The Common Optimization

R. Lougee-Heimer

INterface for Operations
Research: Promoting
open-source software

In the operations research

community

The Common Optimization INterface for Operations Research
(COIN-OR, http://www.coin-or.org/) is an initiative to
promote open-source software for the operations research
(OR) community. In OR practice and research, software is
fundamental. The dependence of OR on software implies

that the ways in which software is developed, managed,

and distributed can have a significant impact on the field.
Open source is a relatively new software development and
distribution model which offers advantages over current
practices. Its viability depends on the precise definition of open
source, on the culture of a distributed developer community,
and on a version-control system which makes distributed
development possible. In this paper, we review open-source
philosophy and culture, and present the goals and status

of COIN-OR.
I

Introduction: The disadvantages of current
research-software practices
Operations research (OR) is the “discipline of applying
quantitative techniques to make decisions” [1]. Among the
variety of techniques employed in OR are optimization,
stochastic methods, decision analysis, simulation, and
econometric methods. The standard approach in OR is to
create a mathematical model—an abstract representation
of the situation—which attempts to capture the pertinent
aspects of the complex system in which the real-world
problem arises. The model is used to predict what will
happen to the system under different circumstances.
The model is analyzed, and the equations of which it
consists are solved repeatedly using computer programs.
OR researchers strive to invent new solution methods
which can solve bigger, more complex models in as short
a time as possible. A new solution approach is codified
as a theoretical, or abstract, algorithm. To validate the
approach and compare its performance against existing
methods, the algorithm is implemented in software, and
computational studies are conducted. The implementations

are usually prototypes written in a high-level language
and intended for the author’s use only. The results of
computational studies are often provided as a complement
to theorems, proofs, and algorithms in peer-reviewed
publications. For instance, in Operations Research, the
flagship journal of the Institute for Operations Research
and the Management Sciences, roughly 75% of the articles
published in 2001 contained computational results. Several
journals are devoted to the intersection of OR and
computer science—for instance, the INFORMS Journal
on Computing (http://joc.pubs.informs.org/), Computers &
Operations Research (http://www.elsevier.nl/homepage/
saelorms/cor/), and Computational Optimization and
Applications (http:/lwww.wkap.nl/prod[j/0926-6003/). But
while the algorithmic theory is peer-reviewed and openly
disseminated, the software is not.

The following are consequences of current research-
software development and distribution practices:

o Results are irreproducible. In the physical sciences,
experiments are described in sufficient detail to

©Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

R. LOUGEE-HEIMER

57

58

enable other scientists to reproduce the reported results.
Results from computational experiments are products of
the complexity of the algorithm and the efficiency of the
implementation. When implementation decisions are not
disclosed, results are not reproducible. For example, had
it been possible to make the implementation used by
Karmarkar publicly available, his computational studies
could have been quickly repeated, and the confusion
surrounding his contributions would have been lessened
[2, 3].
e Comparisons are unfair. Without access to existing
implementations, researchers needing to compare
computational results from their new approach with
those from a published approach must reimplement
the original algorithm. The end result can be an unfair
comparison between “my implementation of your idea”
and “my implementation of my idea.”
Models and implementations are lost. Writing a
theoretical paper for external review forces authors to
express their ideas to a higher standard, and serves to
document those ideas in such a form that any person
with sufficient background can comprehend the results
years after they are established. Work that is not
archived is lost (e.g., Fermat’s proof of his last
theorem). Because implementations and models are
not written for public consumption and archived, they
are prone to loss. Many computational studies in the
literature are based on code expediently written for the
author’s use only. If code is not used and maintained as
the author’s interests invariably evolve, the utility of the
program quickly diminishes, and it becomes unusable.
(This observation is so universal within software circles
that it has a name, “software rot,” and a jocular theory
as to how it arises, namely “bit decay.”)
Evolution is stunted. Without access to the source code,
OR researchers are not able to learn from and build
on the best software ideas in the field. The software
genius of our time is not being captured. Instead, OR
professionals are limited to their own ideas and personal
resources. Evolution of the field is stifled when ideas are
not peer-reviewed and made public.
o Wheels are reinvented. Without access to source code,

