
R. ClaubergData
aggregation
architectures
for single-chip
SDH/SONET
framers
Single-chip SDH/SONET framer architectures are described
that permit data aggregation from several line ports. After
presenting an overview of the usual parallel approach and
an extension thereof that exploits distributed algorithms, we
introduce a novel data-multiplexing architecture that should
be suitable for accommodating data from a relatively large
number of ports in a single device. In combination with the
new virtual concatenation feature of SDH/SONET, this
architecture should also allow transport of data from high-
bandwidth applications over multiple wavelengths or multiple
fibers.

1. Introduction
The synchronous digital hierarchy (SDH)/synchronous
optical network (SONET) technology [1] is currently the
dominant choice for metropolitan-area networks as well as
for accessing wavelength division multiplexing networks in
wide-area networks. SDH/SONET networks are generally
implemented as double, counter-rotating rings to enable
automatic protection switching of data from one ring to
the other in case of fiber cuts or other localized ring
failures. Large networks are then based on a few very
large, high-data-rate rings plus many small, lower-data-
rate rings. The rings form a complete network through
interconnections from one ring to another, and access
to different (i.e., non-SDH/SONET) networks through
routers. Each ring operates with a fixed data rate.
These data rates follow a rigid hierarchy with values
of 155.52 Mb/s (STM-1, OC-3), 622.08 Mb/s (STM-4,
OC-12), 2.488 Gb/s (STM-16, OC-48), 9.953 Gb/s
(STM-64, OC-192), and 39.813 Gb/s (STM-256, OC-768);
the term STM denotes a synchronous transport module,
and OC denotes an optical channel. Figure 1 illustrates
such a network.

Within a ring, frames are forwarded that contain an
overhead section, designated as the section overhead
(SOH) and used primarily for network management, and a

payload section. The length of a frame is always 125 �s,
whereas the number of bytes in the frame depends on the
data rate and hence the clock rate applied at the ring.
Each frame is immediately followed by another frame;
hence the first bit of the next frame directly follows the
last bit of the previous frame. The payload section of the
frame is organized into one or more virtual containers
(VCs). The VCs in turn are organized into a very short
overhead section, the path overhead (POH), plus a
payload section. The payload section can contain any kind
of payload, e.g., IP packets, ATM cells, Ethernet frames,
or time-division multiplexed voice signals, but only one
kind per VC. Since the same sequence of VCs is repeated
in every frame until a change is configured, assigning a
VC to a specific application or user implies assigning
the corresponding bandwidth to that application or
user. There are three main functional elements in an
SDH/SONET network that facilitate data transport
from an ingress node to an egress node. The first is an
add/drop, mapping payload into one of the VCs belonging
to a frame at the source node and extracting the entire
payload from the virtual container at the destination node.
The second is a multiplexer, which multiplexes VCs from
several frames into a higher-data-rate SDH/SONET frame
on another ring. The third is a digital cross-connect, which

�Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

211

transfers a complete VC from a frame on one ring to a
frame on the next ring in its path to the destination node.
Only the virtual containers are transferred from one ring
to the other; frames are always restricted to a specific
ring. The data rate of the frame in the second ring may
differ from that in the first ring, but must of course be
suitable for the VC. Different combinations of these
functional elements can be implemented in a single
network element. Most commonly used are add/drop
multiplexers (ADMs), which combine the first two
functional elements. The transport through the
SDH/SONET network is not self-routing, but is based
on fixed, configured paths. Hence, the transport is not
steered by some specific POH bytes, but exclusively by the
sequence number of the VC within a frame. From the
payload point of view, only the framers at the source and
destination nodes in their add/drop functionality operate
directly on the payload; the framers at all intermediate
nodes operate exclusively on the frames and the VCs,
updating SOH and POH bytes but not analyzing the
payload.

Recently a new addition was made to the SDH and
SONET standards, extending the definition of virtual
concatenation to the range of STS-1 to STS-768
(STM-256) frames. Virtual concatenation in this range
now allows bandwidth allocations as integer multiples
of 50.1 Mb/s or 150.3 Mb/s. Using virtual concatenation,
only the source and destination SDH/SONET nodes need
to know that the payload of corresponding VCs must be
treated as stored in a concatenated VC. All intermediate
nodes need not know this and treat the corresponding VCs
as independent. This is in contrast to real concatenation,
in which all nodes must treat the corresponding VCs as

concatenated. Also in contrast to real concatenation, each
single VC still keeps its row of path overhead bytes.
Because of the evolution of networks and the need
to upgrade all nodes of a ring to a higher data rate
simultaneously, many rings are parallel multi-line rings
in which a high data capacity is achieved by operating
multiple rings in parallel. For example, such a ring may
offer four OC-48 rings, each with a data rate of 2.5 Gb/s.
The total capacity of the ring is then equivalent to that of
an OC-192 ring. For virtual concatenated VCs, this implies
that different concatenated VCs may be transmitted over
different fibers. At the destination node or a node before
this where the VCs converge again, data aggregation is
necessary. Virtual concatenation therefore allows sending
of data corresponding to a data rate R over connections in
which, at least for parts of the connection, R is achieved
merely by exploiting several parallel connections each
having a data rate smaller than R. Data aggregation in
general is a characteristic feature of metropolitan-area
networks, where it is often necessary to aggregate data
from many lower-speed lines into a higher-speed line.
This situation occurs not only in connection with virtual
concatenation but also at the edges of a large higher-
speed SDH/SONET ring accessed through many lower-
speed rings. In general, data aggregation is an important
feature of SDH/SONET networks, and the corresponding
network components that allow data aggregation in
an easy and cost-effective way have a large market
potential.

