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In the last two years, Linear Tape-Open� (LTO�) tape drives
have become clear leaders in the mid-range tape marketplace.
Tape drives designed to the LTO Ultrium� format were the
first of the super drives to be shipped to mid-range tape
customers. This paper describes some of the eclectic features
designed into the LTO format. The technical emphasis is on
aspects of the logical format that are new or different from
preceding drives, though some aspects of the LTO roadmap
and physical format are also discussed. The logical format
comprises all of the data manipulations and organization
involved in writing customer data to tape. This includes
data compression to compact the data, appending of error-
correction codes (ECCs) to protect the data, run-length-limited
encoding of the ECC-encoded data, prepending headers to the
encoded data to make it self-identifying on read-back, and
storing of information about the data and the way it is stored
in a cartridge memory module. Physical format aspects that
are discussed include encoding data into the servo pattern and
write shingling. Also discussed are the format-enabled aspects
of drive functionality that have been improved over previous
tape drive products, including enabling backward writing,
elimination of problematic failure mechanisms, dynamic
rewrite of defective data, handling servo errors without
stopping tape, and enabling robust reading. Contrasts are
made with previous products and competing products based
on other format choices. Also discussed throughout is the way
in which an eclectic format can be created by cooperation
among three format-development companies.

Introduction
In 1997, Hewlett-Packard**, IBM*, and Seagate** joined
together to create a new, open, best-of-breed format
for linear tape. This new tape format was to be made
available via open licensing to any company wishing to
make a tape drive or storage cartridge that conformed to
the new format specifications. Hence, the new format was
named the Linear Tape-Open† (LTO†) format. The LTO
format is very robust, with features supporting reliability,
high data integrity, scalability, and interchangeability. The
three companies that created it are known generically as
the technology provider companies (TPCs). The LTO
format was designed to enable high-data-rate tape drives
to read and write high-capacity cartridges, and was
envisioned as a forward-looking format that could be

extended as needed to support at least four generations
(Table 1).

The cartridge capacity of LTO Generation 1 (Gen 1)
was to be 100 GB native (i.e., without data compression),
and each subsequent generation would double the native
cartridge capacity of the previous generation, resulting
in an 800-GB capacity in Gen 4. The native data rate
of the LTO tape drives is specified only within a range.
In Gen 1, for example, it is specified as 10 to 20 MB/s.
The intent was to enable the native data-rate range
to double in each subsequent generation, resulting
in a data-transfer-rate range of 80 to 160 MB/s in
Gen 4. Thus, the format was designed from the outset
to be extensible in both capacity and data rate, and
to allow data migration.
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In the years from 1998 to 2000, IBM made a significant
investment in developing the technology building blocks—
tape heads, tape deck, data-flow processing, and servo
technology—that were needed to build LTO tape drives.
This investment was required to enable IBM to compete
effectively in the growing and lucrative mid-range tape
marketplace in which a competitor’s tape-drive family
held the greatest portion of market share. The first
product to result from this investment was the IBM
TotalStorage* Ultrium† tape drive, which conformed
to the LTO Gen 1 tape standard. It was shipped in
September 2000 and was the first LTO Gen 1 tape drive
to become generally available. The TPCs then extended
the LTO format to LTO Gen 2, and the first Gen 2 tape
drives were shipped in the fourth quarter of 2002.

This paper describes some of the aspects of the first two
generations of the LTO format, which incorporated several
format features designed to make data-flow processing in
linear tape drives more robust. Some LTO features had
never been seen in a tape drive, some only in isolated
instances of tape drives that are no longer existent, and
some only in helical tape drives. The LTO format allows for
significant variation in implementation—so long as each
implementation conforms to the format in a manner that
enables data interchange. This paper also describes some
IBM implementation decisions made in its LTO drives.

The LTO format is the best available implementation of
a linear parallel serpentine technology principally because
of its strong format, which enables more concurrent
channels. LTO Gen 1 enables up to eight channels, and
future generations are slated to enable up to 16 channels.
By comparison, a maximum of only four channels were
available in the most prevalent linear serpentine
implementations available in mid-range linear tape drives
before the general availability of LTO Gen 1 in the third
quarter of 2000. (However, enterprise-class tape drives
had as many as 16 channels being read/written at a time,

but they typically cost much more than mid-range tape
drives.)

In addition, when LTO Gen 1 was first shipped, it
offered the highest cartridge capacity and areal density
of any linear tape technology in the industry. The high
areal density is supported by a robust logical format that
includes interleaved recording across eight data tracks,
with user data protected by a true cross-product error-
correction code (ECC) designed for robust multiple-track
operation in the midst of a relatively high random error
rate. Other aspects of the robust logical format include a
new data-compression algorithm, a new run-length-limited
(RLL) code, dynamic rewrite of data errors, dynamic
rewrite in response to servo anomalies, use of cartridge
memory (CM) in each cartridge, and longitudinal position
(LPOS) information embedded into the timing-based
servo (TBS) system, which enables simple low-cost and
very precise longitudinal positioning.

An eclectic mid-range linear tape format
The LTO format was designed to enable superior backup-
and-restore operation. LTO drives were the first of the
so-called super drives to be shipped, delivering 100 GB of
native capacity in an LTO Gen 1 cartridge (a single-reel
tape cartridge that holds about 600 meters of half-inch
tape).

When the first LTO Gen 1 drives were shipped in the
third quarter of 2000, the 100-GB native cartridge capacity
was more than double that of any competing mid-range
half-inch linear tape format, and two of the three LTO
Gen 1 tape drives brought to market, including IBM’s, had
a native data rate of 15 MB/s.1 This was exceptional native
data-rate performance for a mid-range tape drive. This

1 The LTO format specifies a recording density for data interchange, but not the
tape speed at which it is written or read. Therefore, each drive maker may select
the tape speed for its product. Because data rate is a direct function of tape speed
for a given recording density, data rates may differ among LTO drive makers.

Table 1 The LTO roadmap.

Gen 1
drives

Gen 2
drives

Gen 3
drives

Gen 4
drives

Capacity, native
(compressed)

100 GB
(200 GB)

200 GB
(400 GB)

400 GB
(800 GB)

800 GB
(1.6 TB)

Transfer rate, native (MB/s) 10 –20 20 – 40 40 – 80 80 –160

Tracks at a time 8 8 16 16

Cartridges that can be read
(at a minimum)

Gen 1 Gen 1
Gen 2

Gen 1
Gen 2
Gen 3

Gen 2
Gen 3
Gen 4

Cartridges that can be
written (at a minimum)

Gen 1 Gen 1
Gen 2

Gen 2
Gen 3

Gen 3
Gen 4
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type of performance was previously available only in far
more expensive high-end enterprise-class tape drives.

That this type of capacity and performance was
obtainable in a relatively low-cost half-inch tape drive
was not as surprising as the fact that it could be obtained
repeatably and with high data integrity over a spectrum of
cartridges of varying quality. The LTO format itself makes
this possible. It is the eclectic collection of the best ideas
brought forward by HP, IBM, and Seagate for a best-of-
breed mid-range tape format. In the beginning, each of
the three companies came to the table with a fairly
complete tape-format proposal, and each proposal
was significantly different from that of the other two
companies. Each TPC proposed a different RLL code, a
different ECC structure, and so on. It was decided that,
where separable, the LTO format would consist of the
best features of each of the three proposed formats. As a
result, the RLL code chosen for LTO was developed by
one of the companies, the ECC scheme was largely based
on a design by the second of the TPCs, and the data
randomizer adopted was that proposed by the third. In
some cases, the format feature incorporated into the LTO
format was brought to the table in nearly its final form. In
other cases, the best ideas of the different companies were
melded together to yield a result that was superior to any
of the initial proposals. The data-compression algorithm—
streaming lossless data compression (SLDC), developed
and standardized as ECMA-321—is a good example. It
took the best aspects of the proposals from all three
companies and combined them in a data-compression
scheme superior to any of the initial proposals. The
complete LTO Gen 1 format was standardized by the
ECMA International in June 2001 as ECMA-319.2

Each of these technological advances is described in
detail in the following sections.

