping of more than one virtual drive to
a physical drive on the VTS. On traditional tape-drive
systems, the ratio of host-drive images to physical drives is
1:1. On a larger IBM VTS, the ratio of host virtual-drive
images to VTS physical drives is in the range of about 20:1
to 40:1, depending on the number of physical drives.

The physical tape drive used in the current IBM VTS
is the IBM 3590 tape drive. Many customers have made
significant investments in enterprise-level tape drives. The
high ratio of host virtual-drive images to VTS physical
drives can provide customers with a significant cost
savings in tape-drive purchases by reducing the number
of physical drives required. A virtual drive costs
approximately one-seventh as much as an IBM 3590
tape drive, as shown in Figure 1.

The reduced cost per virtual drive provided by the VTS
creates new opportunities for automating tape processing.
IDC found that unautomated, unmanaged tape storage
systems cost 17 cents per megabyte in personnel costs.

In contrast, the personnel cost for fully automated, fully
managed sites with virtual tape systems is one cent per
megabyte [5]. The advantages of tape virtualization were
also recognized by major high-end tape vendors, who
quickly followed IBM to market with their own virtual
tape systems [6].

The IBM VTS was designed using a building-block
design philosophy. This approach is premised on
assembling existing hardware and microcode components
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microcode tape daemon per physical tape drive. Host
data and commands are transferred to the tape daemon
through a custom device driver using customized adapter
microcode. The tape daemon transfers the host data and
executes commands by executing the appropriate SCSI
commands with the attached physical tape drive.

In the IBM VTS, this code was expanded to support up
to 256 virtual tape-drive images, and a new component
was written to convert host adapter commands into
DASD file I/O operations. This component replaces the VTS
A60 SCSI interface to a physical tape drive with the
appropriate file operations on the VTS DASD file.

These modifications provided the virtualization of host
tape-drive images onto the VTS DASD cache. ADSM was
used to manage the VTS cache data on and off the large
physical tape inventory in the IBM 3494 Automated Tape
Library, as shown in Figure 3. The building-block design
and the reuse of the A60 microcode enabled the VTS to
provide tape virtualization with minimal changes to the
existing microcode (Figure 4).

Virtual tape server microcode.

Common

not include library manager or ADSM.)

Virtual tape server design

In the VTS design, when a virtual volume is written by the
host, the tape daemon transfers it into a file on the VTS
DASD cache. At this time, the only copy of the file is the

one in the cache. This virtual volume is referred to as a
resident virtual volume (Figure 5). At a later time, the
VTS will copy the virtual volume onto IBM 3590 physical
tapes using the ADSM HSM client and the ADSM server.
The virtual volume will have one copy left in cache for
potential cache hits, while another copy is on physical

tape. A virtual volume in this state is referred to as S —————

premigrated. Eventually, the space in the DASD cache
occupied by the virtual volume will be needed for other,
more recently written virtual volumes. When that occurs,
the ADSM HSM client truncates the file into a short data
segment (approximately 3 KB) and appends a pointer to
its ADSM server’s database entry for the virtual volume.
A volume in this state is referred to as migrated. If the
host requests access to a migrated virtual volume, the

Virtual tape server file terminology.
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ADSM HSM client and ADSM server transfer the data
back into the VTS DASD cache from the appropriate
physical tape. This operation is referred to as a recall of
the virtual volume.

ADSM was chosen because of its performance history;
however, integrating ADSM into the IBM VTS proved
to be a significant challenge, because ADSM was designed
to be serviced by a human operator. The ADSM HSM
automigration daemon required that a significant amount
of the VTS cache be empty. A quiet period for reconciling
with the server was needed because the ADSM HSM
automigration daemon was unable to premigrate or
migrate data during this reconcile period.

The VTS design goals were to use almost 100% of the
DASD cache and to run at full performance, 24 hours a
day, seven days a week. The subsystem had to run with
little or no human intervention. These design goals were
in direct conflict with the limitations of the ADSM
automigration daemon and the operator requirements
of the ADSM server.