researchers are forced to reinvent rather than reuse
existing code. For researchers, the time and effort spent
reinventing is especially wasteful, considering the often
incremental nature of scientific progress. Not atypically,
researchers read a published paper with computational
results and invent a way to extend the state of the art
using an idea which at its heart is a novel twist on an
existing algorithm or a new extension to a related
problem. Ideally, the researcher would like to make a
modification to the existing code from a published study,
but that code is usually not available. Instead, they must
start from scratch. Because published papers present the

R. LOUGEE-HEIMER

distilled essence of abstract ideas while implementations
must operate within the confines of a computer’s finite
number and instruction sets, the cost of reinventing

is far from negligible. The process of redesigning,
reimplementing, and retesting takes time and skill.

o Knowledge transfer is limited. Theoretical advances in one
problem class are often transferred to other problem
classes. Because implementation advances are obscured,
the opportunity to transfer such improvements is lost.

e Collaboration is inhibited by lack of standards. The
lack of established venues for disseminating software
contributes to the absence of software standards. Even
the current “standard” Mathematical Programming
System (MPS) file format is interpreted differently
among commercial optimization-problem solvers. Today,
many research algorithms are implemented on top of a
commercial solver. The commercial solver is used for its
data input/output features and data structures, and as
an embedded engine to solve specialized subproblems
called for by the new algorithm. The commercial
engine is invoked using the application programming
interface (API) of the product. This practice binds the
implementation to that specific product and impedes
collaboration between colleagues who do not have
access to the same product.

These consequences cause difficulty and delay for
individuals developing or using OR-research software.
While the community reaps the benefits of the open
literature for theory, it passes up similar benefits by not
openly disseminating the supporting software. Why?

A historical perspective of current software
practices

It is instructive to note that in the early days of computing,
source code was freely shared among groups using the
same hardware. Software was not very portable; programs
were usually closely tied to a particular vendor’s hardware.
The hardware market supported a profit margin large
enough to make giving away software as an incentive

to hardware sales a successful business model for computer
manufacturers. This marketing practice extended to
optimization software. For example, the source code of
the IBM MPSX package (a leading mixed-integer-program
solver of its day, written in assembly language) was made
available to members of SHARE (an IBM user group [4])
through the IBM Program Library. The IBM Program
Library contained programming systems, application
programs from IBM development centers, software from
the IBM Scientific Centers [e.g., 5, 6], and customer-
contributed code.'

I William White, personal communication, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, November 12, 2001.

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

Precipitated by a massive antitrust complaint filed
against IBM by the Justice Department in January 1969,
the company reexamined its practices and decided to
stop requiring customers to buy software, services, and
hardware as one bundle in June of the same year [7].
This pricing change opened up software markets to
independent companies. Software started generating a
greater revenue stream in its own right, and the culture
correspondingly became increasingly proprietary.

Today, free-for-academic-use-only licenses for the IBM
Optimization Solutions and Library (the successor to
IBM MPSX) are given away, but the source code is not.

Simple inconvenience was a factor contributing to the
lack of research-software dissemination. The only sensible
way to distribute software is in an electronic format, but
until the advent of the Web, there was no practical,
universally accessible means for distributing it on demand.
But now that the Web is available, the inconvenience of
making software available for peer review is arguably no
greater than that of making theory available for peer
review. If the benefits justify disseminating research
theory, why do the analogous benefits not justify
disseminating the related research software (even
though the review processes may differ)?