LTO tape layout and servo pattern
When the LTO roadmap was laid out, the goal was to
achieve a native cartridge capacity of 800 GB in Gen 4
LTO drives and the products were to have backward write
and read capability (Table 1). The backward capability
meant that advances from one generation to the next had
to be achieved via small evolutionary steps, and thus it
was very desirable that the lateral span of the tape head
remain unchanged from one generation to the next. The
projection made at the time was that to achieve an 800-GB
capacity required at least 1024 data tracks across the
width of the half-inch tape, a significantly higher track
density than had yet been achieved in linear tape. If the
lateral span of the head were to remain the same over
the four generations and support 1024 data tracks in

the fourth generation, the problem to be solved was this:
What was the maximum projected lateral tape-head span
that could support 1024 tracks in the fourth generation?

The answer to this question gives, in turn, the maximum
lateral tape-head span that should be used in the first
generation. The determination made was that if the tape-
head span were restricted to only one quarter of the half-
inch tape and the tape head were controlled with respect
to lateral position using a closed-loop feedback system,
1024 data tracks could ultimately be achieved.

The innovative LTO design extended the concepts of
the bidirectional multichannel parallel serpentine linear
tape-recording technology that preceded it. The LTO
format specification divides the full tape width laterally
into four data bands to minimize susceptibility to changes
in the lateral span of a tape relative to the span of the
tape head as a result of stretching (for example, from tape
tension), shrinkage, or hygroscopic expansion over time.
The division into four data bands enables higher numbers
of tracks than can be achieved by linear tape formats that
have heads spanning the entire width of half-inch tape, or
half of it, as did all previous linear tape formats with eight
simultaneous channels. As a result, LTO Gen 1 was able
to offer 384 data tracks at a time when the most prevalent
mid-range linear tape format offered only 208 data tracks
(according to ECMA-208). LTO Gen 2 extended the data
track count to 512.

Each data band is straddled by two servo bands pre-
formatted with an extension to the TBS pattern developed
by the IBM Almaden Research Group and first shipped
in the IBM 3570 tape drive [1]. The servo bands provide
location information to control the positioning of the head
as it writes and reads data within the data band. The head
is positioned laterally on the tape by a closed-loop servo
that controls the two servo heads so that the average
position error signal (PES) calculation is equal to a given
reference value for a given wrap.

In addition to the PES signal used to control lateral
position, the TBS servo pattern is encoded with LPOS
information. LPOS is an absolute longitudinal address that
appears at set intervals down the tape. It was developed
and patented by IBM as an extension to TBS and has
become a cornerstone of the LTO format. A unique LPOS
word occurs every 7.2 mm down the tape, which is once
every 36 TBS servo patterns, each of which is 200 �m long.
Thus, the drive can position itself longitudinally down a
tape to a given LPOS to obtain a resolution of 7.2 mm.
Longitudinal resolution can be improved to 200 �m
by using fractional components of the LPOS. This is in
sharp contrast to linear tape formats that were developed
before the advent of LPOS and in which the absolute
longitudinal position might not be known within a meter
after a long seek of, for instance, 500 meters. This meant
that determining tape position had to rely on the reading

2 Before 1994, ECMA International was known as ECMA, the European
Computer Manufacturers Association. The Generation 1 LTO format document is
accessible at the ECMA Website at www.ecma-international.org as ECMA-319.
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of previously written data blocks. With an accuracy of only
one meter, the only way to precisely determine location
relative to previously written data blocks was to read
those data blocks and reference them to some relative
longitudinal position measure, such as the position of
precise fine-line tachometers on the reel motors.

For example, a write-append operation might have
required that a reference tachometer position be noted
on a read operation, then a reposition to locate the
tape head upstream of the append target, and then finally
acceleration up to speed for a write operation based on a
tachometer position. If, however, any tape slippage had
occurred relative to the reel motors (for example, because
the tape was loosely wrapped for a revolution or two), the
write append might overwrite the end of the previously
written data—an error known as a chopped block. This
failure mechanism does not occur in a tape format that
reads and writes on the basis of LPOS counts, because
data-flow processes begin or end at given absolute
positions mastered onto the tape itself as part of the servo
pattern. The chopped-block problem can be solved in tape
drives without any absolute position embossed on tape,
but it typically requires increased drive complexity and
hence cost. Although this solution allows drives to robustly
prevent inadvertent data overwrite, it adds hardware and
microcode complexity and results in some amount of
capacity loss, because append gaps typically must be
significantly longer.

In the case of read and write error-recovery procedures,
still more microcode complexity is added because the data
written to tape must first be precisely indexed relative to
the tachometer before the error-recovery procedures
can even be executed. If any tape slippage occurs
after indexing and before a given pass over that data is
executed, that step might fail for positional reasons alone,
and then the indexing would have to be redone and the
pass attempted again. Note that even in the absence of
LPOS, if one has the TBS pattern, as was the case in
the IBM 3570, one can measure the time between TBS
pattern groups to create a clock every 200 �m, which
could be used to eliminate fine-line tachometers on the
reel motors, but this is relative addressing that does not,
by itself, solve the chopped-block problem because,
without absolute addressing from tape itself, a system
can be deceived by tape slippage (unless the complexity
referred to above is added to address this problem).

LPOS gives the absolute addressing from tape itself,
and the use of LPOS encoding on top of TBS has helped
to increase data integrity, simplify the drive microcode,
and reduce drive cost by, for instance, eliminating the
need for fine-line tachometers. These advantages are
especially apparent when compared with analog servo
patterns. TBS and LPOS have enabled LTO drives to

achieve a high level of data integrity without adding cost
to the drive.

Enabling write backward
To enable data migration, the LTO format set out to
make it possible for each drive generation after the first
to be able to write one generation back and read two
generations back, as shown in Table 1. In the case of
Gen 2 tape drives, which by definition can write Gen 2
cartridges (512 data tracks), this means that they must
also be able to read and write the Gen 1 format (384 data
tracks) to Gen 1 cartridges. To make this possible, the
problem that had to be solved was this: How could the
format enable a tape drive to write the narrower tracks of the
next generation and also be capable of writing the wider
tracks of the previous generation?

One possible solution to this problem is to have a
completely separate write head for the previous-generation
tape format, but this adds needless cost to the tape drive.
LTO uses a much more practical solution. When writing
the Gen 2 format, drives use a technique called shingling,
shown schematically in Figures 1(a)–1(c). When using
shingling, a write track may overlap the bottom of a
previously written track. In the first pass, the tape comes
out of the cartridge and no previously written data tracks
exist. The first eight data tracks are written [Figure 1(a)].
For the second pass, the tape is moving in the opposite
direction, back into the cartridge, and the head is now in a
new servo position within the same servo band, following
the linear serpentine pattern. No previously written data
tracks exist in this direction (inbound to cartridge), and
the next eight data tracks are written [Figure 1(b)]. For
the third pass, the tape again moves out of the cartridge
and the head is again in a new servo position within the
same servo band, but now previously written data tracks
exist in the forward direction from the first pass, directly
above where the third-pass data tracks will go. The third-
pass data tracks partially overwrite the bottom of the first-
pass data tracks [Figure 1(c)], just as the second row of
shingles overlays a first row. Similarly, the fourth-pass data
tracks (not shown in the figure) partially overwrite the top
of the second-pass data tracks.