In Section 2, the detailed structure of SDH/SONET
frames and their virtual containers is discussed; that highly
regular structure is the basis for the data aggregation
architectures subsequently described. General data
aggregation aspects are discussed in Section 3; data
aggregation by multiple parallel units is discussed in
Section 4; the novel data-multiplexing architecture is
described in Section 5; and concluding remarks are
presented in Section 6. Section 2 may be skipped by
those sufficiently familiar with SDH/SONET.

2. SDH/SONET frame basics
According to the international SDH standard of the ITU-T,
an STM-N frame consists of 9 rows with 9 � N SOH
bytes followed by 261 � N payload bytes. The value of N
can be {1, 4, 16, 64, 256}. Transmission of the frame is
serial, one row after another. The basic VCs for STM-N
frames according to the SDH standard are the VC-4 and
the VC-3. The VC-4 is preferred for SDH networks and
consists of 261 columns and 9 rows. The first column of a
VC-4 is reserved for POH bytes, and the remaining 260
columns are regular payload bytes. The VC-3 has the
same structure and the same POH bytes as the VC-4 but
contains only 85 columns instead of 261. An STM-N frame
contains N byte-interleaved VC-4 “containers.” The term

Figure 1

Illustrative SDH/SONET network.

DXC

DXC

OC-192

ring

OC-48

ring

OC-48

ring

OC-48

ring

DXC

DXC

DXC

R. CLAUBERG IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

212

byte-interleaved is used to indicate that for a single row
the first byte of the first VC-4 is followed by the first byte
of the second VC-4 and so on, until the 261st byte of the
(N � 1)th VC-4 is followed by the 261st byte of the Nth
VC-4. The resulting frame structure is shown in Figure 2.

Figure 2 shows that the SOH is divided into three
different parts. The first part consists of the first three
SOH rows, which are designated as the regenerator
section overhead (RSOH). The second part consists of
the last five rows, which are designated as the multiplex
section overhead (MSOH). The third part is the fourth
row of the frame, which contains the administrative unit
(AU) pointers. Considering the transmission of the frame
in an SDH ring, there are simple signal regenerators to
improve signal quality as well as multiplexers where VCs
may be transferred from a frame on one ring to one on
another ring. A regenerator can update only RSOH bytes;
it leaves all other bytes of the frame unchanged. The AU
pointers in the fourth row contain the information on
where the corresponding VC starts in the frame. Two
kinds of AU pointers are relevant for STM-N frames:
AU-4 pointers for VC-4s, and AU-3 pointers for VC-3s.
A VC-4 plus an AU-4 pointer forms an AU of type 4
(AU-4). A VC-3 extended by a “fixed stuff” column after
column 29 and a second fixed stuff column after column
57, plus an AU-3 pointer, forms an AU-3. The AU-4
pointer has the form

� H1 � Y � Y � H2 � 1* � 1* � H3 � H3 � H3 � .

The H1 and H2 bytes encode the pointer value, i.e., the
number of bytes between the last H3 byte and the first
byte of the VC-4. The Y and 1* bytes have fixed values,
and the H3 bytes are reserved for frequency adjustments
to correct a small deviation between the system clock rate
used for creating the frame and the clock rate with which
the VC-4 arrives at this system. If the VC-4 arrives at a
slightly higher clock rate than that of the system, the
system will, from time to time, write arriving VC bytes
into the H3 position to cope with this difference. The H1
and H2 bytes then contain the information that the H3
bytes must be interpreted as VC bytes. Hence, because of
the dual role of the H3 bytes, there is no clear separation
between SOH and VC bytes for the fourth row, in
contrast to what applies for all of the other rows. If the
VC-4 arrives at a slightly lower clock rate than that of
the system, the first three bytes after the last H3 byte
are occasionally filled with empty bytes. Again, the
information that these bytes are not real VC bytes is
encoded in the H1 and H2 bytes.

The AU-4 pointers of all VCs in the frame are byte-
interleaved in exactly the same manner as the VCs. Thus,
the fourth row in an STM-N frame with VC-4s starts with
N H1 bytes followed by 2 � N Y bytes, N � H2 bytes,
2 � N 1* bytes, and 3 � N H3 bytes.

The North American SONET standard has an identical
frame structure for STM-1 and higher-data-rate frames.
The notation, however, is STS-3 for STM-1 and STS-3N
for STM-N frames, where STS denotes a synchronous
transport signal. In addition, the SONET standard offers
a smaller VC, the STS-1 synchronous payload envelope
(SPE), and the corresponding STS-1 frame. The STS-1
SPE is an 87-column-by-9-row container. The first column
of each VC is reserved for path overhead bytes. The STS-1
SPE corresponds to the VC-3 extended by two fixed
stuff columns, as described above, except that in the
STS-1 SPE they are used for real data. The STS-1 SPE
is connected to an AU-3 pointer just as is the VC-3.
The AU-3 pointer has the form