Integrating ADSM into the VTS presented many of the
same challenges found in autonomic computing. The code
had to be self-configuring and self-healing, replacing all of
the configuration and repair activities performed by a
human operator in a normal ADSM application. It also
had to have self-optimizing characteristics to maximize the
use of resources within the RS/6000.

The first step in integrating ADSM into the VTS was to
limit the scope of the task by constraining the design of
the system. Using an RS/6000 with ADSM required using
the AIX HSM client and AIX server. Coupling the VTS
with the IBM 3494 Automated Tape Library dictated the
use of the IBM 3494 Library Manager (LM) for library
control.

The IBM 3494 LM provides information to the VTS
about the status of the physical tape cartridges. The LM
also provides status information about the success or
failure of physical tape cartridge mounts into the IBM
3590 tape drives and it tracks the status of the host
computer’s virtual volumes. The LM associates an inventory
of virtual volumes with the VTS. When a host computer
requests the mount of a virtual volume on a VTS, the
LM verifies that the volume is in the inventory of the
VTS. The LM also prevents the volume from being
accessed simultaneously by multiple tape daemons
on the VTS.

Additionally, the LM tracks the host category
assignment for each virtual volume. The customer is
allowed to assign any of these categories a fast ready
attribute. This attribute is used by the VTS to determine
how to open a virtual volume for the host. When a
category is flagged as not fast ready, the mounts of virtual
volumes in that category are assumed to be specific
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mounts; the data in the volume will be used by the host
computer. When the host computer requests a mount of
one of these virtual volumes on a virtual device, the VTS
microcode checks to confirm that the entire volume is in
the VTS cache and then returns a ready status on the
virtual device. If the virtual volume is not in cache at
the time of the mount, a recall will be performed, and
the ready response to the host will be delayed.

When a category is flagged as fast ready, the mounts
of virtual volumes in that category are assumed to be
scratch mounts; the data in the volume will be completely
overwritten, and the old version of the virtual volume will
be destroyed. If a fast ready virtual volume is not in cache,
it will not be recalled. Even though the volume will be
overwritten, many host operating systems (for example,
the IBM MVS* operating system) will read the IBM
standard tape label at the front of the virtual volume to
verify that the internal label is the correct one and that
there are no data records of interest on the volume. The
tape label is contained within the 3 KB of truncated
virtual-volume data left in the VTS cache for migrated
volumes. This small amount of header data is used to
satisfy operating system requests without having to recall
any additional data for migrated fast ready virtual volumes.

Automated administrator
One of the key functions of the VTS microcode is to
automate the function of the ADSM system administrator.
An example of one self-configuring function is cartridge
insertion. When cartridges are added in a standard
ADSM installation, it is up to the system administrator to
determine whether they are new cartridges or reinserted
cartridges, then check them into ADSM as appropriate.
Within a VTS, the microcode detects the insertion,
determines whether it is a scratch or reinserted private
cartridge, and checks it in for appropriate handling.

Another area in which the administrator is replaced
is error handling (Figure 6)—a self-healing aspect of
the VTS microcode. When the VTS accesses a logical
volume in its cache, it does so using AIX read and write
commands. The ADSM HSM client intercepts these
commands and automatically recalls virtual volumes into
the VTS cache if required. Most errors that occur are
labeled either not ready or text busy by the HSM client.
These errors are reported on a virtual-volume basis. For
example, a recall failure is reported to the VTS microcode
by the HSM client as a not ready error on the virtual
volume. The actual error that occurred on the physical
tape being recalled is reported by the ADSM server as
a tape error.

