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During the past fifty years a clearer understanding of one-
dimensional dynamics has emerged. This paper summarizes
the main results of the probabilistic theory of one-dimensional
dynamics and shows the behavior to be surprisingly rich and
a good starting point for the general theory of dynamics.

For the first time in the history of physics we therefore have
a framework with the capacity to explain every fundamental
feature upon which the universe is constructed. [ . .. | These
grandiose descriptive terms are meant to signify the deepest
possible theory of physics—a theory which underlies all
others, one that does not require or even allow for deeper
explanatory base. [ ... ] If you understand everything about
the ingredients, the reductionist argues, you understand
everything. [ ... ] Many find it fatuous and downright
repugnant to claim that the wonders of life and the universe
are mere reflections of microscopic particles engaged in the
pointless dance fully choreographed by the law of physics.

[ ... ] Understanding the behavior of an electron or a
quark is one thing; using this knowledge to understand the
behavior of a tornado is quite another. [ . .. ] In fact, the
mathematics of (the) [ ... ] theory is so complicated that,
to date, no one knows the exact equations of the theory.
Instead the physicists know only the approximations to
these equations, and even the approximate equations are so
complicated that they as yet have been only partially solved.
Brian Greene, The Elegant Universe, 1999

1. Introduction: What is dynamics?

Simple rules imply a simple world

The observations, experiments, and theoretical work which

lay at the basis of contemporary science led to the concept

that there are a few fundamental principles which explain

the whole of our world. These fundamental principles

are expected to be very simple. Until the end of the

nineteenth century, it was also believed that these

simple rules allow only relatively simple phenomena. All

disturbing discrepancies were blamed on measurement

error or attributed to some missing factor in the model.
Since the time of Galileo and especially Newton, the

way to deal with the description of the physical world is to

project it into the imaginary world of mathematics with its
(as was long believed) impeccable logic. In particular, the
physical world is described by a differential equation with
some parameters. After some work, i.e., solving the equation,
the conclusions are applied to the physical world. In this
way Newton’s law of gravitation can explain Galileo’s

Pisa tower experiments, conclude Copernicus’ theory or
derive Kepler’s laws. Ultimately, this paradigm leads to
engineering principles and practice.

The assertion “after some work” hides a tremendous
problem. Of course, solving nonlinear differential
equations can almost never be done explicitly. The
solutions of the models can be fully understood in only
very rare cases. Even in the case of a classical solar system
with only two planets orbiting a sun, the “after some
work” state cannot be achieved.

Sensitivity complicates the world

Unfortunately, the situation is considerably more complicated.
Even if the principles are simple, their action can lead to
complexities which confuse our understanding and defy any
attempt at control. The reason for the breakdown of the
simple rules—calculations—understanding/control program
is captured by two notions of sensitivity.

The first type, sensitivity to initial conditions, has very
practical and dramatic consequences. To introduce this
notion, let us discuss how one can find solutions of
differential equations.

Because of the lack of analytical tools, the help of
numerical analysis is needed. If the systems evolve
according to some cyclic (also called periodic) process,
the computer will be able to predict this cyclic behavior
and compute all of its quantitative aspects.

It was long believed that the solar system, and, indeed,
everything can be understood in terms of cyclic behavior.
Only at the end of the nineteenth century was it first
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observed by Poincaré that systems can behave in a
noncyclic manner. In particular, it was observed that the
actual behavior of a system may depend very strongly on
the initial data. A small measurement error in the initial
data implies very different behavior after some time. This
phenomenon of sensitivity to initial conditions is often
denoted by the term chaos.

Chaos, or sensitivity, forms an essential obstacle. The
computer cannot really provide a solution, because the
smallest error in initial data usually causes errors that
grow exponentially as time elapses. This phenomenon of
sensitivity to initial conditions implies that the computer
cannot assist us to understand the differential equation by
just computing approximations of solutions. Are we really
interested in the explicit solutions of such a sensitive
system? Instead of looking for explicit solutions, a
theory has to be built that predicts the crucial and
stable (computable) aspects of the system. Once some
understanding of the behavior of the system is attained,
that is, once the crucial and stable parts of the system
have been identified, numerical analysis can be used to
quantify these parts.