OR research and OR practice (mathematical methods
and their practical applications) are two extremes on a
continuum, not a dichotomy. Along this continuum,
research software can be developed into a service or
product offering for sale. For researchers in academia,
subsequent profits can support graduate students or
provide summer funding, and in some cases are sufficient
to start up a business or to be bought out by one. The
majority of the research code written today does not travel
down the path to market, but the realization that this is an
available path encourages a proprietary attitude toward
research code.

Clearly, in the traditional software business models,
freely disseminating software with a significant potential
for profit from licensing fees is ill-advised, and one may
wonder whether it would not be prudent to protect the
underlying theory as well. For software not in this class,
namely that which has great technical or scientific value
and is not otherwise going to be marketed, the decision to
keep it proprietary is not always rational; the benefits of
disseminating code are underestimated, and the potential
for profit is overestimated [8].

One way researchers seemingly profit from not
disseminating code is by raising the barrier to entrance
for would-be competitors mining the same research vein.
“Giving away” code, by publishing it along with the
theory, may seem like giving away a lead in the race to
extend the state of the art. Rather than foregoing the
benefits of publishing code, what is needed is a suitable

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

definition of “giving it away” that makes disseminating
software an optimal strategy for the author. One such
definition is the open-source definition.

The open-source alternative

The definition of open source

The underlying philosophy of open source is to promote
software reliability and quality by supporting independent
peer review and rapid evolution of source code. This
philosophy is pragmatically advanced by using copyright
law in a nontraditional way. When one “buys software,”
one actually purchases a license from the copyright holder
to use the software product. Today, the buyer usually
receives a precompiled library or executable program, but
not the source code. This allows the buyer to exercise the
program, but little else. Without source code, the buyer
cannot fix a bug (or even pay someone else to fix it), nor
can he modify or improve the software. In contrast, open
source gives users access to source code and legal rights to
modify and redistribute the modifications so that the code
evolves. In this section, we give a brief introduction to
open source; for a thorough discussion of the open-source
philosophy and an analysis of the business aspects of open
source, see [9] and [8], respectively.

Technically speaking, the term open source refers to a
category of software licenses defined and promoted by a
nonprofit corporation called the Open Source Initiative
(OSI). To protect the term from misuse, the OSI runs a
certification program. Software with the “OSI Certified”
label is distributed under a license satisfying the Open
Source Definition (http://www.opensource.org/). Much
broader than simply requiring access to source code, the
Open Source Definition version 1.9 states the following
criteria on nine fundamental issues.

1. Free redistribution.
“The license shall not restrict any party from selling or
giving away the software as a component of an aggregate
software distribution containing programs from several
different sources. The license shall not require a royalty
or other fee for such sale.”

2. Access to source code.
“The program must include source code, and must allow
distribution in source code as well as compiled form.
Where some form of a product is not distributed with
source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable
reproduction cost—preferably, downloading via the
Internet without charge. The source code must be the
preferred form in which a programmer would modify
the program. Deliberately obfuscated source code is 59

R. LOUGEE-HEIMER

60

not allowed. Intermediate forms such as the output of a
preprocessor or translator are not allowed.”

3. Derived works.
“The license must allow modifications and derived works,
and must allow them to be distributed under the same
terms as the license of the original software.”

4. Integrity of the author’s source code.
“The license may restrict source-code from being
distributed in modified form only if the license allows the
distribution of “patch files” with the source code for the
purpose of modifying the program at build time. The
license must explicitly permit distribution of software
built from modified source code. The license may require

derived works to carry a different name or version number

from the original software.”

5. No discrimination against persons or groups.
“The license must not discriminate against any person or
group of persons.”

6. No discrimination against fields of endeavor.
“The license must not restrict anyone from making use of
the program in a specific field of endeavor. For example,
it may not restrict the program from being used in a
business, or from being used for genetic research.”

7. Distribution of license.
“The rights attached to the program must apply to all to
whom the program is redistributed without the need for
execution of an additional license by those parties.”