One thread of the VTS microcode is dedicated to
monitoring the ADSM server output. It builds a volume
status table of reported physical tape errors. When the
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virtual tape daemon receives a not ready error, it calls a
VTS error-handling thread that finds the physical tape
on which the virtual volume is located and retrieves the
appropriate physical tape error from the volume status
table. This enables the VTS to take appropriate corrective
action based on the error reported on the physical tape
volume. In many cases, the errors are administrative
errors and can be self-healed by the VTS microcode by
taking the appropriate administrative actions. In other
cases, the errors cannot be corrected by the VTS
microcode, but information on the type of failure (e.g.,
missing or misplaced physical volume) can be provided
to the user, who can then take appropriate action.

In the case of a fext busy error while opening a virtual
volume, the VTS microcode determines whether the file
error occurred because another VTS microcode thread
commanded ADSM to transfer the virtual volume from
DASD to tape. Whenever the VTS microcode transfers
a file from DASD to tape, it stores the filename in a
common memory structure accessed by all VTS microcode
components. The VTS error-handling thread checks the
virtual volume that received the fext busy error against
these filenames and, if an error is found, it cancels the
transfer process and the internal ADSM server session
corresponding to that process. It waits until the file is
freed and then instructs the virtual tape daemon to retry
opening the virtual volume.

Occasionally, a physical tape has permanent read/write
errors or enough temporary errors that it should no longer
be used. The ADSM server detects this and makes the
tape read-only. In addition, the VTS thread monitoring
the ADSM server output makes tapes read-only on
specific ADSM errors. The VTS microcode periodically
checks for these tapes and processes them. It determines
the current status of each virtual volume on the physical
tape and attempts to recover it into cache. Virtual
volumes that cannot be recovered are reported to the
user. When the tape has had all recoverable data removed
from it, it is ejected from the VTS, and the customer is
notified. The data recovered into cache is premigrated
onto other, good physical tapes.

The administrator also self-configures the physical tape
drives used in the VTS. If too many permanent errors have
occurred on a particular physical tape drive, the ADSM
server will stop using it. The VTS microcode detects these
unusable drives by detecting specific server error messages
that indicate that a drive is no longer being used. The
microcode also periodically queries the ADSM server to
determine any additional drives that are no longer being
used. The LM can also make tape drives unavailable on
physical load and unload failures. When any of these
conditions are detected, the VTS microcode deconfigures
the drive from ADSM and reconfigures the ADSM
mountlimit. Then, if appropriate, it sends a message to the
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LM to post an intervention that a drive has failed. When
the drive is repaired and made available through the LM
user-interface panels, the VTS is notified by the LM. The
VTS microcode then configures the drive to the ADSM
server and reconfigures the ADSM mountlimit.

Cache management

A key self-optimizing function provided by the VTS
microcode is cache management. The VTS microcode is
designed to monitor all virtual volumes in the VTS DASD
cache and instructs the HSM client to transfer them to
tape on an individual basis. This function helps improve
the HSM client automigration function in two ways. First,
it allows the VTS to manage files in orders other than
least recently used (LRU). Second, it allows the VTS to
continue to transfer files from cache to physical tape while
the ADSM HSM client and ADSM server are reconciling,
a process that can take more than an hour. (The original
ADSM automigration process suspended transfers to tape
while reconcile was running.)

Each virtual volume is assigned a pseudo-time value
used for ordering logical volumes in cache. The virtual
volume with the oldest pseudo-time is the preferred file
for both premigration and migration. The VTS allows the
host to specify the desired cache management policy
applied to a particular virtual volume every time it is
accessed. Currently these choices are keep in cache (LRU)
and remove from cache (preferential migration). For
virtual volumes that are to be treated on an LRU basis,
the pseudo-time assigned is the time the virtual volume
was last accessed by a host computer. Virtual volumes that
will be preferentially migrated from the cache are assigned
pseudo-times near the AIX epoch time, making them
appear very old. 463
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The pseudo-time mechanism allows the VTS to treat
all files with the same algorithm (oldest pseudo-time is
premigrated and migrated first), allowing host-controlled
ordering of files and LRU ordering of other files to be
managed using a single value.