The second type of sensitivity a model can have is
sensitivity to the parameters of the model. Indeed, there
are many examples known in which the slightest
measurement error in the parameters causes the model
to behave very differently. Clearly, in such a situation
we cannot deduce any conclusion from the model for
the physical world. Therefore, for any model we use
to describe the physical world, we must be able to describe
the behavior of nearby models, and we must have the
means to deal with the model’s sensitivity to initial
conditions.

One can think of the study of real-world evolution
processes as having two branches. On one hand, there is
a wealth of research to define the fundamental principles
for the physical world. On the other hand, there is much
work aimed at explaining our diverse, complicated, and
changing environment. Dynamics is the mathematical
study of evolution processes, also called dynamical
systems. Its role is to explain and describe this rich
behavior.

2. The Palis conjecture

In the study of dynamical systems, the main questions
can be captured by one: What is the typical behavior of a
typical dynamical system? Notice that this question relates
strongly to the difficulties arising from the two types of
sensitivity; since it is impossible to understand all
possibilities, one must restrict oneself to typical behavior.
To answer such a question, one must define a typical
system and the elements of “typical behavior”; most
significantly, one must classify the phenomena it is
possible to observe. This section presents the precise
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formulation of this question: the Palis conjecture. The
goal is to understand chaos. To do this, a vocabulary and
tools must be developed to describe and predict whatever
is predictable for chaotic systems. This program in general
is far from being finished.

Precise information versus a comprehensive overview
The difficulties in the analysis of dynamical systems are of
many different natures. We may not be able to solve the
equations, as is usually the case for nonlinear differential
equations. Even if we solve them, we may have problems
in actually calculating the values of the solutions with
good accuracy. Even if we can, there may be many
different cases, depending on the starting point, and we
will be overwhelmed by the amount of specific information
and lose control of the overall situation. Problems of this
type are intrinsically related to the sensitivity of the
dynamical system to initial conditions. When the system
describes multiple interacting objects, it is often modeled
in a multi-dimensional space where we have poor
intuition. Finally, we cannot be sure that our system is
precisely the right model and not (in the best case) merely
a close approximation. This relates to sensitivity to the
parameters of the model.

We now begin to formulate the basic notions used to
describe dynamical systems. As examples of dynamical
systems, we use differential equations such as Newton’s
law for the solar system or the Navier-Stokes equation for
fluid dynamics, describing evolution in continuous time.
There is no fundamental difference between continuous
time and discrete time from the point of view of
dynamical systems.

A dynamical system
From now on, we think of a dynamical system as a map,

f: X=X

The space X is the state space, and the map f describes
how states change from second to second. For example,
if the state at time ¢ = 0 is x,, then after n seconds the
state is

x,=flx, ) =fof(x, ) =f(x,)="=f"(x)
The sequence

X, X5 X

0 1 2’. )

starting at the initial state x, is called the orbit of x,.

The (state) space has usually some natural additional
structures such as a notion of distance between states; that
is, the state space is a geometrical object. Often there is a
natural notion of probability for a state to occur, which
means that the state space is also equipped with a
measure (or volume). In typical cases, f is a smooth map
on a smooth manifold which carries a natural measure. In
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the case of the dynamics of the solar system, a state of it
is described by the position and velocities of the different
planets and the sun. Each state is a long vector of
numbers. The state space is a high-dimensional Euclidean
space, and the usual notion of volume is preserved by the
dynamics. In the case of fluid dynamics, the state space is
a space of functions (vector fields) on some (Euclidean)
domain, an infinite-dimensional state space.

Given a dynamical system, it is rather easy to predict
the near future; one has to apply the map f five times
to predict what happens after five seconds. In principle,
this can be done with an arbitrarily high precision. When
one deals with a system that is highly sensitive to initial
conditions (think of turbulent flows or the weather), it
becomes very hard to calculate and predict the longer-
term future. The surprising fact is that very long-term
behavior can be understood much better. Moreover, in
many practical systems the evolution that starts at any
typical initial state will show this asymptotic behavior
after a rather short period of time. This leads to the
notion of an attractor.