8. The license must not be specific to a product.
“The rights attached to the program must not depend
on the program’s being part of a particular software
distribution. If the program is extracted from that
distribution and used or distributed within the terms of
the program’s license, all parties to whom the program is
redistributed should have the same rights as those that
are granted in conjunction with the original software
distribution.”

9. The license must not restrict other software.
“The license must not place restrictions on other software
that is distributed along with the licensed software. For
example, the license must not insist that all other
programs distributed on the same medium must be
open-source software.”

A common misconception is that open source is
synonymous with public domain. Unlike software in
the public domain, open-source software is clearly
copyrighted. Open source differs from shareware or

freeware, which are commonly only distributed as binaries.

And unlike “free-for-academic-use-only” licenses, open-
source licenses do not discriminate, so that diversity and
participation are maximized.

As of this writing, there are more than 25 different
OSI-certified licenses listed by the Open Source Initiative
on their web page. Among the OSI-certified licenses are

R. LOUGEE-HEIMER

the GNU Public License (GPL), the Lesser GNU Public
License (LGPL), the Berkeley System Distribution License
(BSD), the Mozilla Public License (MPL), the IBM Public
License (IPL), and the Common Public License (CPL,
developed by IBM to extend benefits of the IPL to non-
IBM software). All of the various OSI-certified licenses
have certain attributes in common by virtue of satisfying
the Open Source Definition, but open-source licenses can
have significant differences as well. For example, all open-
source licenses must permit unrestricted redistribution of
source code, but some licenses require it. In the Apache
and BSD licenses, distribution of source code is permitted,
but not mandated for compiled or derivative works.
(These are among the least restrictive of open-source
licenses [10].) In contrast, the GPL requires it.

Perhaps the most significant difference, and certainly
the most controversial, is whether a license is “viral”—that
is, whether it requires that derived work, combination, or
modification of the licensed software retain the same
license. Licenses with this provision are called viral
because of the infectious way in which they propagate:
The only way to compile with software under such a
license is to adopt the license. The GPL is viral; the
MPL is not viral.

The development of open-source code
In a typical successful open-source software project (e.g.,
the Linux** operating system), a virtual community of
volunteer developers spontaneously arises from among
users. Users download the source code from the Web, and
may use it as is or modify it for their own purposes. Users
may find and fix bugs, extend functionality, and port to
new platforms. They then typically (and, depending on the
license, may be required to) contribute their modifications
to be incorporated into the base code distribution.
Because of the relatively large number of developers
working simultaneously, the code evolves rapidly.

The virtual community shares a set of values and has
a pyramid structure. The position of various people in
the pyramid depends on the value of what each person
contributes. At the bottom are the many casual users, in
the middle are developers, and at the top is a small core
team that controls the changes to the project’s officially
distributed code. The core team may make decisions
by consensus or majority rule, and may be led by a
“benevolent dictator” with ultimate authority. Open-
source communities are sometimes described as “brutal
meritocracies”; they run on ego and reputation. Developers
are volunteers who take pride in their work. The software
does not have owners, but rather maintainers. Bugs are
made public, not hidden. Open exchange is valued, and
information hoarding is abhorred.

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

Managing open-source projects

Open-source projects typically distribute at least two
versions of the code: a production version and a
development version. The production version is relatively
stable, with only maintenance changes being incorporated.
By contrast, the development version is volatile. In active
projects, it changes daily if not hourly. The rapid code
evolution is a consequence of the parallel development
by the virtual community. Each volunteer developer is
simultaneously editing the same source code. To manage
this seemingly unwieldy process, a version-control system
is used.