Dynamic load balancing

Another key function supported by the VTS microcode is
balancing the data transfer on and off the VIS DASD
cache. When the host computer is writing data to the
VTS, the tape daemons fill the DASD with newly written
resident virtual-volume data. Space must be created within
the cache to store this data by truncating previously
premigrated DASD virtual volumes. To have virtual
volumes available for truncating, other resident virtual
volumes must be premigrated to physical tapes.

ADSM performs the premigration of the virtual
volumes from DASD to tape under control of the VTS
microcode. Under heavy host loads, the DASD can fill
faster than it can empty. If it should fill up completely, the
VTS could lock up or suffer other operational problems
that can have a serious impact on the jobs being run by
the host.

The solution implemented in the VTS is host write-
throttling (Figure 7). Every 30 seconds, one thread in the
VTS microcode checks the DASD free space and the
amount of resident virtual-volume data.

Host write-throttling is controlled by VTS microcode.
On the basis of a throttling algorithm, VTS microcode
loads a write delay time into a memory variable shared
with the tape daemon. The actual host write-throttling is
handled by the tape daemon. After every write operation
processed by the tape daemon (typically 32 KB), the tape
daemon sleeps for a specified delay time indicated by the
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VTS microcode before signaling that it has completed the
operation. If throttling is not required, the tape daemon
branches around the sleep (rather than sleeping for zero
time) to avoid giving up any processor time slices, thus
maintaining maximum throughput.

The maximum throttling time delay is set at a value
that might not abort a host job, but is large enough to
effectively stop host write activity to the DASD. The VTS
currently uses 120 seconds as the maximum throttling time
delay; this reduces the effective maximum host write rate
to the VTS by several orders of magnitude.

The VTS microcode controls the ADSM host recall data
flow, which also fills the cache with premigrated data, by
reducing the number of ADSM recall daemons (and
therefore the number of tapes that can be recalled by
ADSM). Using a throttling algorithm, VTS microcode sets
the appropriate number of recall daemons that ADSM can
use. In normal (not throttled) operation, VTS microcode
sets the number of recall daemons to allow ADSM to
recall up to n — 1 physical volumes, where n is the
number of 3590 drives in the VTS. At the maximum
threshold, VTS microcode allows only one recall to occur
at a time (the minimum number of recalls with which the
ADSM can continue to operate).

The algorithm currently used to implement thresholding
is linear. The time delay is zero at the minimum threshold
and 120 seconds at the maximum threshold. The actual
free space on the DASD is determined by a VTS
microcode time poll. The time delay is linearly
interpolated on the basis of the actual free disk space
between the thresholds. Similarly, the number of
simultaneous recalls allowed at the minimum threshold
is n — 2 (one less than when the VTS is not throttled).
The number of simultaneous recalls allowed at the
maximum threshold is one. The number of recall daemons
is linearly interpolated on the basis of free disk space.

In addition, when the amount of resident data reaches
30 GB from the top of the cache, the VTS starts a linear
throttle on the amount of premigration data. This begins
at zero and reaches a maximum value of two seconds if
resident data fills the cache. This throttle establishes a
minimum buffer of premigrated files in the VTS cache.
These premigrated files can be migrated quickly, freeing
space in cache. This buffer is intended to isolate the host
write data flow from variations in the premigration data
rate, which occur between virtual volumes and as physical
tapes load and unload. This throttle is the predominant
throttle in the VTS with the performance accelerator
feature.

The throttling mechanism results in two distinct modes
of operation for the VTS: peak and steady state. Peak
mode occurs when the majority of the virtual volumes
in the cache are premigrated. The VTS allows the host
to write data without any throttling until the minimum

IBM J. RES. & DEV. VOL. 47 NO. 4 JULY 2003



premigration throttle threshold is reached. During this
period, data is premigrated to tape from the cache, but,
typically, the premigration does not significantly reduce
the host write rate. When the minimum premigration
throttle threshold is reached, the VTS maintains a stable
amount of premigrated data using the host write throttle.
The host write rate is reduced to exactly match the
premigration rate of the VTS. By reducing the host write
rate, the premigration processes receive more system
resources and run faster until the DASD is fully utilized.
This throttling mechanism is used by the VTS microcode
to self-optimize the data flow in the VTS.