Attractors

Definition 1
Let f : X — X be a dynamical system and let A be a

measure on X. A compact set A C X is called an attractor
of fif

e It is invariant, f(4) = 4.

e Its basin of attraction, B(A),
B(A) = {x € X| limdist[f"(x), A] = 0}
has positive measure A[B(A4)] > 0.

e There is no smaller set with this property.

The points from the basin of an attractor converge
toward the attractor. Often, the basin of attraction
is a rather complicated set; it is usually not a simple
neighborhood of the attractor. The only criterion for
the basin is that there must be a definite probability
of picking a state in the basin; it has to have positive
measure/volume/area/probability.

The dynamics on the attractor, f : 4 — A, describes the
asymptotic dynamics of the points in its basin. Usually the
convergence toward the attractor is exponentially fast.
One thinks of an attractor as the site at which the
essential aspects of the system appear.

One should look at the attractor(s) of a system when
one wants to understand the dynamics of that system. We
work on the asymptotics of the system in order to skip any
transition artifacts and concentrate on the final pattern.
This is a reflection of the belief that the destination is the
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goal of the journey. But there is more to it. In the
dynamics of the falling avalanche, the initial conditions
and the final layout are what matters, while the history of
the fall is just a means of specifying the outcome. On the
other hand, not only the disaster following a tornado

but also the shape of the tornado may be seen as an
asymptote of the dynamics of the air and water particles.
While it is virtually impossible to predict the history of
any individual particle, the shape of a tornado seems to
evolve stably on a large time scale.

Before introducing the notions needed to describe the
behavior in an attractor, we discuss a few basic examples.
A simple case of a system is a map x — x/2 on the real
line. The point x = 0 is fixed, and all other points travel
to it geometrically. In this case, we say that the point
x = 0 is a hyperbolic attractor. When we swap 0 and
by putting y = 1/x, we get the system y + 2y, withy = 0
a hyperbolic repellor, a fixed point with the neighbors
escaping at a geometric rate. One can see this better by
looking at the stereographic projection on a circle with the
dynamics flowing from one pole to the other. The south
pole is the attractor of the system, which attracts all points
but the north pole.

Linear and hyperbolic maps
The linear system x — x/2, y + 2y on the real plane
leaves the axes invariant, but with the dynamics described
above and outside the axes themselves, there are invariant
hyperbolas xy = constant with the trajectories moving
from one infinity to the other. The fixed point (0, 0) is
called a saddle. A generalization of this example is a
hyperbolic linear map—with all eigenvalues nonzero and
not on the unit circle—such that in the direction of
eigenvectors there is a geometric rate of expansion or
contraction.

The following example plays, in spite of its simplicity, a
crucial role in the general theory of dynamical systems.
An Anosov map is given by

A:(x,y) = (2x+y,x+y) modl,

with invariant axes parallel to the eigenvectors of the
matrix. This linear system acting on the torus exhibits
much more complicated behavior because the invariant
axes wrap around densely; moreover, there are many
periodic points. Nevertheless, near (0, 0) the system can
be modeled as the saddle by the corresponding linear
map on the plane; see Figure 1.

The area of a domain in the torus plays the role of
volume. It is usually called the Lebesgue measure. It can
be shown that the area of the set of points with orbits
which are densely spread throughout the torus is 1. This
means that if one picks an initial point at random, with
probability 1 it will have a dense orbit. In what follows,
we refer to such a crucial phenomenon in the following
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Toral automorphism: Artist's rendition of the figure of an Anosov
map acting on a torus which was provided by Roy L. Adler, Matthew
Grayson, and Bruce Kitchens, former Research Staff Members of the
Mathematical Sciences Department. The bottom half and top half of
the torus are distinguished by shading; then the map of the torus is
applied twice, and the images of the two regions are followed.

manner: Almost every point, in the sense of the Lebesgue
measure, has a dense orbit. Notice that the above set of
points with a dense orbit has a rather complicated
structure because the periodic points are in the
complement but are spread around the torus densely.