At the heart of a version-control system is a source-
code repository which stores the base distribution of the
source. Individual users make a copy of the repository
code on their local machines for their own use. Changes
to the base distribution code can be made by only those
select people with write-access to the repository. Leading
version-control systems cleverly record the history of
source file changes by storing the differences. These
systems enable concurrent revisioning, without locking out
users, by requiring that commits are made sequentially to
promote compatibility. To update the local copy with
the changes that have occurred to the repository code
since the last update, a user issues a command which
synchronizes the two versions. The update attempts to
apply “patches” to the user’s local copy to bring it up to
the current repository level. If the version-control system
is unable to automatically resolve differences, a conflict
message is issued. Conflicts must be manually resolved by
the user. One widely used management system among
open-source projects is CVS, the Concurrent Versions
System [11]. Like many tools used in open-source
development, it is itself an open-source project.

When visions differ: Forking

Core-team members are developers with write access to
the source-code repository. As maintainers of the projects,
it is their job to determine which of the contributed
changes should be accepted and which should be rejected.
The overwhelming majority of the time, these decisions
are based on a shared vision using sound reasoning that

is accepted by the contributor. But sometimes visions
diverge. If a contributed change is not accepted,
contributors are free to start their own open-source
projects by taking the current repository, incorporating the
rejected contribution, and distributing the divergent code.
When the repository tree of revisions is split off in this
manner, it is referred to as a “fork” in the project. A fork
is a serious step, and while forks do happen (e.g., the
XEmacs editor split off from the GNU Emacs editor over
a desire for a graphical user interface version for the
package), they are surprisingly rare, especially considering
the diverse, decentralized nature of the developer pool.

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

OR and open source

It may seem counterintuitive at first that such an
asynchronous, virtual community of volunteers could
produce working code, let alone high-performance, high-
quality, reliable, secure code. And yet it has. Much of the
Internet is run on open source. (Roughly 60% of Web
sites run on the open-source Apache HTTP server, vs.
25% for Microsoft’s IIS [12].) The benefits of the open-
source paradigm have been proven by many successful
projects, and these benefits address adverse consequences
typical in the development and distribution of OR
research software. By opening source code for peer
review and rapid evolution under an open-source license,
computational results can be reproduced, fair comparisons
of algorithm performance can be made, the best
implementations can be archived and built on, code
reinvention can be minimized, implementation innovation
knowledge can be transferred, and collaboration and
software standards can be fostered. Moreover, source code
can be “dual-licensed,” so not all profit potential from
software sales would be foregone by the contributing
author should an unforeseen business opportunity arise.
For example, an author might offer software under both
free and paid licenses with differing conditions on reuse.
A license that requires distributed modifications to be
opened ensures that anyone who contributes to the source
(as well as the rest of the world) has access to future
improvements by others.

While open source is an attractive alternative for the
OR community, it is by no means a panacea. Open source
originated in the field of computer science, and while
there is a significant computing component to OR, the
cultures and characteristics of the two communities are
different. For example, open source gains advantage from
a large community of volunteer developers. Operations
research is a comparatively specialized area, and the
number of developers is correspondingly smaller. Open-
source projects that have succeeded have been fairly low
on the software stack [e.g., operating systems (Linux),
Web servers (Apache), scripting (Perl), Internet naming
services (bind), Internet mail (sendmail)]. OR software
belongs in the mid- to high-level application area of the
software stack. To explore the viability of open source and
its ability to accelerate progress in the field, COIN-OR
was conceived.

Open-source software for the operations
research community

The COIN-OR initiative

The Common Optimization INterface for Operations
Research (COIN-OR) is a broad initiative to advance
open source for the operations research community

R. LOUGEE-HEIMER

61

62

[13-15]. The main thrust of COIN-OR is to build an
open-source repository of OR software analogous to the
open literature for OR theory, with the expectation of
reaping analogous community benefits. A repository
cannot be created and sustained without a community.
To that end, COIN-OR serves to educate, to promote
awareness, to provoke discussions, to encourage
developers and users, and to otherwise build an open-
source community for OR.