In the case of the IBM LTO Gen 2 write head, the
actual write head width is that of the LTO Gen 1 data
tracks, 27.5 �m. But, when writing the Gen 2 format, in
the next pass in the same direction the data tracks are
partially overwritten to leave a narrower residual width of
20.2 �m. To read these narrower Gen 2 tracks, the new
read heads are, of course, narrower than the Gen 1 read
heads (at least in the IBM implementation).

To write shingled tracks at a 20.2-�m spacing, the servo
heads must be positioned differently over the servo band
than was the case in Gen 1. The TBS pattern written
in the servo band is continuously variable and enables
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selection of any lateral offset. Thus, it enables indexing
at six different lateral offsets, as was done in Gen 1, or
eight different offsets, as required for Gen 2. As we look
forward to Gen 3, we may have to servo to other, different
TBS offsets, likely at a finer track pitch than Gen 2. One
of the advantages of the TBS servo pattern is that it
inherently enables higher numbers of tracks. In fact, the
IBM demonstration of the 1-TB operating point used
the LTO Gen 1 servo pattern, unaltered. This required
offsetting the head laterally at a minimum of 18 different
offsets relative to the TBS pattern. LTO offers the best
of both worlds—the extensibility built into TBS and the
backward-write capability enabled by a serpentine pattern
that allows shingling. Thus, we can index to six servo
positions and write the Gen 1 format, or index to eight
other servo positions and do shingled writing to achieve
the Gen 2 format.

Cartridge memory
Tape drives require information about tape cartridges,
such as which LTO generation(s) a given cartridge was
designed to support, whether it is a data-storage or
cleaning cartridge, etc. In previous generations, this
information was gathered by means such as sensing
notches or switches in the cartridge or reading special
sections of tape. In LTO, this information can be gathered

from the cartridge memory (CM), a silicon interface
module embedded in each LTO cartridge. The module
contains nonvolatile electronic memory for storage and
retrieval of information about the cartridge and the data
on it. While LTO was not the first tape format to adopt
an electronic memory in each cartridge (e.g., ECMA-291),
its implementation is somewhat different from, and
perhaps better than, previous implementations.

The CM used by LTO has a noncontact passive radio
frequency interface that eliminates the need for physical
connections to the cartridge for power or signals, unlike a
previous format that required electrical connection with
the cartridge memory when the cartridge was loaded (a
potential failure mechanism). Many types of information
are stored in the CM that are integral to the LTO format
and affect how data is written to tape. The CM can be
read, enabling a system to be fed information about the
condition of the cartridge and what is stored on tape, even
without loading or threading the tape. As an example, the
CM could be read by a CM reader attached to a picker in
a tape library, providing the tape library with information
about the data stored on a tape without even having to
transport it to a tape drive.

There are many pages of data stored in the CM. For
example, when a tape is formatted, the exact LPOS
locations of various points on the tape, such as the

Figure 1

Schematic diagram illustrating shingling: (a) The first wrap, in which the data are written with the servo in the first position (blue stripe). (b) 

The second wrap, in which the data are written with the servo in the sixth position (red stripe). (c) The third wrap, in which the data are 

written with the servo in the second position (new blue stripe), but these data overlap those written in the first wrap.
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beginning and end of the user area (BOT and EOT), are
stored in the initialization data page. Thus, there is no
need for holes in tape to identify BOT and EOT, as are
used by some other tape formats— holes that weaken
the already thin tape and represent a potential failure
mechanism. Information about the type of cartridge is
also stored in the CM. This eliminates cartridge notches
or tabs that would otherwise be required to identify
cartridges of different generations and to distinguish
between cleaning cartridges and tape-storage cartridges.

A write-pass number is kept in the CM and copied to
every header written to tape, enabling old or abandoned
data to be simply disregarded by the hardware. The write-
pass number is monotonically increased as certain events
such as cartridge loads, wrap turns, and appends occur.
When this data is embedded in written data, it effectively
gives a precedence for the data. For example, if two
datasets are found with the same dataset number, the one
with the higher write pass number is the valid one because
it was written after the one with the lower write pass
number. Tracking the write-pass number in the CM is
much more robust than in previous formats because it can
be done on-the-fly as the tape is being written. Thus, even
if power is subsequently lost, an update to the write-pass
number in the CM is remembered.

The tape directory page stored in the CM contains the
record and file-mark counts at the middle and end of each
tape wrap, enabling the drive to determine which half
of which wrap contains the target of a space or locate
command. Additionally, information necessary to
present tape alert status is stored in the CM, as is usage
information on the last four loads of that cartridge. There
is also a unique CM serial number that can be used to
identify a given cartridge. (This number can be used as a
tape label or can be useful when a physical label is used,
because it enables tracking when a cartridge has been
relabeled or if its external label has become unreadable.)
The CM also provides a scratch-pad area that can be
written by a user application. For example, a customer
may need to store a manufacturer’s data for warranty
purposes or data concerning the age of the cartridge,
the number of loads it has endured, etc. Some CM pages
are copied to tape as a backup should the CM fail, be
corrupted, or be removed from a cartridge. However, it
should be noted that the LTO format was specifically
constructed to allow reading of any user data written to
tape without use of the CM module. Thus, data stored
in the CM is useful and helps performance, but is not
essential for data to be read from the tape.

Error-correction codes
The power of error correction designed into LTO is
unprecedented in mid-range linear tape products. As an
example, ECMA-286 describes a prevalent competing

mid-range half-inch linear tape format that has a
Reed–Solomon outer code, RS(20, 16), calculated over
8-KB blocks, but the 8-KB blocks themselves are protected
by only a two-byte error-detecting code (EDC). In theory,
this allows correction of any four erroneous blocks, so
long as the EDC correctly detects those blocks as being in
error. However, because this is a four-track format, each
track nominally holds five of the twenty 8-KB blocks and
thus, this format cannot nominally tolerate the loss of a
whole data track, which might result from, for instance, a
longitudinal scratch after writing has occurred, even if the
other three tracks are pristine. If the burst error affects
only four blocks, this consumes the full power of the outer
code, and there is no residual power to handle random
errors. It would appear that a single byte in error at an
unknown location in any of the remaining 16 blocks would
be uncorrectable. Finally, even without any burst errors,
this form of ECC is not well suited to a high background
error rate. As an example, if there are one to six bytes in
error at unknown locations in half of the 8-KB blocks
(which is less than one tenth of the background error rate
that the LTO ECC can handle, in addition to losing all of
the data on a track), this other one-dimensional ECC
would not generally be able to correct them.

Viewed from a high level, the LTO ECC was designed
largely along the lines originally proposed by one of the
TPCs, but it was enhanced in numerous ways by the
contributions of the other two TPCs. Most notably, the
interleave was improved, the filling order was changed,
and the dynamic rewrite of defective elements (discussed
below) was added. With these improvements, the net
result was an ECC design far superior to any of the
initial proposals.