Another advantage of the VTS is better use of the
cache because of its tighter control mechanism. If the
VTS used the ADSM automigration client and suspended
automigration while reconcile was running, several of the
VTS configurations would end up overrunning their
caches, even if they were empty at the start of the
reconcile. The VTS, using its cache-control algorithm,
requires so little free space that the larger cache models
report the cache continually at 100% full and support
continuous full-throughput operation.

Background process control

The VTS also self-optimizes background processes to
minimize their impact on the user. Most customers use
the VTS in a cyclic manner, with heavy batch use periods
alternating with periods of much lower use. The VTS uses
its microcode in conjunction with customer input through
the LM to minimize the impact of these background
processes on the customer’s batch window.

The VTS controls the reconcile of the VTS client and
server. This DASD and processor-intensive process is
used by ADSM to cause down-level versions of reused or
deleted virtual volumes on the physical tapes to expire.
When enough data on a particular physical tape has
expired, the remaining data can be removed from the
tape through a reclamation process, and the physical
tape can be reused in the VTS.

The reconcile process can interfere with the
performance of the VTS if it occurs during a period of
heavy VTS use. This process can take more than an hour
on a VTS that has a full complement of virtual volumes in
use. The VTS attempts to match its reconcile timing with
the periods of lower use by the customer.

The design goal of the VTS was for a reconcile to occur
at least once every 24 hours. The VTS monitors its loading
by keeping track of the amount of time that at least m
physical drives have been continuously idle for all values
of m from 1 to the number of physical VTS drives. This
table can be used to determine periods of low resource
use. If enough drives have been continuously free for an
empirically determined period of time, and it has been
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at least 18 hours since the last reconcile, the next reconcile
is executed. If the idle time criterion is not met within
24 hours after the last reconcile ended, a reconcile is
executed.

This mechanism allows the VTS to shift the
reconciliation time to a quiet period up to six hours ahead
of the scheduled reconcile, allowing the reconcile process
to shift backward in time to an optimal quiet period. If no
such period is found, the reconcile occurs 24 hours after
the end of the previous reconcile. Thus, the next reconcile
will occur at a period slightly greater than 24 hours,
allowing the reconcile to creep forward in time to an
optimal quiet period. This permits the VTS to eventually
self-optimize the reconcile to the customer’s low-use
periods.

When the reconcile operation completes, the ADSM
server causes the older tape copies of customer virtual
volumes that have been updated or deleted from the VTS
to expire. This helps reduce the amount of active data on
the physical tapes in the VTS. The active data on the
physical volume can be reclaimed by appending the
remaining active data onto a filling volume, helping to
eliminate the gaps created by the reconcile process and
converting the physical volume into an empty tape. This
process requires physical drives and reduces the ability of
the VTS to perform customer data transfer. Therefore,
customers can specify an active data threshold at which
they want the reclamation process to begin and determine
a daily schedule that tells the VTS when it can perform
this process. The VTS microcode can use this information
to help optimize the reclamation process. If the VTS
determines that the user has ample scratch tapes, the VTS
monitors the use of the physical drives in the VTS and
performs reclamation only if enough drives are free for a
significant period of time and reclamation is allowed. If
there are not enough scratch tapes, the VTS cycles
reclamation on and off with the customer-supplied
schedule. If the user is low on scratch tapes, the VTS
temporarily adjusts the reclamation threshold high enough
to remedy the low scratch-tape condition and reclaims
continually, ignoring the customer-supplied reclamation
schedule until the customer has enough scratch tapes.