The public initiative was spearheaded by the IBM
Research Division and kicked off with a conference
presentation [16], the first organizational meeting, and
the launching of the project’s Web site (http://www.coin-
or.org/) at the 17th International Symposium for
Mathematical Programming in August 2000. IBM
Research made a three-year commitment to support
the online infrastructure of the initiative until the next
triennial meeting of the Mathematical Programming
Society. The software repository on the COIN-OR Web
site was seeded with two state-of-the-art projects opened
by IBM Research under the OSI-certified IBM Public
License (IPL), and with two newly initiated projects.
COIN-OR is intended for all aspects of OR; however, the
four initial contributions featured tools for large-scale
mixed-integer linear programming and combinatorial
optimization. These tools, which continue to evolve
today, are the following.

e The Open Solver Interface is an API, written in C++,
that enables implementations to be “solver agnostic.”
Algorithms can be implemented once and then run
using any solver having an open solver interface
instantiation with no additional effort. The Open Solver

Interface promotes collaboration by enabling researchers

without access to the same solver to use and build upon
the one common software base. Currently, interfaces

to the mixed-integer-linear components of three
commercial solvers (the ILOG CPLEX, the IBM OSL,
and XPRESS-MP from Dash Optimization), and to

one subgradient solver (the Volume Algorithm), are
available in the repository [17]. Efforts to interface
with open solvers are underway.

e The Volume Algorithm is an implementation of an
extended subgradient method due to Barahona and
Anbil [18] that produces approximate primal solutions
as well as the usual dual solutions. More generally, the
Volume Algorithm can be used as a C++ framework
for Lagrangian relaxation. Implementations of the
Volume Algorithm have been deployed in practice by
IBM Research to solve large-scale scheduling problems
arising in the airline industry [19-22].

e The Cut Generation Library is a collection of cutting-
plane implementations, currently including a variety of

R. LOUGEE-HEIMER

knapsack-cover cuts, simple rounding cuts, and odd-hole
cuts [36], and most recently, lift-and-project cuts [23].
The Cut Generation Library is written in C++ and
integrated with the Open Solver Interface [24]. More
cut generators are under development.

The Branch-Cut-Price (BCP) Framework is a framework
written in C++ for solving mixed-integer programs in
parallel on a distributed network of workstations using
LP-relaxation-based branch, cut, and price techniques.
In the tradition of [25], the BCP framework liberates
users from having to code the backbone of functionality
that is common to all branch, cut, and price techniques
so that they can more quickly develop and deploy

their own problem-specific applications [26]. BCP has
been used by IBM Research in successful customer
engagements, including projects in the airline and steel
industries [27, 28]. BCP is now fully integrated with the
Open Solver Interface [29], and work is underway to
integrate it with the Cut Generation Library [30].

Since the debut of COIN-OR, two more contributions

have been made (and more are in the pipeline):

e Derivative Free Optimization is a solver for general

nonlinear optimization problems in which the objective
function is relatively expensive to compute, and the
derivatives are not available and cannot be estimated
efficiently. Problems with these characteristics arise,

for instance, in engineering design, where the function
evaluations are made via simulation. Although the solver
can be used on larger problems, reasonable performance
expectations make the approach attractive for problems
with no more than 100 variables. The Derivative Free
Optimization solver was developed by Conn, Scheinberg,
and Toint, and is written in Fortran 77 [31-33].

Open Tabu Search is a framework written in Java™**

for implementing tabu search metaheuristics. As a
framework, Open Tabu Search provides users with a
structured environment for implementing their own
customized tabu-search algorithms and offers for reuse a
backbone of capabilities commonly used in tabu search.
The Open Tabu Search code was developed and
contributed by Robert Harder under the OSI-certified
Common Public License. Open Tabu Search was the
first contribution to COIN-OR fully developed outside
IBM. To the best of our knowledge, it is also the first
open-source software project fully developed outside
IBM to be distributed from any IBM-owned server.

As a first-of-a-kind, Open Tabu Search was influential

in provoking the creation of the Common Public License,
a new license with the benefits of the IPL for non-IBM
software [34, 35].