In other words, the attractor of the Anosov map is the
whole torus. In particular, the basin of the attractor is
a full measure set in the torus. The relevance of this
example is that in some more realistic models the
dynamics on the attractor can be understood as Anosov
maps.

The linear models above, in Euclidean space or on tori,
are very well understood, and as such are good role models.
However, there is no way that linear maps can be used to
explain general dynamics even by approximation. We just
keep them in mind as first simple examples that already
show some complications, such as the Anosov maps.

Typical points
Let us continue to build our toolbox. The notion of a
typical initial point demands the criterion, “typical in what
respect?” In dynamics there are two different kinds of
typical initial points. The first type has already been
discussed—the notion of fypical with respect to a
measure/volume/probability. A set of initial points consists
of typical points if one can pick such an initial point with
probability 1 or, equivalently, when the set has full
volume/measure.

The second kind of typical initial points, the so-called
generic points, does not have a probabilistic flavor. It
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is a topological notion, purely related to space. A set
consisting of generic points is “fat” in the sense of densely
spread squares in the plane. Notice that it is possible to
construct a set of generic points with arbitrarily small
area. A priori measure theory and topology can show
quite different typical phenomena.

An attractor describes the behavior of a typical point
from the measure-theoretical point of view [i.e., the basin
B(A) is supposed to have positive measure]. One could as
well consider the notion of an attractor in which the basin
is supposed to be a large topological set.

Of course, we expect that the topological point of view
and the measure-theoretical one will both be natural for
the system. In particular, we expect that typical behavior
from the topological point of view will coincide with
typical behavior from the measure-theoretical point of
view. People become upset (or excited) when the two
notions do not conform, i.e., when there is a large
topological set with one behavior and another set with
large measure with a different behavior, and they are
intermingled. We address this question in more detail
during the discussion of one-dimensional dynamics.

An attractor is the place in which the asymptotic
behavior of measure-theoretical typical points takes place.
The way to describe the behavior of the attractor is of a
statistical nature; it is described in terms of time averages
of observables. An observable is a function,

o X—R,

with some properties related to the structure on the
space X (smooth, continuous, integrable, measurable).
In the case of some turbulent flow, one can think of the
observable ¢(x) to be the temperature or the pressure
at a certain spot in the fluid when it is in state x.

Definition 2
A physical measure on the attractor 4 is a measure u on
A such that for every observable ¢ : X — R we have

1 n—1
lim > L)) = f ¢ du.
n=e =0

for almost every x € B(A) with respect to the measure A
on X.

A physical measure is a volume form defined on the
attractor. Its crucial property is that it allows one to
compute time averages of observables (the left side of the
formula above) as space averages of the same observables
(the right side of the formula). In particular, the existence
of a physical measure states that almost every orbit
behaves the same way in a statistical sense.

If one thinks about sensitivity to initial conditions as it
exists in chaotic systems, it is very hard to believe that
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something like a physical measure can exist. It is also
usually very hard to prove. However, in realistic models
and in the physical world, such measures are actually
observed. One could believe that all macroscopic
observations are determined by an underlying physical
measure. In the more precise discussion of one-
dimensional dynamics, we address the existence of
physical measures and related difficulties.

Stochastic stability

Finally, we discuss the fundamental notion of the stability
of the system. A model whose features change a great deal
under even small perturbations of the model cannot be a
realistic model. A realistic model is one in which small
perturbations do not change the overall properties of the
system. In particular, one needs systems x, = f(x,_,) such
that the perturbed system

xn+] :f(xn)’

Vo =f) +38,,

where the 8 are small random perturbations of the orbit,
behaves essentially like the original system described by f.