Enhanced database backup

The VTS provides enhanced data protection with a design
that stores a complete ADSM metadata database backup
at the end of every physical tape. At every physical volume
mount, the VTS microcode instructs the 3590 tape drive
to return a logical end-of-tape signal when there is just
enough space at the end of the tape to store a full backup
of the ADSM database. When the ADSM server receives
the logical end-of-tape signal, it stops writing to the tape,
writes its closing data, and passes the device handle to the
VTS microcode. The VTS microcode writes a database
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backup header to the tape that contains backup version
identifiers and the time at which the backup was taken.
The VTS microcode instructs the ADSM to create a full
database backup and transfers it to the end of the physical
tape, then returns control of the physical tape drive to the
ADSM server. The server closes the tape and dismounts it
from the tape drive.

Under normal operation, every full physical volume
contains a full ADSM metadata database backup
representing the point in time at which the physical
tape filled up completely. This means that any subset of
physical tapes from the VTS can have a point-in-time
restore from the physical tape that has the oldest backup
time, and that backup will contain the database that
describes the contents of all the other tapes in the subset.
In the event of a complete VTS failure, or a scenario in
which a VTS must be abandoned and a subset of the
physical tapes can be removed (such as a flood), the
database can typically be recovered by a VTS process
that scans the tapes and finds the newest database, then
restores it.

Peer-to-peer virtual tape server

When a single physical volume is written on a physical
tape drive, only a single copy of that volume is written

to a physical tape. Similarly, the VTS provides only one
physical copy of a virtual volume on one of the VTS
stacked volumes. Although rare, it is possible for that
physical volume to be destroyed or become unreadable
for other reasons. If this should occur, the virtual volume
would be permanently irretrievable, just as it would be if
it were a physical tape volume with the same damage.
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The best way users can protect access to all tape
volumes—virtual or physical—is to maintain dual copies of
the data. This can be accomplished by running host tape-
backup applications or by having host applications write
two copies of every volume. Many customers prefer that
this copying operation take place in a subsystem that is
external to the host, offloading the work from the host
onto the subsystem controller.

For these customers, IBM added the peer-to-peer
virtual tape controller (VTC). Two virtual tape servers can
be combined to create a peer-to-peer virtual tape server
by connecting them using four or eight VTCs. The host
computer is connected to the VIC, and the VTC in turn
is connected to both VTS subsystems. The VTC confirms
that each virtual tape server contains a copy of every
virtual volume written to the VTC. If the VTC cannot
access a virtual volume on one VTS, it can access it on
the other and replace the damaged virtual volume on
the first VTS. This redundant self-healing aspect of the
architecture provides greater data availability in the event
of a failure than either a VTS or a physical tape.

The VTC reuses many microcode components from the
VTS (Figure 8). Custom VTC microcode was written to
mimic a host computer attachment to the VTS to control
the virtual volumes and manage mounts on the attached
VTS subsystems. To control the virtual volumes on the
two VTS subsystems and to manage the replication and
synchronization of data between them, the VTC uses
tokens that indicate data and property levels of each
virtual volume managed by the VTC.

In a peer-to-peer VTS, the VTC selects the I/O VTS
that will be used for host I/O operations. Host data is
written through the VTC to the I/O VTS. The VTC then
manages the duplication of the virtual volume to the other
VTS in the peer-to-peer subsystem. Two virtual-volume-
synchronizing modes of operation are provided in the
peer-to-peer VTS. The first mode of operation is called
immediate mode. In this mode, after an entire virtual
volume is written to the I/O VTS and the host has issued
a rewind/unload operation to the virtual device, the VTC
creates a copy of the virtual volume on the other VTS
before it reports the completion of the rewind/unload
operation to the host. Therefore, when the VTC indicates
that the rewind/unload operation of the virtual volume has
completed, the copy has been replicated on the other VTS.