Each of the two existent generations of LTO products,
when shipped, had the highest areal density then available
in a half-inch linear tape drive: approximately 114 Mb/in.2

in LTO Gen 1 and slightly more than twice that in LTO
Gen 2. The robust logical LTO format permits this
through the use of a very strong true cross-product ECC
design. Data is written to tape in a minimum recording
unit which is protected with ECC. Referring to Figure 11
in the paper by Childers et al. [2, this issue], ECC-
protected data is written to tape in minimum-size chunks
known in LTO as datasets. Each dataset is interleaved
both across the eight data tracks and along the tape
longitudinally. Each customer record is first protected
with a cyclic redundancy check (CRC) before data
compression. The output of the data compressor is
the compressed data stream, which, in turn, is broken into
403 884-byte chunks and then protected by ECC, with the
ECC-protected entity being known as a dataset. The
dataset is broken into 16 two-dimensional arrays and then
protected by two different orthogonal ECC encodings. The
data in each row is protected by an inner code, C1, an
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even– odd interleave of two Reed–Solomon codewords,
each RS(240, 234), designed to allow correction of a
relatively high background error rate. The data in each
column is protected by a strong Reed–Solomon outer
code C2, RS(64, 54), designed to allow correction of long
error bursts.

This gives a true cross-product ECC design capable of
simultaneously correcting both a high background error
rate and long-bursted errors. As an example, this ECC is
powerful enough to support reliable recovery of data even
with the loss of one of eight tracks on a read operation
and up to two bytes in error at unknown locations in each
of the remaining inner codewords (240 bytes each) on
the remaining tracks. It is this ECC power that allows
the LTO format to reach the high areal densities and
capacities it has achieved with high data integrity.

Because these two encodings are orthogonal, they can
be done in either order. Thus, the terms inner and outer
are applied in the order in which it typically makes sense
to use them during correction, rather than implying an
order in which they must be encoded. For example, the
inner-code encoding can be performed first, as the data
arrives, to protect the incoming data with ECC before it
is placed in any form of volatile silicon memory, such as
DRAM, where it might be subject to corruption, on its
way to being written to tape. But on correction, during
reading, it typically makes sense to perform the inner-code
correction first and the outer-code correction next in an
initial attempt to correct a dataset, though iteration can
continue thereafter.

Each dataset is broken into 64 recording units known as
codeword quad sets, or CQ sets, with each set comprising
eight CQs, one for each track. Each dataset is written to
tape in 64 CQ sets, with each CQ having format features
inserted as it is written (see Figure 12 in [2, this issue]).
After each CQ of data is written by the write head, a read
head reads it and checks whether it was written properly
or is obstructed by some media defect or scratch. If an
error of sufficient length is found by the ECC, the entire
CQ set is dynamically rewritten farther down tape, but
rotated laterally so that each CQ is now on a different
track. This enables the drive to establish that a correctable
version of every CQ is written to tape; i.e., none of the
power of the outer code has been consumed by errors left
in by the drive at write time.

Read-detection techniques and RLL codes
The LTO format has a basic structure that was already
in existence in tape drives such as the IBM Magstar*.
Specifically, in LTO, the dataset is a minimum recording
unit. An LTO dataset contains about 400 KB of user data.
Inserted between datasets is a tone that is outside the
run-length-limited (RLL) code used to encode the datasets.
In LTO, it is known as the dataset separator (DSS) tone.

Detection of the DSS tone enables the data-flow logic to
know that it is outside any dataset. The formatted dataset
itself has a structure common to many types of recording
devices. It begins with a high-frequency tone designed to
enable a circuit, known as a phase-locked loop (PLL), to
acquire phase lock and read back data. Analog PLLs have a
circuit known as a variable frequency oscillator (VFO), and
the high-frequency tone designed for locking the PLL is
known in LTO as the VFO pattern.

Following the VFO is a synchronization mark (sync
mark), the detection of which is used to establish the byte
count as well as the bit-level symbol boundaries for RLL
decoding. Following the sync mark is a 10-byte header
used to identify a given codeword pair. This is followed
by a C1 codeword pair, which contains user data protected
by C1 ECC. The first C1 codeword pair is followed by a
resynchronization mark (resync), which enables the RLL
decoder to reestablish bit-level symbol boundaries if that
framing was lost in the first codeword pair (which can
happen if the PLL slips one or more clocks in either
direction). Following the resync is another 10-byte header,
which in turn is followed by another C1 codeword pair
(the second). Following the second codeword pair is a
reverse synchronization mark, which can serve the purpose
of a sync mark if the data is being read physically in
reverse. Finally, there is another VFO pattern, which
enables the PLL to reestablish phase lock if it has been
lost.

The RLL encoding of the headers and C1 codeword
pairs is historically performed to enable the PLL to stay
phase-locked to the encoded bitstream. Specifically, a
PLL typically requires some minimum phase update rate,
regardless of the user data being recorded. Phase updates,
at least in peak detection channels, occur only when
magnetic transitions are detected. Thus, the RLL code
must guarantee that magnetic transitions occur at some
minimum rate or, conversely, that there is a maximum
number of clock cells that can go by without a magnetic
transition occurring (known as the k constraint of an RLL
code). There can also be a minimum number of clock cells
that must go by after one magnetic transition and before
the next (known as the d constraint of the RLL code).
Peak detection channels can typically support higher linear
densities when RLL codes with d equal to 1 or 2 are used.
Partial-response maximum-likelihood (PRML) channels
are not advantaged by RLL codes with nonzero d
constraints. In peak detection channels, the bitstream to
be recorded to tape is typically represented in non-return
to zero inverted (NRZI) format, in which each 1
represents a magnetic transition on tape, and each 0
represents the lack of a magnetic transition. The d
constraint of an RLL code is then the minimum number
of 0s between sequential 1s in the resultant encoded
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bitstream, and the k constraint is the maximum number
of 0s between sequential 1s.

A third parameter used to characterize an RLL code is
its rate. If three RLL-encoded bits are output for every
two unencoded bits in, the RLL code has a rate of 2/3.
The rate is simply the ratio of unencoded input bits to
encoded output bits. Note that the higher the d constraint
that is being enforced, the lower the rate. Similarly, the
selection of k also affects the rate, and the maximum
achievable rate (also known as the Shannon limit)
becomes lower as k is made lower. Note that a 2/3 rate is
very near the Shannon limit for RLL codes with the (d, k)
constraints of (1, 7). RLL codes with the (d, k) constraints
of (2, 7) typically have a rate of, at most, 1/2.

Generation 1
In an effort to bring the first generation of LTO devices
to market as quickly as possible, it was decided that the
data would be written in such a way as to allow the
simplest form of read detection—qualified peak detection.
To enable high linear densities with qualified peak
detection, an RLL code can be used, as is well known
in the industry. For peak detection channels, a k of 7 is
typical, and d is typically 1 or 2. For LTO, a d of 1 was
chosen. When the LTO Gen 1 format was being created,
there were at least five 2/3 rate (1, 7) RLL codes available
to choose from—for instance, the IBM Magstar tape drive
used the Adler/Hassner/Moussouris code with these
constraints (see ECMA-278). But the use of one of these
existent 2/3 (1, 7) RLL codes would have caused needless
complexity in the data-flow logic because a tape drive
must be able to orient itself quickly, easily, and robustly
to data being read from tape. To do so, it is best if three
different types of patterns are excluded from the RLL
code: the DSS pattern, the VFO pattern, and the RLL
resynchronization pattern.