Definition 3

Let A C X be an attractor of f with a physical measure
w. The system f is stochastically stable on A4 if the time
averages of the perturbed model are close to the space
average of the unperturbed model. For every € > 0 there
is a 6 > 0 such that for all small enough random
perturbations [[[(8,) < 8, with an appropriate norm],

1 n—1
lim |~ ¢><y,.>—f $dp| <,
n= i=0

for almost all y, € B(A).

These notions do not require strict evaluations of the
orbits or solutions. Generally, the statements have an
asymptotic nature; hence, we may say that dynamics is the
investigation of typical asymptotic behavior. We do not
have to be specific when we predict the future, but we
are expected to make an educated guess.

The Palis conjecture

During the last forty years many deep but partial

results have been obtained. An important part of this
development is the insight that a purely topological
study of chaos cannot be adequate. Small topological
perturbations of a system too often do not yield to a
topologically equivalent system. The measure-theoretical
approach forms a crucial aspect of dynamics. This insight
was developed from many examples, although a complete
understanding is still far from being achieved. The
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conjecture below summarizes and formalizes for the
first time the consensus in the dynamics community.

In the space of smooth dynamical systems on a smooth
manifold X as state space there exists a dense set of
systems with the following properties:

There are finitely many attractors whose union of
basins is of full measure.

e Each attractor carries a physical measure.

For typical parameter values, perturbations of such a
system by generic families will lead for almost every
member of the perturbing family to a perturbed
dynamical system which has finitely many attractors
whose union of basins is nearly equal to the basin
of the initial attractors. These perturbed attractors
support a physical measure.

e Each attractor is stochastically stable.

3. One-dimensional dynamics

The attractor is smaller than the space

The structure of the state space has a strong influence on
the possible dynamical phenomena one can expect. For
example, the Anosov map seen as a map on the plane
shows rather trivial behavior. As a map on the torus, it is
very complicated. What happens is that the structure of
the space limits the global consequences of expansion or
of sensitivity to initial conditions. Generally speaking, the
higher the dimension of the state space, the more difficult
it is to describe the possible dynamical phenomena.

In realistic models, the state space is usually of very
high dimension. It might even be of infinite dimension,
as in the case of fluid dynamics, in which the states are
vector fields. However, realistic models are dissipative
because there is friction which causes energy loss. It
has been observed, and in many cases proven, that the
attractors of these models are actually of lower dimension,
much smaller than the dimension of the state space.

In this section we describe one-dimensional dynamics
and in particular show that the Palis conjecture holds. In
view of the above discussion, one-dimensional dynamics
should be the simplest possible; the state space is just
an interval with the simplest topology one can imagine.
However, there are three surprising reasons for the
importance of the study of one-dimensional dynamics.

The first reason is that the observed dynamics of
one-dimensional systems is very rich. Most dynamical
phenomena observed until now in higher-dimensional
dynamics have their counterpart in one-dimensional
dynamics. Second, the extensive technology developed
to study one-dimensional dynamics turns out to be very
useful for the study of higher-dimensional systems. And
most surprisingly, predictions from the one-dimensional
theory turn out to hold for realistic models of very
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high dimension. There is a rather precisely understood
phenomenon, the so-called homoclinic bifurcations, which
is observed in many realistic models and which explains
why one-dimensional phenomena can appear in higher-
dimensional dissipative systems.

By no means can one expect one-dimensional dynamics
to explain everything. However, the richness of its
dynamics and the characteristics it displays in realistic
systems make it much more than a simple toy.

Contraction and expansion
Before describing one-dimensional dynamics in more
detail, we discuss some examples. A reasonable map from
an interval to the same interval either does or does not
fold the interval; the graph of a map on the interval
is either monotone or not. An interval map which is
monotone (i.e., does not fold) has trivial dynamics. One
easily sees that every point converges to a fixed point or a
periodic point of period 2. Interesting interval dynamics is
about folding.