� H1 � H2 � H3 �,

where the H1, H2, and H3 bytes have exactly the same
meaning as in the AU-4 pointer. A special feature in
SDH/SONET is the concatenation of VCs to larger VCs.
Three STS-1 SPEs can be concatenated into a single VC-4,
and x VC-4s can be concatenated into a single VC-4-xc.
Specifically, the AU-4 pointer can be viewed as a pointer
related to the concatenation of three STS-1 SPEs with the
Y (1*) bytes replacing the H1 (H2) bytes of the second
and third STS-1 SPEs. The corresponding H1 and H2
bytes are replaced by the fixed bytes because the positions
of these STS-1 SPEs are fixed by the pointer value of the
first STS-1 SPE. A VC-4-xc contains one column of path
overhead bytes, followed by (x � 1) columns of fixed stuff
bytes, followed by x � 260 columns of payload bytes.
Concatenation thereby offers a means for allocating a

Figure 2

SDH/SONET frame structure.

SOH

9 � N

3 � 3N

SDH/SONET payload

261 � N � 9 � 29 � N

87 � 3N � 261 � N

Virtual containers

are byte-interleaved

in the frame.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

213

larger bandwidth to a specific application or user than
that corresponding to a single VC. However, although
the standard allows x to be any integer between 1 and
N for an STM-N frame, in practice only the values with
x � {1, 4, 16, 64, 256} are supported. This restriction
is due to the fact that all nodes in the path from source
to destination of a VC-4-xc must support the specific
concatenation. The supported values of x are those that
must be supported for clear channel operation for the
defined STM-N frames. (In clear channel operation, the
entire frame consists of a single VC.) Because of the
restrictions in x, the bandwidth allocation is only a coarse
one, offering the following data rates (including the path
overhead):

STS-1 SPE: 50.1 Mb/s,
VC-4: 150.3 Mb/s,
VC-4-4c: 601.3 Mb/s,
VC-4-16c: 2.405 Gb/s,
VC-4-64c: 9.622 Gb/s,
VC-4-256c: 38.486 Gb/s.

A fine-grained bandwidth is possible only by exploiting
the new virtual concatenation feature briefly described
in Section 1.

3. General data aggregation aspects
By means of “data aggregation,” a corresponding
architecture allows the simultaneous processing of data

received through several SDH/SONET line ports and the
aggregation of the data either into a data stream for link-
layer processing, e.g., by a switch fabric, or multiplexing of
corresponding data into a higher-data-rate SDH/SONET
frame. In the first case, the aggregated data is in the form
of IP packets, ATM cells, or similar data. In the second
case, the aggregated data is in the form of complete
SDH/SONET VCs. Since all known SDH/SONET framers
function in a bidirectional mode, these kinds of data
aggregation are always accompanied by their inverted
function— data distribution onto several SDH/SONET line
ports. As a result, the framer must also be able to handle
the data rate that corresponds to aggregation of all line
ports directly. Hence, framers for data aggregation of,
e.g., four STM-1 (STS-3) frames into an STM-4 (STS-12)
frame or a corresponding 601.3-Mb/s data stream to the
link layer must also be able to process an STM-4 frame
directly.

Figure 3 is a block diagram of the functions in the
data path of a simple SDH/SONET framer and the
corresponding data flow for the receive and transmit
sides of the framer. The frame-byte-alignment unit
receives data from an SDH/SONET line port. The term
frame-byte alignment indicates the case in which the
incoming bit stream is changed into a multi-byte parallel
data stream aligned with the frame structure. The B1 byte
is an SOH byte that captures a bit-interleaved parity
(BIP-8) calculated over the previous frame after frame
scrambling. The B2 bytes are N � 3 SOH bytes that capture
a BIP-N � 24 value calculated over parts of the frame
before frame scrambling. SOH monitoring checks and
interprets all SOH bytes of a received frame; SOH
generation creates the corresponding SOH bytes for
the current frame on the transmit side of the framer.
POH processing is the corresponding operation for the
POH bytes. Payload processing covers the mapping of
payloads into SDH/SONET frames and the extraction
of corresponding payload from the frames. This process
usually includes calculating and checking certain checksums
over the payload bytes, as well as checking for the packet-
delineation features, which separate different payload
packets from one another.

4. Data aggregation by multiple parallel units
The simplest way to achieve data aggregation would be to
implement the functional blocks of Figure 3 in parallel for
each data stream connected to an SDH/SONET line port,
and to multiplex these data into a single data stream only
after payload processing for data aggregation to a switch
fabric or after POH monitoring for multiplexing VCs into
a higher-level frame. However, this would still require
additional POH, SOH, and B1 and B2 calculation units
for the higher-level frame on the transmit side of the
framer and an additional payload processor for handling

Figure 3

Block diagram of functions in the data path of a simple SDH/

SONET framer, and corresponding data flow for receive and

transmit sides of the framer.