The LTO format specifies that a low-frequency DSS
tone pattern is to be written between datasets. The DSS
pattern chosen violates the k constraint of the RLL code,
and thus is outside the RLL code used to encode data.
Because the DSS pattern is outside the RLL code, data-
flow logic can use detection of an extended length of this
low-frequency tone as a clear sign that it is outside any
dataset, and it can appropriately reset counters or logic
in preparation for the start of the next dataset. In fact,
the DSS pattern can be detected reliably without even
phase-locking to the read-back waveform. Note that by
definition, a DSS pattern violating the k constraint would
be outside any RLL code that had that k constraint.

Additionally, each dataset begins and ends with a VFO
field appropriate for locking a PLL to the frequency of the
data stream being read, but VFO fields also occur at the
beginning of each CQ set to enable reacquisition of phase
lock in the middle of a dataset. Loss of phase lock can be

caused by a section of tape with a low signal-to-noise ratio
(SNR), a media defect, or a longitudinal shock wave down
the tape, which causes the tape underneath the head to
accelerate and then decelerate beyond the ability of a PLL
to track it. Of course, acquiring phase lock in one of these
intermediate VFO fields can be done robustly only if the
circuits controlling the PLL can reliably detect where the
VFO field is, and this was one of the problems: The best
VFO pattern to use in a format utilizing a (1, 7) RLL
code is 101010 . . . , but this pattern can be produced at
the encoded output of any of the (1, 7) RLL codes we
studied. Thus, use of one of these codes would have made
detecting the VFO pattern of little value, because what
appears to be a VFO field could actually be simply an
RLL-encoded piece of customer data. In that case,
detection of the VFO pattern, even simultaneously on
multiple tracks, could not be used as a robust trigger
to indicate that a VFO pattern had been entered.

Instead, precise timing circuits would have to gate
detection of intermediate VFO fields so that it would
occur only at precise intervals after the initial VFO field.
But this strategy is unworkable when the initial VFO field
is obscured, so alternate strategies would have to be
adopted to handle this case. It was realized that some of
this complexity occurs for the simple reason that random
data could be encoded by the existent (1, 7) RLL codes to
be a VFO pattern. One way of reducing the complexity of
the data-flow circuits was to design a new (1, 7) RLL code
for the LTO format that would exclude any extended
encoding of the VFO pattern (101010 . . . ). This enabled
the LTO data-flow logic to definitively identify and orient
itself to intermediate VFO fields, and phase-lock to
them as necessary, simply by looking for extended VFO
patterns. As an example, even if some defect has caused
the tape to separate from the head far enough that the
underlying data (e.g., DSS) is not overwritten, the data-
flow circuits can reorient themselves to the CQs written
after this point using simple VFO tone detectors
sufficiently qualified to find only strings of adequate
length.

Another consideration is how one orients the RLL
decoder to the data if the initial synchronization field is
missed or the clock has slipped by one cycle or more.
Each CQ is composed of two inner-ECC-codeword pairs,
a first codeword pair followed by a second codeword pair.
In the middle of each CQ between the first codeword pair
and the second there is an RLL resync field. This field
is designed to allow framing of the RLL code symbol
boundaries to enable RLL decode of the second codeword
pair. While this is not necessary if the phase lock was
maintained flawlessly through the first codeword pair,
it is necessary if a phenomenon known as a sync slip
has occurred, that is, when a PLL drifts off and then
reacquires phase lock, but at an offset of one or more bits
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relative to the initial phase lock. A counting circuit, for
example, would gain or lose one or more bits, and thus
the RLL decode becomes improperly framed, with the
result being that the rest of that codeword pair is
erroneously RLL-decoded. The resync field is, by design,
one that the RLL decoder can use to reorient itself to the
bitstream.

A resync pattern is of reduced value if it can be found
in RLL-encoded user data, because this creates the case
in which, if the resync detection window is opened too
wide, false resync detection can occur and, thus, resync
detection cannot be used unequivocally. Circuit complexity
can be reduced somewhat if the RLL code is designed to
exclude the selected resync pattern, and this was done.

Finally, to minimize error propagation, it was desirable
that the RLL decoder be implemented using a sliding-
block decoder of minimal complexity. A sliding-block
decoder was desirable because it does not depend on
RLL-encoded data before or after it, thus tightly bounding
error propagation. IBM designed and patented a new 2/3
rate (1, 7) RLL code for LTO that excluded both extended
lengths of the VFO pattern and the resync pattern while
still enabling use of a simple sliding-block decoder [3].

Generation 2
As part of LTO Gen 2, we had to double the native
cartridge capacity to 200 GB without increasing tape
length. This meant that the areal density had to be
doubled. It was desirable to increase the linear density as
much as possible to obtain the consequent increase in
native data rate for a given tape speed.

A PRML read-detection channel—a technique to
increase linear density that had already been proven in
hard disk drives and helical tape drives—was chosen.
A PRML channel enables the user bit density to be
increased by as much as 50% without increasing the
maximum resolvable flux transition density, thus
minimizing the burden placed on the media. The
resolvable flux transition density is the density of the flux
transitions that must be read back to nonzero samples
(e.g., the pattern 111 . . . gives all zero samples, which
can be thought of as not being resolved by the read-back
system). The 50% increase in linear density is achieved
only if a rate-1 (0, k) RLL code is used in place of a 2/3
rate (1, 7) code. Code rates of nearly 1 (which is the
limit, of course) were being achieved in some RLL codes
designed for hard disk drives (HDDs), but in order to
achieve these very high rates, few or no constraints were
being placed on the encoded output. In RLL codes
designed for partial response class 4 (PR-4) detection, the
k constraint is typically called the G constraint and is the
maximum number of 0s that can occur between sequential
1s in the RLL-encoded bitstream. Another constraint of
interest in PR-4 channels is the maximum number of 0s

that can occur on each interleave (a PR-4 detector
can detect the bitstream as if it were two independent
even/odd interleaved bitstreams). This constraint is
called the I constraint. Thus, the G and I constraints are
typically quoted as G/I in place of k. Thus, a 16/17 rate
(0, 13/11) RLL code would encode each 16 input bits
to 17 RLL-encoded output bits while enforcing a G
constraint of 13 and an I constraint of 11. (Note that a d
of 0 is not really a constraint, but rather a lack of one.)

As was the case in LTO Gen 1, each of the three TPCs
brought forward a different proposal for a (0, k) RLL
code. However, before describing the RLL code selected
by the TPCs for use in LTO Gen 2, I discuss a different
type of code, a variable-rate RLL code. This is of interest
because a number of other linear tape format developers
adopted variable-rate RLL coding when they began using
PRML recording. Perhaps because of this, one of the
TPCs proposed that a variable-rate (0, k) RLL code be
used by the LTO format, and this was studied at length.

A variable-rate RLL code typically calls for randomizing
the compressed and ECC-protected user data so that it
is a pseudorandom sequence of 0s and 1s and then bit-
stuffing 1s into the resultant bitstream when necessary to
meet the desired G and I constraints. The advantage of
this technique is that it can typically yield a higher RLL
rate for a given set of G and I constraints than can a
fixed-rate RLL code of limited block size—and limiting
the block size is typically necessary to reduce complexity
of a fixed-rate RLL decoder to an acceptable level. As
an example, a variable-rate (0, k) code might achieve
an average rate of 0.997, which can be contrasted to the
16/17 (which is 0.941) rate of a relatively simple fixed-
rate (0, k) code or the 32/33 (which is 0.970) rate of a
somewhat more complex (or significantly weaker) one.
The RLL rate difference of a variable-rate RLL code
might yield an increase in capacity of 5.9% (versus a 16/17
rate code, only 2.8% relative to a 32/33 rate code), if all
other things are held equal (ECC, flux transition density,
etc.), which would be desirable. But this rate difference
is not free, which is perhaps why HDD developers have
not flocked to variable-rate (0, k) RLL codes.