All of the maps we consider below have interesting
dynamics in the interval [—1, 1], such that

frl-L1]=[-11]
Let us first consider the map defined by

1 1
f.x'—>—5|x\—§.
The graph of this map looks like a low tent. For any
x € [-1, 1], one sees immediately that lim _ f"(x) = —1.
The attractor of the system is the fixed point —1. A more
interesting example is the map defined by

fix—=2x|+1

The graph of this map also resembles a tent, but this one
is rather high. The derivative is *2; moreover, each small
interval has two pre-images that are twice as short. By
iterating forward, we immediately notice the sensitivity

to initial conditions, and we can even quantify it. The
distance between the iterates of two points grows
exponentially fast with rate 2,

If"(x) = f"(»)] = 2"|x = yl,

as long as f'(x) and f'(y) are on the same side of 0. Once
f"(x) and f"(y) are separated by 0, the folding aspect of
the map may bring the points back together: The topology
places limitations on the consequences of sensitivity to
initial conditions. The expansion rate log |2| > 0 is called
the Lyapunov exponent of the system.

Probability and the Perron-Frobenius operator

The second example preceding, i.e., the example which is
sensitive to initial conditions, has a rather rich statistical
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behavior. If we consider the left and the right halves of
the interval, we may code each point by a sequence of two
symbols, L(eft) and R(ight), depending on where the nth
iterate of the point lands. This recalls coin tossing, and
indeed, when we think of the (normalized) Lebesgue
measure as the probability, we see that our system
represents a sequence of independent random variables in
very much the same way as coin tossing. By probability
limit theorems, almost every point will behave asymptotically
in the same way whenever the criterion is formulated as an
average along the trajectory. For instance, the frequency of
visit of a trajectory of almost every point in a set tends to
the measure of this set. The whole interval is the attractor,
and the Lebesgue measure is the physical measure on the
attractor.

More can be said on the statistical behavior of this
system. Instead of considering simple states (i.e., points
in the interval), one considers a distribution on the state
space. That means that each state has a certain probability
of being realized. For example, one could use the uniform
distribution defined by the Lebesgue measure on the
interval. But there are many other distributions one could
use, each defined by a density

p:[-1L1]->R,

meaning that the probability p([a, a + €]) of picking a
state in a small interval [a, a + €] is

ate

pla,a + E])—f pdx ~ p(a)e.

Given such a distribution, that is, a (nonnegative) function
on the interval, one time step will change this distribution.
For example, in the first case above, after each step, the
states far away from the fixed point —1 will become less
and less likely to be realized. The Perron-Frobenius
operator

Pf: {densities} — {densities}

describes how the distributions are pushed forward in time
by the dynamics of f.

In this context, a physical measure for a system is
exactly the measure which is fixed for this operator and
attracts all reasonable distributions, like the Lebesgue
measure. In particular, the second example above shows
the exponential convergence of any density to the
Lebesgue measure. This means that the limiting statistical
behavior is established rather quickly. This phenomenon
clearly relates to the spectral properties of the Perron—
Frobenius operator.
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Standard unimodal family

As standard examples of one-dimensional systems, we
consider the following family of so-called unimodal maps
f, : [-1, 1] = [—1, 1] defined by

fx)=—-(10+ Hx*+ 1,

with the parameter t € [—1, 1]. One can show that f,
the map which folds the interval and covers the whole
interval, behaves similarly to the high-tent map described
above, and is analogous to coin tossing. The corresponding
physical measure will not be the Lebesgue measure but
one given by the density 1/(7V1 — x2).

For small parameters ¢, one again observes that the
fixed point —1 attracts every point.

The next section addresses behavior for general
parameter values ¢. This theory applies to all generic
similar families. The explicit formulae for the maps are
not crucial.

4. The ergodic theory of unimodal maps

It took the last forty years, and contributions of many
distinguished mathematicians, to arrive at a clear
understanding of one-dimensional dynamics. This
development played its role in the formulation of the
Palis conjecture.

In this section we describe in more detail the behavior
of one-dimensional dynamics. In order, we address the
structure of attractors, the existence of physical measures,
and finally stability.

Theorem 1

Any standard unimodal map has a unique attractor whose
basin is of full measure. There are three possible types:
periodic orbit, Cantor set, and cycle of intervals.