In the second mode of operation, called deferred mode,
copies to the non-I/O VTS are deferred. The customer
configures the VTCs to increase the priority of these
deferred copies if they have not been performed within a
certain period of time. This allows the VTC to provide all
of its processing power to support the host computer
during peak batch windows. This mode of operation
provides the customer with improved batch performance
and defers the copy activity to off-peak periods. As each
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deferred copy is added to a VTC copy queue, it is also
broadcast to the other VTCs in the subsystem, allowing
the copy to be completed by the VTC with the most
bandwidth available.

However, in deferred mode, if the amount of data
written in the batch window should exceed the capacity
of the VTS cache, some of the uncopied virtual volumes
would have to be migrated to physical tapes. To complete
the copy to the other VTS at a later time, these virtual
volumes would have to be recalled from tape—a very
inefficient process. This is prevented in a peer-to-peer
VTS by having each VTS dynamically track the amount
of uncopied virtual-volume data it has in cache. If this
amount of uncopied data exceeds a threshold based on the
size of the VTS cache, the VTS slows down all incoming
cache write activities until the rate generated by uncopied
data matches the rate of data copied to the other VTS.

In addition, the uncopied virtual volume is kept
preferentially in cache by adding to the pseudo-time
cache preference value for the virtual volume, a pseudo-
time offset that is typically larger than the cache residency
time. This makes the virtual volume appear newer than all
of the other volumes in the cache, and it is therefore the
last file to be removed from the cache. The VTS monitors
the copy status of this source virtual volume and, when it
is copied, subtracts the pseudo-time offset from the cache
preference value of the source logical volume, restoring
it to its original LRU order in the cache.

In a peer-to-peer VTS, when a virtual volume is copied
from one VTS to the other, the target VTS sets a cache
pseudo-time value near the AIX epoch for its copy. The
source VTS maintains a pseudo-time value of the last
host access time of the virtual volume. This results in the
virtual volume being promptly purged from the target VTS
and maintained on an LRU basis on the source VTS. This
automatic processing maintains only a single copy of the
virtual volume between the two VTS caches, essentially
doubling the amount of unique data stored in the
combined VTS cache when compared with operating
both caches on an LRU basis.

If, in spite of the controls, uncopied virtual volumes
have to be migrated to physical tapes (for example, if
the other VTS subsystem has a long service outage), the
virtual volumes will be staged back in to the cache for
copying. These files will also have a pseudo-time offset
added to their recall time as their cache preference value
to keep them preferentially in cache. When these files
have been copied, a larger pseudo-time offset will be
subtracted from their cache preference values to give them
less preference in cache than the LRU-managed files in
the cache, but more preference than the remove from
cache virtual volumes.

The staging of the uncopied virtual volumes is
optimized by the VTS. The VTC requests the staging of a
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particular virtual volume on the basis of its copy queue.
The VTS determines the physical volume that contains the
requested virtual volume. The VTS builds a list of virtual
volumes that also require staging based on their tokens
and are also on the same physical volume. The VTS
recalls the entire list of virtual volumes and notifies the
VTC which virtual volumes have been staged for copying.
The VTC copies the staged virtual volumes to the other
VTS on a priority basis. This mechanism greatly reduces
the number of physical mounts required for the copy
operation.

Peer-to-peer VTS token manager

In a peer-to-peer VTS, the tokens used for tracking the
status of the virtual volumes in each VTS are critical to
keeping the data synchronized and must be kept in a
database within the peer-to-peer subsystem. Because
these tokens must persist and be tightly coupled with the
virtual-volume data on each VTS, it was decided to add
a token manager to the VTS. This token manager stores
the tokens for the VTC and provides query and update
functions to the VTC. The token manager synchronizes a
token database backup and writes it to the end of every
physical tape along with the ADSM database to provide a
full point-in-time restore of all critical data for a peer-to-
peer VTS.

The VTS token manager also independently tracks
the data and property levels of the copy of each virtual
volume in cache as well as the data and property levels
of the copy of the virtual volume that was last written
to physical tape. During a disaster recovery, after the
point-in-time databases are restored, the VTS microcode
determines which volumes were recovered from tape and
which remained in cache. It restores the proper data and
property levels for each recovered volume depending on
its recovery method.