If RLL encoding is performed after ECC encoding,
which is standard, the RLL encoding and decoding process
is not protected by the ECC; rather, the ECC must be
used to correct any RLL decoding error caused by a
misdetected channel bit. Thus, it is desirable to minimize
the RLL decoding errors that can result from a given
number of misdetected channel bits (which is why sliding-
block RLL decoders are preferable where possible).
However, when attempting to reverse the bit-stuffing
process proposed for variable-rate encoding (destuffing),
there is a susceptibility to a single misdetected channel bit
(or misdetected pair of bits, as is more likely in the case
of a PRML detector) that can cause a bit to be destuffed
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that should not be, or vice versa. The result is a
phenomenon known as catastrophic (or infinite) error
propagation, which is to say that the output of the
destuffer might be in error to the end of that block
because of a bit shift, virtually guaranteeing that the inner
ECC code, if there is any, will not be able to correct it.

To be clear, not all misdetected bits will cause
destuffing errors (with the ratio of those that do being
dependent on the constraints being enforced by the
variable-rate code); however, even if only a small
percentage of the simple errors that could otherwise
be corrected by an inner ECC code instead cause
catastrophic error propagation, it is more than is desirable
because the errors consume some of the power of the
outer ECC code, reducing the power available to address
the other types of burst errors for which it was designed.
Strengthening the outer ECC code to counteract this can
consume some, or all, of the capacity gain achieved by
the higher RLL code rate of the variable-rate code.

An alternative that addresses the catastrophic error
propagation problem is reverse concatenation (RLL
encoding before ECC encoding) [4]. Reverse
concatenation would RLL-encode only the data part
of the ECC codewords, but if the RLL constraints are
needed for reading, the ECC bytes themselves would have
to be separately RLL-encoded, as shown in Figure 2. And
if the ECC bytes are RLL-encoded, it would seem that

these should be encoded with a fixed-rate RLL code to
avoid the catastrophic error propagation problem and, if
this is done, the average RLL encoding rate will have
been decreased.

In any case, if reverse concatenation is used to avoid
catastrophic error propagation, two different RLL
encoding stages are necessary; the susceptible variable-rate
RLL encoding stage must first be placed before the ECC
is appended, then a separate form of RLL encoding
must be used for the appended ECC bytes. All of this
complexity for less than 6% in capacity (versus a 16/17
rate code) is not a wise tradeoff. The other choice, the
one which is apparently typically made, is standard
concatenation and accepting some amount of catastrophic
error propagation. When these issues were understood,
the variable-rate RLL proposal was abandoned by the
TPC that had brought it forward, leaving the group to
look for a standard fixed-rate (0, G/I) RLL code for
LTO Gen 2.

Two of the three TPCs proposed different existent 16/17
rate (0, 6/6) RLL codes but, as in Gen 1, it was desirable
that the DSS, VFO, and resync fields be outside the RLL
code chosen, something not found in the available RLL
codes. Most, if not all, of the existent fixed-rate (0, G/I)
RLL codes were designed for an HDD environment which,
from the point of view of timing, is a much more stable
recording environment than tape. In HDD, the data are

Figure 2

(a) Standard-order and (b)  reverse-order concatenation of variable-rate RLL codes.
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essentially read off a flywheel, which creates a detected
bitstream with very little frequency variation. In
helical tape, the high tape-to-head speed is achieved
predominantly because of the rate at which the rotor
holding the head is turned. The tape itself is actually
moved quite slowly, so the timing is again dominated
by a flywheel.

In linear tape, the data are read off an elastic ribbon
of thin plastic as it flies by a read head, an environment
that creates much more frequency variation in the read-
back signal because it is dominated by movement of the
recording tape, whose properties are more akin to those
of a wet noodle than a flywheel. For this reason, it is
desirable to design the RLL code to generate encoded
data that gives the best phase updates to the PLL so that
it can stay phase-locked to the read-back signal even as it
varies in frequency. The best phase updates give a high
SNR linear phase error signal when the PLL clock is not
perfectly aligned with the phase of the read-back signal.
In a PR-4 channel, the best data features for phase
updates are isolated peaks. For example, if an encoded 1
represents a flux transition, an isolated transition is a 1
that has a 0 on either side of it, resulting in the binary
sequence 010. These features also give a full amplitude
peak that can be detected by an analog automatic gain
control (AGC) circuit to enable the gain to be controlled
before analog-to-digital conversion (ADC). In the absence
of full amplitude peaks, one must lower the amplitude
into the ADC to allow for gain error. A final subject that
interested the TPC members was the error propagation
properties of each proposed (0, G/I) RLL code. Three
new parameters of interest were defined in the comparison
of (0, G/I) RLL codes:

● MD � maximum distance between isolated peaks (i.e.,
between isolated NRZI ones).

● AMD � average maximum distance (in time) between
isolated peaks.

● EP3 � error propagation (minimum length of channel
error burst, measured in NRZ bits, that can corrupt
three user bytes).

The MD and AMD parameters were found to be
infinity for the two existent (0, k) codes we considered.
EP3, the minimum number of channel bits in error that
could cause three decoded bytes to be in error, was
determined to be one bit for one of these codes and five
bits for the other. It was decided that MD and AMD were
undesirably high for a linear-tape application, and that
EP3 was undesirably low for the two existent RLL codes.
Therefore, a new RLL code with a 16/17 rate (0, 13/11)
was designed which guaranteed at least one isolated peak
per 17 encoded bits out (and thus an AMD parameter of
17), a maximum distance between isolated peaks (MD) of

23, and which required nine channel bits to be in error
to cause three decoded bytes to be in error. It was
determined that the MD, AMD, and EP3 parameters of
the newly designed RLL code were superior in a linear-
tape application to those of any other (0, k) RLL code
considered, and this new RLL code was the third
proposal, which ultimately won out and was selected
for use by the LTO Gen 2 format.

Read-while-write and dynamic rewrite of
defective data
The LTO format dictates that while writing to tape, each
write head must be followed by a read head to allow
immediate verification of the data written. This means that
if there is an error in written data, it can be immediately
detected and rewritten. This capability addresses problems
that arise from tape defects and scratches, which,
unfortunately, are not uncommon. This capability, known
as read-while-write (RWW), has been available in linear-
tape drives long before LTO.

What effect does this rewriting have on write-
throughput performance? The effect will always be
negative because the process involves rewriting previously
written data instead of new data, but the negative effect
can be more pronounced in some formats than others.
For example, the IBM 3590 format also dictated RWW
recording, but when data errors were found, it required
that the whole dataset be overwritten, or erased and
rewritten down tape. In that case, the first rewrite attempt
may occur after a reposition in the same location, but if
RWW indicates that the rewritten dataset block is still in
error (as one might expect if it were due to a tape defect
at that location), it is then erased and rewritten farther
down the tape. With this approach, one and only one copy
of each dataset—written correctly— occurs on tape, after
another reposition. This can be thought of as a write-
pristine format. But if the tape being recorded has a
significant background error rate due, for instance, to
small defects, and the tape format has little or no inner-
ECC-code power, the write throughput of a write-pristine
format can be dominated by the amount of time required
to reposition the tape, and one or more seconds can be
added to the amount of time required to write each
dataset that must be rewritten. This can result in a
significant loss in write throughput to the tape drive
in a tape environment with a high dataset rewrite
rate, as can happen with marginal tapes.