Payload processing

POH monitoring

SOH monitoring

B2 calculation

B1 calculation

Frame descrambling

Frame-byte alignment

Payload processing

POH generation

SOH generation

B2 calculation

B1 calculation

Frame scrambling

Receive side Transmit side

R. CLAUBERG IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

214

higher-data-rate payload. Moreover, this framer would still
not be able to receive higher-level frames. To overcome
these shortcomings, a scalable, modular architecture based
on parallel units with distributed algorithms and data
exchange between the parallel units was developed [2].
This architecture exploits the fact that most of the
functions of an SDH/SONET framer can be implemented
in a distributed mode, which allows M parallel units to
handle either M STM-N1 frames in parallel or a single
STM-N frame with N � M � N1 . This architecture
is then able to accommodate M STM-N1 frames
independently in parallel, to multiplex single VCs from M
STM-N1 frames into an STM-N frame, and to aggregate
IP packets, ATM cells, and similar data from M STM-N1

frames into a single data stream to a switch fabric. Since
both N and N1 must fulfill the restrictions for the number
N in an STM-N frame, the number M is also limited to
certain values {1, 3, 4, 16, 64, 256}, of which the number
3 is possible only for units handling STS-1 frames. The
challenge for this architecture is the development of
distributed algorithms that allow multiple parallel units
to accommodate a higher-level frame. Fortunately, only
some of the units shown in Figure 3 require distributed
algorithms, whereas for other units the structure of the
STM-N frame automatically leads to a solution. Because
every STM-N frame consists of N byte-interleaved STM-1
frames, the SDH/SONET frame structure automatically
leads to a natural decomposition of its payload-
independent part, and therefore enables implementation
of certain functions by parallel units without the need for

interaction between the units. However, there are some
units for which no suitable distributed solution seems to
exist, which therefore require additional units for handling
the higher data rates. A detailed discussion of suitable
distributed algorithms is given elsewhere [2], and is not
the subject of this paper. Table 1 lists the functions of
Figure 3 and also whether a trivial solution, a distributed
solution, or no solution suitable for this architecture
exists.

The emphasis is on those functions for which neither a
trivial nor a distributed solution exists. In principle, these
functions are not suited for an architecture based on
parallel processing units. A first implementation example
of this architecture is a framer chip designed in
cooperation with the TranSwitch Corporation1 [3, 4].
This framer is sold by Transwitch under the designation
PHAST-12 or, since 1999, PHAST-12E. Figure 4 is a
block diagram of the PHAST-12 chip architecture, clearly
revealing the parallel units. Also, the necessary exchange
of data between the parallel units is shown as arrows
connecting them. An important feature not mentioned
thus far is the possibility of sending VCs from the receive
data path of the framer to its transmit data path. In
Figure 4 this is implemented through the central cross-
connect stage. This connection enables the SDH/SONET
multiplexing of four VC-4 containers received at the
receive side into one STM-4 frame generated with these

1 TranSwitch Corporation, 3 Enterprise Drive, Shelton, CT 06484.

Table 1 Suitability of basic framer functions for an implementation with parallel units.

Function Trivial solution Distributed
solution

Other solution

Frame-byte alignment No No Additional units needed

Frame scrambling and descrambling No Yes

SOH monitoring and generation Yes

B1 calculation No Yes

B2 calculation Yes No

POH monitoring and processing Yes, but requires data
reordering before
POH processing if
concatenation exists

No

B3 calculation No Yes

Payload processing

ATM payload scrambling No Yes

ATM cell delineation No No Additional unit needed

Header error correction No No Additional unit needed

Frame checksum calculation No No Additional unit needed

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

215

containers at the transmit side of the framer. In addition
to this special kind of data aggregation, the same
connection also enables digital cross-connect functionality
[2].

Another aspect of this architecture is its scalability.
Figure 5 shows how different framers can be constructed
by using different numbers of parallel units as well as
different basic data rates for the units. For example, the
figure shows how an STM-4 framer (622 Mb/s) can be
developed from four STM-1 macros, an STM-16 framer
(2.488 Gb/s) from either four STM-4 macros or 16 STM-1
macros, and so on. A practical limit is given by the need

to exchange data between all parallel units within a
single clock cycle. This limits the time available for data
processing by a unit with data exchange to less than 1/Mth
of the cycle time for M parallel units. However, the main
drawback of this architecture is that there are no suitable
distributed solutions for certain necessary functions. A
detailed look at Table 1 shows that for all functions in the
pure SDH/SONET processing part, except for frame-byte
alignment, there are distributed or trivial solutions. For
data rates lower than STM-64 (OC-192), frame-byte
alignment is integrated into the serializer/deserializer
portion of the line port and therefore is of no relevance
with respect to the digital framer portion. Hence, the
parallel architecture with distributed algorithms is well
suited for accommodating the pure SDH/SONET portion
of a framer without the payload processor for data rates
below STM-64 or 9.96 Gb/s as long as the number of line
ports is smaller than the value at which the data exchange
between the units creates a timing problem.

In the following, an architecture is presented that
entirely avoids the problem of finding suitable distributed
algorithms for all required functions and that should be
suitable for use with a large number of line ports.

5. Data aggregation by a data-multiplexing
architecture
The parallel unit architecture was based on the use of
parallel units and the multiplexing of data into a single
data stream after a series of parallel processing steps.
The data-multiplexing architecture takes the opposite
approach. Hence, the very first step on the receive side
of a framer in this architecture is multiplexing the data
received at multiple SDH/SONET line ports into a
single data stream. Accordingly, on the transmit side
of the framer, data destined for different line ports are
transported in multiplexed form on a single data path. The
functional units in Figure 3 then process data from one
line port in one clock cycle and data from another line
port in the next clock cycle. A snapshot taken at a specific
clock cycle would reveal sequential units in the data path
working on different frames. The architecture should even
allow the multiplexing of data from different line port
types, resulting in a separation of data and function. The
same data path units will process data from different
STM-N (STS-3N) frames at different clock cycles. This
even extends to VCs in the sense that units processing
VC-specific data do this at the rate of one VC per clock
cycle. The basic idea of this architecture is comparable
to the replacement of N parallel microprocessors in a
corresponding architecture with a single microprocessor
running at N times the speed of the original processors
and capable of multi-threading with N threads. One
consequence of this data multiplexing is that the system
clock, which operates on all units in the data path except

Figure 4

PHAST-12 chip architecture. Adapted from [2] with permission.