The token manager is the first component in the VTS
designed to be completely self-healing. It services other
VTS components by responding to request messages
on an AIX message queue. Every message received is
immediately copied to an in-process message queue.

The request is processed by the token manager; then a
response message is returned to the requester and the in-
process message is flushed. This mechanism has every
in-flight message in one message queue or another. A
watchdog component in the VTS periodically sends “ping”
requests to the token manager and will halt and restart
the token manager if problems are detected.

This means that the token manager can run problem-
free, even with a slow memory leak. Eventually, the token
manager would perform a core dump, and the watchdog
component would restart it. The new token manager
would reexecute the request that was in progress, then
continue processing requests. The calling processes would
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experience a delay in response times, but otherwise could
continue uninterrupted. In case the in-progress request
caused the core dump, in-progress requests are retried
only on the first error restart.

In practice, restarts on the token manager are not
expected, but designing the code to be restartable at any
time has been a benefit for code development. If a change
is made to the token manager, it can be stopped, reloaded
with a newer version, and restarted with no interruption to
the running VTS.

Microcode growth

With each new VTS microcode release, the function,
capacity, or performance of the VTS has improved. These
changes all built on the autonomic computing aspects in
the original VTS microcode. Each new function required
specific VTS microcode to provide additional automated
management controls within the VTS. The growth in the
VTS functional code has consisted primarily of additions
to the VTS specific code, while the common control unit
code has remained stable (Figure 9).

The VTS microcode was initially envisioned as the
autonomic computing glue that bound the major VTS
code components together. Since then, it has grown from
mere glue to a major controlling element of the VTS. It
provides the self-configuring and self-healing control of
the ADSM. The code also improves the database backup
process and provides token support in the peer-to-peer
VTS. It self-optimizes the VTS by controlling the
background VTS operations, dynamically load-balancing
the other VTS components, and managing the contents
of the VTS cache.

Summary

The IBM Virtual Tape Server reduces the cost of tape
operations through tape-drive virtualization and physical
tape-volume stacking. The VTS microcode architecture
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has incorporated existing, historically reliable microcode
building blocks to provide a stable data processing
foundation. The addition of autonomic controls has
enabled the integration of these building blocks into a
reliable, high-performance, standalone storage subsystem.

Looking forward

The next major functional improvement in the VTS is the
addition of pooling: the ability for customers to control
which sets of physical tapes are used to store their virtual
volumes and to select whether they want their virtual
volumes written to only one or to two different storage
pools. These copies, if chosen, provide additional
protection against rare, but possible, physical tape failures.

Each pool can have specific types of physical media
assigned to it by the user. This gives customers the
advantage of managing virtual volumes for performance
or storage capacity by pool. Or, if desired, customers can
separate groups of virtual volumes for security reasons.
Some enhancements are being provided to automate the
transition from one physical medium type to another,
further enhancing the virtual nature of the VTS.

As IBM moves more of its storage onto storage area
networks (SANs), the VTS will have to evolve into a
network-attached storage subsystem. The VTS could
become more virtual itself as its component subsystems
are separated and scatted across the SAN.

Recent world events have sharpened customers’ focus
on disaster recovery. The peer-to-peer VTS helps support
customers’ continuous access to their data in the event
of a total loss of one of the VTS subsystems. Many
customers also desire the ability to seamlessly verify their
disaster-recovery processes. IBM continues to develop
additional VTS features to improve the efficiency and
ease of use of disaster-recovery verification.

Finally, as IBM rolls out the results of the autonomic
computing initiative throughout its product line, it is
expected that the VTS will become even more reliable as
its building blocks improve. The plan for the VTS is to
couple this improvement with improvements to its own
autonomic computing base to sustain our technology
leadership in virtual tape subsystems.
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