One solution to reduce write throughput time is to add
an inner ECC code capable of correcting the smaller of
the errors resulting from tape defects. This helps to
eliminate the need for some of the rewriting that would
otherwise occur. IBM applied this solution in the second
and third generations of its 3590 product. This approach
improved the write performance and enhanced the power
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of its ECC in the presence of a background error rate that
climbed as areal density was increased by a factor of 3
(third generation versus first) without changing media.

While writing to tape, media defects will be
encountered that will defeat even the strong inner ECC
code of the LTO. There are various strategies to handle
errors that are beyond the capability of an inner ECC
code. As mentioned above, one option is to erase the
dataset and rewrite it down the tape, but this can severely
limit write-throughput performance. Another option, if
one had ample power in the outer ECC code, would be
to simply leave the error and continue on, knowing that
while the inner ECC code has been defeated, the outer
ECC code will be able to correct it. However, each error
left in at write for the outer ECC code to handle reduces
the amount of outer ECC power left to correct burst
errors which might occur on a read, but which were not
present when the RWW occurred. As an example, if
the tape were scratched longitudinally, for example, by
passing at high speed over a piece of debris on some fixed
element (rare, but not unknown), a whole data track could
be destroyed. Most, if not all, of the power of the outer
ECC code must be left to handle these types of burst-
error events. A better method of handling errors
discovered during read-while-write is to dynamically
rewrite the affected data down the tape without stopping.
This enables continuous writing through a region of tape
that is bad in some tracks. It is also powerful enough to
permit recording a good copy of all user data, even if
one write head is completely nonfunctional for some
period of time.

Dynamic rewrite of data had been implemented in other
tape drives, but the LTO implementation is perhaps
better. In LTO, a dataset is broken into 64 CQ sets. (A
CQ set is essentially 1000 bytes of formatted data on
each of the eight tracks.) If a CQ set has to be rewritten
(perhaps because of a tape defect seen by only one of the
data tracks), the whole CQ set is rewritten down tape,
though it is rotated so that the data originally written on
any given physical track is rewritten to a different physical
track. Each CQ set is self-identifying because of the two
headers written with the 1000 bytes of formatted data on
each of the eight tracks, and each header is protected by
CRC. Thus, there are nominally 16 CRC-protected
headers associated with each CQ set, and if any of the
headers are corrupted, the CRC is designed to point them
out. Voting logic can be applied to the header information
gathered from the 16 headers, and the CQ set can typically
be read successfully from all eight tracks, even if several
of the headers appear to have been corrupted because
the CRC check fails. This redundant header information
gives the rewritten data (which, by definition, is not at
its nominal location within a dataset) a label that can
be read very reliably, even in the presence of significant

noise, so that the dataflow logic can put the rewritten
data in its proper place within the dataset before
outer-ECC correction is attempted.

Handling servo errors without stopping the
tape
An LTO tape head spans a data band and the two servo
bands that straddle the data band. Thus, the LTO head
can use information from two separate servo bands to
laterally position the data heads as accurately as possible
over the data tracks in the data band. Even though an
LTO head has simultaneous access to two servo bands, it
is possible that neither can be read reliably. For instance,
both servo regions may have suffered damage for a short
stretch of tape, or both may be simultaneously obscured
by a media defect. Alternately, the drive could experience
some mechanical transient such as shock, which causes the
read/write head to be displaced laterally with respect to
the tape, and the servo pattern indicates that the head is
beyond a predetermined stop-write threshold. These
conditions can be referred to generically as servo
anomalies.

In any of these cases, the write operation must be
discontinued to guard against inadvertent overwrite of
adjacent tracks. In a write-pristine format, any stop-write
would have to be followed by repositioning and error-
recovery procedures. With a write-pristine format, when
the servo error is permanent it must be marked with a
servo demark to prevent read error-recovery procedures
from trying to recover data from a section of tape that
has servo problems. Then, to maintain optimal write
performance, the defective servo area should be
“remembered” so the system can avoid encountering it all
over again on a subsequent write. Here again the cost of a
write-pristine format is poor performance and complexity.

In the LTO format, writing is stopped when a servo
anomaly is encountered until both of the following
conditions are met: At least one of the servo patterns can
be read reliably, and the lateral position indicated by the
servo patterns shows the read/write head to be within the
stop-write threshold. At this point, the write operation can
continue, and it can do so without repositioning of the tape.
It may be necessary to rewrite some of the data written
before the stop-write, but the key element is that the LTO
format enables the writing to continue without stopping
or repositioning the tape. Without this feature, a drive
operated in a high-vibration environment might yield
abysmal write performance.

Enabling robust reading
The reliable detection of format features such as the DSS,
VFO, sync, resync, and reverse sync (as discussed in the
RLL section), when used in conjunction with the precise
LPOS data derived from the servo bands, allows the drive
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to position itself precisely with respect to datasets—much
more precisely than any previous linear-tape product. This
ability speeds search operations such as space and locate,
and dramatically simplifies and enables rapid execution of
any error-recovery operations required. This makes for
very robust data processing.

As discussed above, the LTO format allows dynamic CQ
rewrites to enable writing to continue even in the midst of
data errors that exceed the power of the inner ECC code.
The dynamic rewrite of a CQ may occur within a dataset
(before the last CQ is written), but note that there is
some latency involved in the RWW process, since the read
head typically trails the write head by a distance that is
more than one CQ and may be, conceivably, several CQs
in length. Because of this, the CQ rewrite may not occur
until after the write head has nominally finished writing
the last CQ of the dataset; indeed, the write head may
even have begun writing the first CQs of the next dataset.
If so, the write of the new dataset is abandoned (the CQs
are logically invalidated) and the defective CQ of the first
dataset is rewritten, and this again nominally ends that
first dataset.

This results in a dataset fragment that is effectively a
logical continuation of the original dataset, but from a
high level appears to be a completely different dataset.
The LTO format also enables writing to continue after
a servo error without stopping the tape. Discontinued
writing in the midst of a servo error can cause old data to
be left (not overwritten) in the middle of new data. Thus,
to enable high write-throughput performance, the LTO
format allows for rewritten CQ sets, dataset fragments,
and old data to be left in stop-write gaps.

But the LTO format also has features that enable data-
flow logic circuits to handle these cases reliably and on-
the-fly in hardware, even on interchange. This is possible
because of features such as the dataset-number and write-
pass number fields that are written into every CQ header
written to tape. These fields enable old data, or data that
has been abandoned, to be read and simply discarded
without ever even being transferred to buffer. The write-
pass number is tracked in the CM, a much more robust
way to track such a field than was done in previous
formats because it can be done on-the-fly as the tape is
being written. Thus, even if power is subsequently lost
during a write operation, an update to the write-pass
number in CM is remembered. Additionally, each
codeword pair has a unique identifier contained in its
associated header. The format is very robust because it
has headers that are both written redundantly (16 to a
CQ set) and contain all of the information needed to
determine where the data belongs and whether it is valid.
The strength of the LTO format is shown by its ability in
three LTO drives from three different manufacturers to

give excellent performance and high data integrity and
interchangeability— even on a marginal piece of tape.