DCC

channel

Micro-

processor

C
O
M
B
U
S

UTOPIA

Central cross-connect

ATM/PPP

handler
APH APH APH

SDH frame

handler
SFH SFH SFH

Line

interface 1
LI LI LI

APS

port

Ring

port

OC-48

expansion

51.84

Mb/s

51.84

Mb/s

51.84

Mb/s

51.84

Mb/s

Figure 5

Scalability of parallel architecture.

N
o
.
o
f

m
a
c
ro

s/
d
e
g
re

e
 o

f
fu

n
c
ti

o
n
a
li

ty

16

4

1

155 622 2488

Data rate (Mb/s)

STM-1

core

STM-4

core

STM-16

core

STM-64

core

R. CLAUBERG IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

216

at the external interfaces, must be running at a rate
greater than the sum of all data rates of the SDH/SONET
line ports to ensure that no update of a line port FIFO
occurs before the last data from that port was read. On
the other hand, a variant of the line port FIFO full signal
will be forwarded with the data on the receive data path
to mark data read twice from a FIFO. As logical units in
the data path of a data-multiplexing architecture switch
from one port to another and possibly even from one type
of frame to another between successive clock cycles, all
intermediate results must be stored whenever the unit
switches from one port or VC to another. This requires
that fast access memory in the form of register arrays is
available that allows the content of working registers to
be stored to on-chip memory blocks, working registers
to be updated from these memory blocks, and data to
be processed within a single clock cycle.

A possible concern here could be that this leads to
excessive storage requirements, and a necessary first step
must be to analyze the difference in storage requirements
between an architecture based on parallel units and a
data-multiplexing architecture. The data to be stored when
switching ports or VCs are exactly the data that must
be conserved from one clock cycle to the next cycle in
the processing unit. These data are always stored in
registers, regardless of whether the unit works in a data-
multiplexing or a parallel architecture. If one compares
the case of M line ports handled by M parallel units
with that of M line ports handled by a data-multiplexing
architecture, the parallel architecture requires M times the
register space of a single unit, and the data-multiplexing
architecture requires (M � 1) times the corresponding
register space. The M � 1 value results from the fact that
in addition to the M registers needed to store the data
from M line ports, there is a working register in the units.
This certainly does not point to excessive storage needs
for the data-multiplexing architecture. For large values of
M, the difference in storage requirements for parallel
and data-multiplexing architectures even disappears.

Another question is whether the use of a single unit
instead of multiple parallel units would result in a large
chip-area saving for the data-multiplexing architecture in
comparison to a parallel architecture. The likelihood is
that the saving would be large, although not as large as
a factor of M � 1. The reason is that using the same
technology and not being substantially below the speed
limits of the technology, the data-multiplexing architecture
requires a data path width of approximately M times
that of the data path for a single unit in the parallel
architecture. However, our investigations with both
architectures predict that the chip area required for M
parallel units with necessary data exchange between the
units should continue to be significantly larger than the

corresponding area for a single unit with M times the
data path width.

In the following, a specific example is used to describe
the data-multiplexing architecture in greater detail.

Data-multiplexing architecture for an STM-1 to STM-64
framer
For a data-multiplexing architecture framer suitable
for processing frames from STM-1 to STM-64 with an
aggregate data rate corresponding to STM-64, a data path
width should be chosen which facilitates the processing of
the entire range of SDH/SONET frames from STM-1
to STM-64. Taking into account the strongly regular
structure of SDH/SONET frames, fulfillment of the
following requirements in the priority sequence given
would be desirable:

1. The data path width should be an integer fraction of
the frame length for all frames.

2. The data path width should be an integer fraction of
the length of a row for all frames.

3. The data path width should be an integer fraction of
the SOH part of a row for all frames.

The first requirement ensures that a new frame always
starts with the first byte forwarded on the data path, and
is necessary because otherwise the change from one frame
to the next would occur somewhere in the middle of the
data being forwarded in parallel on the data path. This
would require significant additional multiplexing and
control logic. The second requirement ensures that
every new row starts with the first byte in the data path,
and greatly simplifies processing of the row. The third
requirement ensures that all bytes forwarded in parallel on
the data path are either SOH bytes or bytes of a VC for
all rows except the fourth row, which is used for frequency
adjustment by redefining specific SOH bytes into data
bytes. The simplest data path fulfilling all requirements
(the third one even for the fourth row) is a single-
byte-wide data path. However, with present CMOS
technologies, fabrication of an STM-64 framer with a
single-byte-wide data path is not possible. Considering
multi-byte-wide data paths, the comparisons in Table 2
apply. As can be seen from the table, 9 bytes is an integer

Table 2 Comparisons for STM-1 to STM-64 frames.