The periodic attractors

This is the easy case. There is a point which returns to
itself after a while, and the derivative at this point is
smaller than (or equal to) 1. This finite orbit is the
attractor. The structure of this orbit is very simple, and
moreover the structure of its basin is very simple. Around
each point in this periodic orbit there is a small interval
contained in the basin, and these form the so-called
immediate basin, which is a cycle of intervals invariant by
the dynamics. The preimages of the immediate basin form
an open and dense set of full measure. However, there is
usually a compact set of measure zero which is not in the
basin. The dynamics in this set is usually chaotic but it is
not visible; these chaotic points are not typical.

The unimodal maps with a periodic attractor are called
structurally stable, which means that the system can be
perturbed slightly with no essential change in its behavior.
In particular, the hyperbolic periodic attractor (with the
derivative less than 1) persists. This topological form of
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stability is much stronger than the stochastic stability
discussed before.

A final remark on this case is that the period of the
periodic attractor can be arbitrarily long. In such cases,
very careful experiments are needed to identify whether
or not there is a periodic attractor. The attractor might
become fairly densely spread, and the experiment might
indicate attractors of more complicated structure.

The Cantor attractor

A Cantor set in the interval is a nonempty compact set
which has no isolated points and which does not contain
intervals. In other words, each point in a Cantor set can
be arbitrarily close to other points in the Cantor set, but
two points can never be connected by an arc contained in
the Cantor set. The standard example of such a set is the
well-known middle third Cantor set. The second type of
attractor a unimodal map can have is a Cantor set. One
can think of such an attractor as a limiting case when one
considers periodic attractors for which the period grows
to infinity.

As we saw before, a periodic attractor might be spread
fairly densely through the interval. This means that we
have to be more careful when describing a Cantor
attractor as a limiting case of periodic attractors. The
situation is rather beautiful. To understand the structure
of such a Cantor attractor, consider the immediate basin
of a periodic attractor with a very long period. It turns out
that one can replace the periodic attractor with a periodic
attractor of twice the length; the new attractor “shadows”
the original attractor twice. The basin of this newly
constructed attractor winds twice around the original
basin. Repeat this construction (changing the new periods
ad libitum), and in the limit one finds a Cantor attractor.
The basin of such an attractor is an open and dense set of
full measure (as with a periodic attractor). The measure
of the attractor itself is zero.

The Cantor attractors of this form play a special role in
one-dimensional dynamics. The corresponding maps are
called infinitely renormalizable. One of their important
properties is that the microscopic geometry of such attractors
is independent of the actual system under consideration.
This geometry is referred to as being universal. One of the
surprises of one-dimensional dynamics is that this universal
geometry predicted by one-dimensional theory is actually
observed in many real-world physical experiments.

Strange attractors

There are strange Cantor attractors, which cannot be
understood as limits of periodic attractors. Their Lebesgue
measure is again zero and their basin, of full measure,
does not contain any interval. In particular, many points
in the complement of the basin have orbits which are
dense. This is a very strange situation. From a measure-
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theoretical point of view, one sees that almost every point
is attracted toward a Cantor set of Lebesgue measure
zero. But from a topological point of view, one sees

that a generic point has an orbit which is densely spread
throughout the interval. The topology and measure theory
give opposite typical behavior. These strange attractors do
not exist in the quadratic family we are considering, but
they can be found in families such as

fx)=—-1+0x"+1,

when a is chosen large enough, i.e., when the maximum of
f, is very flat.

Interval attractor

The third type of attractor is a cycle of periodic intervals.
This means that there is a small interval which after a
while is mapped back into itself in a folded way. The orbit
of such an interval is called a cycle. The structure of the
basin of attraction is similar to the structure of the basin
of attraction of a periodic attractor: It is open and dense
and of full measure. The immediate basin of a periodic
attractor corresponds to the cycle. However, the dynamics
inside the cycle is very different from that inside the
immediate basin of a periodic attractor. Almost every
point, topologically generic or measure-theoretically
typical, will have a dense orbit within the cycle.