Streaming lossless data compression
The LTO format was designed to enable the highest
performance possible, even for cases in which data was
being read 512 bytes at a time from an HDD and was
being written to tape transparently (without autoblocking).
Many of the existent tape formats would display very poor
capacity and performance in this scenario. As an example,
some formats call for a 32-byte header to precede each
host block and a 32-byte trailer to follow it. Others call
for an eight-byte memory address pointer for every host
block. Not only are these specifications inefficient from
the point of view of capacity, but they can also reduce the
write throughput because the embedded controller in the
tape drive is consumed writing headers and trailers. In
fact, this overhead can dominate the write throughput
in these cases.

What was desired was a processing algorithm that
eliminated the need for headers and trailers. For example,
if reserved codewords were used by the compression
algorithm, these could be put to good use as record
boundary markers. Similarly, a file mark—which most, if
not all, previous formats had required to be written as a
separate dataset— could be a single reserved codeword.
It was also desirable to solve another problem suffered by
prevalent data-compression algorithms such as ECMA-151
and ECMA-222: the expansion of incompressible data.
That is, compression algorithms used by tape drives
typically reduce the number of bytes, but only if the data
has redundancy that enables compression. If the data has
little redundancy because it was previously compressed or
encrypted, or was simply random, it does not compress;
in fact, it expands.

For example, when fed completely incompressible data,
one of these algorithms expands it by 25%, the other by
12.5%. One tape-drive format offered a solution to this,
calling for monitoring the size of each record after
compression. If the compressed record was larger than the
original record, the original (uncompressed) record was
recorded, and a flag to indicate this was set in the header
of the record. Presumably, one could either save a copy
of the original uncompressed record or decompress the
compressed output to get it. However, depending on how
it is implemented, this is inefficient from the point of view
of either the processing or the buffer. It also does not
allow for the case in which the data within a record may
have both compressible and incompressible sections
because it requires that the entire record be output
compressed or uncompressed.

For LTO, one of the TPCs proposed a dual-scheme
data-compression algorithm whereby the data could be
output compressed either through a primary compression
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scheme or through a second scheme that is not capable of
data compression but passes incompressible data through
without expansion. The transitions between one data-
compression scheme and another would be marked
by reserved codewords in the compression algorithm,
enabling a decompressor to always know in which scheme
data was encoded. Thus, reserved codewords are used to
mark record boundaries, file marks, compression-scheme
swaps, compression-history resets, and for several other
cases.

In all, eight reserved codewords were used to denote
various transitions or special cases. These reserved
codewords were then embedded into the compressed data
stream as appropriate by the data-compression algorithm,
and they are thus referred to as embedded codewords. The
original proposal was made with DCLZ from ECMA-151
as the primary compression algorithm. However, a better
data-compression algorithm was readily available in
ECMA-222 (ALDC), and this was, at the insistence of
another TPC, adopted in place of DCLZ as the primary
data-compression algorithm. Casting the concepts of dual-
scheme data compression and embedded codewords onto
ALDC was not a trivial extension of the original proposal,
in that DCLZ and ALDC are quite different data-
compression algorithms, but a new, truly eclectic data-
compression algorithm (ECMA-321) was born. It marked
record, file mark, and compression-scheme boundaries
with embedded codewords that supported ALDC as its
primary data-compression algorithm, and it provided
a secondary pass-through scheme that enabled
incompressible data to be output without expansion.
This new algorithm was adopted as the LTO data-
compression algorithm and standardized under the
name of streaming lossless data compression (SLDC).

It should be noted that because SLDC supports dual
data-compression schemes and embedded codewords, a
great deal of flexibility has been added, but it also creates
a case in which there is no single right way to compress a
set of data with SLDC. One company’s implementation
may choose to compress each record in its entirety in one
scheme or the other (i.e., it will not perform a scheme
swap inside a record). Another implementation may
choose to let its data compressor adapt to the data by
looking at how data compression has been going, and then
swapping to the pass-through scheme if the most-recently-
compressed data actually expanded, or vice versa. This is
a reactive form of scheme adaptation. And finally, a third
company may choose to look ahead at the compressibility
of data and, if it sees incompressible data coming, swap to
the pass-through scheme at exactly the right time to avoid
data expansion. This might be called optimal (or feed-
forward) scheme swapping, and it should systematically
yield the best data-compression results of the three. IBM

chose to implement its SLDC compressor using optimal
scheme swapping.

In LTO Gen 1, each TPC implemented a different one
of the three scheme-swapping methods just discussed.
Thus, each company’s drive potentially created a different
compressed data stream out for a given set of data in.
This is not a problem for data interchange, however,
because each compressed data stream is decompressible by
the rules of SLDC, and thus each company’s decompressor
can decompress the compressed data stream created by
the other two compressor implementations, as was shown
in data interchange among LTO Gen 1 devices of
different manufacture.

Challenges for the LTO generation 3 and 4
formats
A number of format extensions are needed to address the
next two generations of the LTO format. For one, the
LTO roadmap calls for the number of simultaneous tracks
to be doubled from eight to 16 tracks as we move forward
to Gen 3. This will double the native transfer rate
without increasing the tape speed. Additionally, it may be
necessary to increase the minimum ECC interleave unit
(dataset) size recorded to tape, because it becomes
smaller with each areal density increase, making it
potentially more susceptible to being unreadable due to a
media defect or scratch of a given size. Additionally, as
the capacity is doubled with each generation, the areal
density will be pushed higher, likely at a faster rate than
improvements can be made to the media coating. If so,
the SNR will decrease with each new generation. This will
likely require the enablement of more advanced read-
channel techniques beyond simple PR-4, such as those
used in HDD. It also seems likely that the power of the
ECC dedicated to correction of the background (non-
burst) errors will have to be increased to provide the
same levels of data protection.

Open tape format
The LTO Gen 1 format was standardized in June 2001
(ECMA-319), though the format was made available much
earlier than this through open licenses to any drive maker
wishing to make an LTO tape drive that would allow data
interchange with the LTO drives made by the three TPCs.
Similarly, the LTO Gen 2 format is available through open
licensing. The LTO trademark, however, is granted only
after the developed tape drive has passed a stringent
LTO-format compliance-verification process designed
to preserve data interchangeability among LTO tape
drives [5].

Summary and conclusion
Some of the more salient features of the LTO format have
been described, especially those features that have helped
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make LTO the preeminent format in the mid-range
tape-drive marketplace over the last two years. The LTO
format enabled the super-drive aspects of LTO tape drives,
which in turn enabled that success. It made possible tape
drives with previously unheard of performance and
cartridge capacity. It is an eclectic collection of the best
ideas brought forward by HP, IBM, and Seagate for a
best-of-breed mid-range tape format. Encoding absolute
position into the servo pattern is one of the most
fundamental of these format features, and many aspects of
the LTO format were built on this cornerstone. Having
a silicon cartridge memory in each LTO cartridge is
similarly fundamental and enabling. The use of other
features, such as on-the-fly write skipping, improved
write performance. Features such as shingling support
a roadmap that enables write-backward capability. The
use of a true cross-product ECC enabled areal densities
previously unknown in mid-range linear tape drives. These
format features have also been contrasted with those of
previous and competing products based on other formats.
The three TPCs worked together with the mind-set that
we would develop a best-of-breed format, and our efforts
led to just that—a truly eclectic combination of the best
ideas the three companies had to offer.
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