Frame type SOH row length
(bytes)

Row length
(bytes)

Frame length
(bytes)

STM-1 9 270 � 9 � 30 9 � 270
STM-4 4 � 9 4 � 9 � 30 9 � 4 � 270
STM-16 16 � 9 16 � 9 � 30 9 � 16 � 270
STM-64 64 � 9 64 � 9 � 30 9 � 64 � 270

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

217

fraction of the frame length, the row length, and the SOH
part of the row. Because 9 decomposes as 3 � 3, 3 of
course also fulfills the requirements, so the possible data
path widths fulfilling all three requirements are 3 and 9
bytes. A 3-byte-wide data path would require a system
clock of at least 415 MHz, which would be problematic for
some of the framer functions in CMOS ASIC technology.
A 9-byte-wide data path width, on the other hand, would
require a system clock of at least 138 MHz, which should
be feasible. Even the use of the next higher SDH/SONET
standard reference clock of 155.52 MHz should be
compatible with current CMOS technology.

Another aspect to consider is the arrangement of data
on the data path. Looking at the framer functions shown
in Figure 3, one can recognize three main representations
of data which are optimum or even necessary for certain
framer functions:

1. On the SDH line side, for frame-byte alignment and
frame descrambling/frame scrambling, the bits must be
presented in the exact sequence of the STM-N frame.

2. For SOH-byte processing (except for the H3 bytes
in the fourth row of the frame), the preferred data
arrangement is one in which the byte interleaving of
the N STM-1 subframes within an STM-N frame is
removed and all bytes in a single clock cycle on the
data path belong to one specific STM-1 subframe. In
this representation, the SOH bytes always occur in the
same positions for each frame. In the 9-byte data path,
this always presents a single SOH row for a STM-1
subframe.

3. For the POH bytes, the H3 bytes (fourth SOH row of
the frame), and payload handling, the optimum data
arrangement is the one in which the bytes of each row
are reordered such that all bytes in a single clock cycle
on the data path belong to the same VC-4-xc (x � 1,
4, 16, 64).

From this list, one immediately recognizes that optimum
processing of the data by all units in the data path
requires two data reordering operations. The first reorders
the SOH bytes of a row, except for the H3 bytes of the
fourth row. The second reorders the bytes of a row that
belong to VCs (POH and payload bytes), plus the H3
bytes of the fourth row. As mentioned in the Introduction,
the H3 SOH bytes require exactly the same reordering
as the POH and payload bytes. Since the data bytes
forwarded in parallel on the data path are always either
SOH or VC bytes for all rows except the fourth, both
reordering operations can be performed in a single
step and, accordingly, in a single unit (with special
consideration for the fourth row) in the transmit and
receive data paths, respectively. Of course, the data
reordering operations do not involve just the 9 bytes
present on the data path at a single clock cycle; the
reordering must be done over multiples of 9 bytes, which
must be stored in an on-chip buffer for reordering.

In more detail, the reordering of the SOH part of an
STM-N frame requires two buffers with the width of the
data path and a depth of N; two buffers are required
because while the first filled buffer is being read, data
must be written into a new buffer. Figure 6 shows how
data are written into the buffer. The SOH bytes arriving
on the data path are written sequentially into the first
column of the buffer, then the second, and so on until the
ninth column. When the buffer has been filled, the content
is read row by row on the 9-byte-wide data path.

For the VC bytes, the procedure is very similar if there
is no concatenation, as shown on the left-hand side in
Figure 7. Here, the reordering buffer has a width of
9 bytes and a depth equal to the number of VCs in the
STM-N (STS-3N) frame. In the case of concatenated VCs,

Figure 6

Diagram of procedure for writing STM-4 SOH bytes into re-

ordering buffer.

1. STM-N
1

4. STM-N
1

Byte 1 to byte 9

Figure 7

Diagram of procedure for writing STS-12 VC bytes into re-

ordering buffer.

Byte 1 to byte 9 Byte 1 to byte 9

1. VC 1. VC-3-3c

4. VC-3-3c

1. VC-3-3c

4. VC-3-3c

1. VC-3-3c

4. VC-3-3c

9. VC

12. VC

12 SPE 4 SPE-3c

R. CLAUBERG IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

218

the first x bytes of a SPE-xc or VC-4-xc are written into
the first row, the next into the second row, and so on until
as many rows contain the first x bytes as there are SPE-xcs
or VC-4xcs in the frame. Then the next bytes are written
into columns x � 1 to 2 x of the first row, and so on. In
principle, one could stop after the buffer has been filled
from rows 1 to K if there are K VC-4-xcs or SPE-xcs in
the frame; however, to achieve a consistent behavior with
frames without concatenation, reading from the buffer
begins only after the entire buffer has been filled from
rows 1 to N.

Future SDH/SONET framers will support the new
virtual concatenation standard. In this case there is a
special buffer in the payload processor that assembles
all payload bytes of the VCs and performs virtual
concatenation of VCs. Real concatenation can then be
treated as a special case of virtual concatenation, and
the need to reorder data such that real concatenation
of VCs is accounted for disappears. In this case, the data
reordering simplifies substantially. In principle, the data
reordering procedure for SOH bytes can now be applied
to all data bytes. It is still necessary to distinguish between
SOH and VC bytes, but the procedure to reorder the two
types of data is identical.