Typical unimodal maps and exceptions

Theorem 2
In the quadratic family

fx)=—-(10+ Hx*+ 1,

almost every map (in the Lebesgue sense for the parameter
t) has a physical measure. It is one of two types, either
concentrated on a periodic attractor or an absolutely
continuous measure on an attracting cycle of periodic
intervals.

The parameters for which the systems have a periodic
attractor with their physical measure form an open and
dense set in parameter space. This means that any map
can be perturbed into a map with a periodic attractor by
arbitrarily small perturbations. The parameters for which
the map does not have a periodic attractor form a set
which does not contain any interval; it is topologically
small but has a positive measure. Hence, picking a
parameter at random gives a substantial probability that
one will find a system that does not have a periodic
attractor. Almost every such parameter will show a
system with a physical measure on a cycle of intervals.

In parameter space, the maps with a Cantor attractor
form a set of measure zero. However, these maps also
have a physical measure on the attractor. On the other
hand, there are systems in the quadratic family with one
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of the following properties: a) the system has no physical
measure, or b) the system has a physical measure which
is supported on a very small part of the attractor. An
example of the second case is a system which has its
physical measure sitting on an expanding fixed point. The
situation is as follows. Orbits are pushed away from this
fixed point, but the map brings orbits back to it rather
rapidly, such that most of the time an orbit is close to this
expanding fixed point. However, maps with such strange
statistical behavior are hard to find (from a measure-
theoretical point of view). In these exceptional situations
there are still residual sets of dense orbits.

Lyapunov exponents

There is a strong relation between properties of the
physical measures and sensitivity to initial conditions.
Remember that the Lyapunov exponent A, of a system is
the rate at which nearby points are separated when time
flows. It may be defined by lim X log |f'(x,)|/n or by
[log |f'| dp.

In the case of a system with a hyperbolic periodic
attractor, the system is not chaotic at all. Actually, two
points which are close to the attractor will actually
contract toward each other (and the attractor) with a
certain rate

A <0.
pe

r

On the other hand, a system has an absolutely continuous
physical measure, acpm, if and only if

A >0.

acpm
This means that systems with such a physical measure are
really chaotic, and there is a definite expansion rate. The

systems which have no physical measure, or a strange one,
are chaotic, but the expansion rate is zero.

A final remark with respect to physical measures is that
the case with periodic attractors gives rise to predictable
behavior. On the other hand, if the system has a continuous
physical measure, the system is chaotic, and from a practical
point of view it is not predictable. However, the statistical
behavior, i.e., the dynamics of the Perron-Frobenius
operator on distributions, is predictable.

Theorem 3
In the quadratic family

fx)=—-(10+ Hx*+ 1,

almost every map, in the Lebesgue sense, is stochastically
stable.

The theory of dynamical systems does not pretend to
have the capacity to explain every fundamental feature
upon which the universe is constructed. However, it has
produced tools such as Theorem 3 to guide us through
the global picture without exact equations. With respect
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to the details, the situation is still far from clear. The
one-dimensional theory is a powerful tool in the study of
global dynamics. It is rich in phenomena, and although it
is complicated, it is quite well understood. As such, it is
an extremely solid step toward the understanding of
higher-dimensional dynamics.

5. Summary
The study of complicated evolution processes is far from
complete, even where such processes are generated by
apparently simple models. For example, the movement of
the solar system and the flow of a fluid are described by a
couple of equations with a few elementary operations, yet
there are not enough analytical tools to completely solve
these equations. Also, the phenomena which occur in the
study of ordinary and partial differential equations (e.g.,
in Newton’s celestial mechanics and Navier-Stokes fluid
dynamics) form such a zoo of curiosities that there exists
no systematic understanding of all possible phenomena.
One-dimensional dynamics is the study of dynamical
systems, or evolution processes, whose state space is
one-dimensional. Despite the simplicity of such one-
dimensional systems, their behavior is surprisingly rich:
Many phenomena known in general dynamical systems
have their counterparts in one-dimensional dynamics.
Moreover, some universal quantitative properties
predicted for one-dimensional systems have been
precisely measured in actual physical systems.
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