Considering the SOH byte reordering, there are N
STM-1 subframes building an STM-N frame. Thus, it may
take N clock cycles with bytes from this specific frame
until sufficient bytes have been assembled to fill an entire
data path width with bytes belonging to a specific STM-1
subframe of the STM-N frame. As an example, the fifth
row of an STM-4 frame before reordering appears as
follows:

B21(1) � B21(2) � B21(3) � B21(4) � B22(1) � B22(2) �
B22(3) � B22(4) � B23(1) �

B23(2) � B23(3) � B23(4) � K1 � � 5 empty bytes
6 empty bytes � K2 � � 2 empty bytes �
9 empty bytes �
payload bytes in groups of 9 bytes,

with the numbers in parentheses referring to the
corresponding STM-1 subframes. After reordering,
it appears as follows:

B21(1) � B22(1) � B23(1) � K1 � 2 empty bytes � K2 �
2 empty bytes

B21(2) � B22(2) � B23(2) � 6 empty bytes
B21(3) � B22(3) � B23(3) � 6 empty bytes
B21(4) � B22(4) � B23(4) � 6 empty bytes
payload bytes in groups of 9 bytes, ordered according to
nonconcatenated VC-4s or STS-1 SPEs.

As already mentioned, a special case is the fourth row of
the frame with the pointer bytes. For an STM-4 (STS-12)

frame with AU-3 pointers and corresponding STS-1
SPE containers, this row appears as follows before
reordering:

H1(1) � H1(2) � H1(3) � H1(4) � H1(5) � H1(6) � H1(7) �
H1(8) � H1(9) �

H1(10) � H1(11) � H1(12) � H2(1) � H2(2) � H2(3) � H2(4) �
H2(5) � H2(6) �

H2(7) � H2(8) � H2(9) � H2(10) � H2(11) � H2(12) � H3(1) �
H3(2) � H3(3) �

H3(4) � H3(5) � H3(6) � H3(7) � H3(8) � H3(9) � H3(10) �
H3(11) � H3(12) �

payload bytes in groups of 9 bytes.

After reordering, the structure is

H1(1) � H2(1) � H3(1) � 6 payload bytes belonging to STS-1
SPE #1 �

H1(2) � H2(2) � H3(2) � 6 payload bytes belonging to STS-1
SPE #2 �

.

H1(12) � H2(12) � H3(12) � 6 payload bytes belonging to
STS-1 SPE #12 �

payload bytes in groups of 9 bytes, ordered according to
nonconcatenated STS-1 SPEs.

Hence, there is a mixture of SOH and payload bytes in
the bytes forwarded in parallel on the data path. This is
unavoidable because the H3 bytes can be SOH as well as
payload bytes, depending on the pointer value encoded in
the H1 and H2 bytes.

Figure 8 is the block diagram for an STM-1 (STS-3) to
STM-64 (STS-192) framer in the new data-multiplexing
architecture. The data-reordering unit in the transmit side
is designated as the VC-4 interleaving unit. The figure
shows the individual logical units in the data paths
connected to multiple memory blocks according to the
different frames (ports) and VCs to be processed. The
connection from the receive to the transmit side labeled
“cross-connect” enables the multiplexing of VCs received
on the receive side into a higher-level frame on the
transmit side and thereby the SDH/SONET add/drop
multiplexing function, the special data aggregation of VCs
into a higher-level, higher-data-rate frame. In addition,
it also enables the digital cross-connect function of
SDH/SONET between the VCs received from different
line ports. As a result, it should be possible to use the
framer as an SDH/SONET digital cross-connect, a
configurable but not self-routing switch.

The framer shown in Figure 8 should be capable of
supporting 64 STM-1 ports, 16 STM-4 ports, four STM-16
ports, one STM-64 port, or any combination thereof with
an aggregate data rate corresponding to STM-64.

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

219

The figure pertains to the maximum use of this specific
data-multiplexing architecture. It should also be possible
to use this architecture for building framers that support
only a subrange of the frame types supported in Figure 8.
Figure 9 shows how it may be possible to construct an
entire range of framers with this architecture by reducing
either the system clock rate from that needed for STM-64
or the number of ports and the related number of memory

blocks. Of course, increasing the number of ports always
necessitates a corresponding increase in the minimum
clock suitable for the framer. Therefore, possible framers
exist only in the triangle above the diagonal in the figure.
The “STM-1 only” and “STM-64 only” versions are
displayed for the sake of completeness only; constructing
a single port framer in a data-multiplexing architecture is
certainly not efficient, but may be a solution that can be
quickly implemented if a corresponding multi-port framer
already exists.

In total, the data-multiplexing architecture should be a
very efficient architecture for data aggregation devices in
SDH/SONET technology that can be used to create single-
chip framers for an entire range of data rates. A framer
with an aggregate data rate corresponding to STM-256
(OC-768, or 39.81 Gb/s) should be feasible if a data path
width of 2 � 9 � 18 bytes is chosen for the newest CMOS
technology or one of 4 � 9 � 36 bytes for a somewhat
slower technology. On the basis of the three requirements
for the data path width with respect to the frame length,
row length, and SOH row length, it should be possible
to cover the range from STM-4 to STM-256 with a
corresponding architecture.

Although the new architecture for SDH/SONET framers
has not yet been implemented, selected timing-critical
units for an STM-64 as well as an STM-256 data
aggregation framer have been designed in the IBM Cu-11
technology [5]; at least at the design level, these appear to
fulfill all timing requirements (including those related to
storing and retrieving data from connected memory
banks). System-level simulations including the port
scanning unit, byte-alignment unit, B1 calculation unit,
and frame scrambling unit—all designed in Cu-11
technology— have been successfully performed and
demonstrate the principal feasibility of the architecture.
Chip size estimates show that the STM-256 framer
without virtual concatenation should be feasible with an
approximate size of 150 mm2 in the Cu-11 technology. A
chip size of about 220 mm2 should also support the new
virtual concatenation feature with an embedded DRAM
for storing the payload of 16 STM-256 frames, as required
by the standard.

6. Concluding remarks
Single-chip architectures for data aggregation from
multiple SDH/SONET line ports to link layer devices
as well as higher-order SDH/SONET frames have been
discussed. The architectures range from simple parallel
architectures to parallel architectures with distributed
algorithms, and finally to data-multiplexing architectures.
Simple parallel architectures are suitable for data
aggregation to the link layer but require many additional
units for data aggregation into higher-level frames.
Parallel architectures with distributed algorithms are

Figure 8

Block diagram of STM-1 to STM-64 SDH/SONET framer with

data-multiplexing architecture.

SPI-4

Byte-alignment

Payload H

POH

VC-4 interleav.

SOH

B2 calculat.

B1 calculat.

Frame-scrambl.

SPI-4

Payload H

POH

SOH

B2 calculat.

Data reorder.

B1 calculat.

Frame-scrambl.

M

e

m

o

r

y

b

l

o

c

k

s

M

e

m

o

r

y

b

l

o

c

k

s

C

o

m

b

i

n

a

t

o

r

i

a

l

C

o

m

b

i

n

a

t

o

r

i

a

l

Cross-

connect

72 bit 72 bit

Port 1 Port 2 Port i Port 64

Port addressing

unit

Port scanning

unit

Figure 9

Scalability of data-multiplexing architecture for an STM-1 to

STM-64 framer.

STM-64

only

STM-4

to

STM-64

STM-1

to

STM-64

STM-4

to

STM-16

STM-1

only

C
lo

c
k
 r

a
te

No. of ports /no. of memory blocks

R. CLAUBERG IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

220

suitable for data aggregation into higher-level frames for
data rates at which frame-byte alignment is done in the
serializer/deserializer part of the framer and up to the
number of parallel units at which the necessary data
exchange between parallel units causes timing problems.
A novel data-multiplexing architecture approach has been
described that should be suitable for data aggregation to
the link layer as well as into higher-level SDH/SONET
frames, but will require fast on-chip access to memory
arrays. Since such fast memory access is now available, it
is anticipated that data-multiplexing architectures will
soon play an important role in data aggregation devices.

Acknowledgments
I thank my colleagues Andreas Herkersdorf and Wolfram
Lemppenau (now at FH Gelsenkirchen, Germany) for
introducing me to the architecture based on parallel
units with distributed algorithms and for a very good
collaboration in general. I also thank my colleagues
Fabrice Verplanken, David Webb, and Peter Buchmann
for many helpful discussions on the data-multiplexing
architecture.

References and note
1. M. Sexton and A. Reid, Transmission Networking: SONET

and the Synchronous Digital Hierarchy, Artech House,
Norwood, MA, 1992.

2. R. Clauberg, A. Herkersdorf, W. Lemppenau, and H.
Schindler, “A Scalable Modular Architecture for SDH/
SONET Technology,” Proceedings of the International
Conference on Computer Communications and Networks
(ICCCN), Boston, MA, October 1999, pp. 442– 446.

3. Product announcement for PHAST-12 by the TranSwitch
Corporation, Shelton, CT, February 17, 1999.

4. P. Baechtold, M. Beakes, P. Buchmann, R. Clauberg, J. F.
Ewen, J. F. Gilsdorf, P. Hauviller, A. Herkersdorf, J.-C.
Le Garrec, W. Lemppenau, Ben Parker, Dale J. Pearson,
J. M. Pereira, D. Plassat, S. K. Reynolds, H. R. Schindler,
A. Steimle, and D. J. Webb, “Single-Chip 622-Mb/s
SDH/SONET Framer, Digital Cross-Connect and Add/Drop
Multiplexer Solution,” IEEE J. Solid-State Circuits 36,
No. 1, 74 – 80 (2001).

5. The IBM Cu-11 technology was first announced in an IBM
press release on April 3, 2000, and is described in detail
at http://www-3.ibm.com/chips/products/asics/products/cu-
11.html and on additional web pages with links provided
therein.

Received February 11, 2002; accepted for publication
June 6, 2002

Rolf Clauberg IBM Research Division, Zurich
Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon,
Switzerland (cla@zurich.ibm.com). Dr. Clauberg is a Research
Staff Member at the IBM Zurich Research Laboratory. The
work presented here was done while he was Manager of
Transport Technology in the Communications Systems
Department. He was previously a manager in the
Optoelectronics Department, leading projects in device
modeling and characterization. Dr. Clauberg holds a Ph.D.
degree in physics (Dr. rer. nat.) from the University of
Cologne in Germany. He is a member of the German Physical
Society, the American Physical Society, and the German
Informationstechnische Gesellschaft (ITG/VDE).

IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 R. CLAUBERG

221