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

COIN-OR after year one

Progress was made in several directions during the first
year of COIN-OR. The open-source code repository
expanded as new projects were added, existing projects
improved through community involvement, and research
efforts were facilitated via reuse of the software
components in COIN-OR.

The contribution of the original CPLEX Open
Solver Interface is an example of how open source has
successfully led to the evolution of existing projects during
the first year of existence of COIN-OR. At the COIN-OR
debut, an initial implementation of the Open Solver
Interface was posted in an online repository at the project
Web site. The COIN-OR team and project launch were
based in the United States. Originally, the repository
contained interfaces for the Dash Optimization XPRESS-
MP and the IBM OSL solvers. A few weeks later, the core
team was surprised and delighted by a communication
from Tobias Pfender of Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin (ZIB), Germany. Unbeknownst
to anyone actively involved in the project up to that time,
Pfender had implemented an open solver interface to the
ILOG CPLEX solver and was offering the contribution
to be incorporated into COIN-OR.

Contributions to COIN-OR, such as Pfender’s, can be
counted. Measuring the usage of the COIN-OR software
is more difficult. Software in the COIN-OR repository is
available on demand from the project Web site. Anyone
with access to the Web can download the COIN-OR
repository via the Web interface or via the daily tarball
(UNIX** tape archive format). Consequently, there is no
formal mechanism for knowing whether the software is
being used, nor for tracking precisely where and how.
Beyond gross Internet traffic statistics, code use can be
inferred from exchanges on the discussion mailing lists
and from personal contacts (which tend to arise primarily
when users encounter bugs or other technical issues).
Currently, there are approximately 140 total subscriptions
to the coin-announcement and coin-discussion mailing
lists.

One hard measure of software usage in independent
research efforts is the number of citations in the refereed
literature. COIN-OR has been cited in research papers
submitted for publication by IBM and non-IBM authors.
We briefly mention two such works to illustrate the type
of research endeavors in which COIN-OR has successfully
been used, and which exemplify the software reuse.

Traditionally, branch-and-cut methods [36] use the
dual simplex algorithm to optimally solve the linear
programming relaxation arising at each node of the search
tree. IBM researchers Barahona and Ladanyi showed that
certain classes of combinatorial optimization problems
can be solved much faster if the approximate solutions
produced by the Volume Algorithm are used instead of

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

the optimal solutions produced by the simplex algorithm.
They tested their ideas on two classic NP-hard
combinatorial optimization problems (where NP means
nondeterministic polynomial): the Steiner tree problem and
the max-cut problem. Given a set of fixed points in the
plane, and the ability to add new points (Steiner points),
the Steiner tree problem is to determine a tree of minimal
Euclidean length which spans the given set. The max-cut
problem is to divide the vertices of a graph into two parts
so that the number of edges between them is as large as
possible. Both of these problems arise in numerous direct
applications, such as very large-scale integration (VLSI)
circuit design. Using an implementation based on the BCP
framework and the Volume Algorithm, Barahona and
Ladanyi were able to calculate the optimal solution to
several previously unsolved instances of both the Steiner
tree and max-cut problems [29]. Their implementation for
the max-cut problem is available in COIN-OR for others
to reuse, and their implementation for the Steiner tree
problem is forthcoming.

Guglielmo Lulli and Suvrajeet Sen of the Department
of Systems and Industrial Engineering at the University
of Arizona developed a branch-and-price methodology
for solving specially structured multi-stage stochastic
integer programming problems. To test their approach
computationally, they implemented their algorithm using
the BCP framework and considered a stochastic version
of the well-known batch-sizing problem.”

During the first year, a significant effort was directed
toward publicizing and educating. At the November
2000 meeting of the Institute for Operations Research
and the Management Sciences (INFORMS), an invited
presentation on open source [37] was sponsored by the
INFORMS Computing Society. Two invited technical talks
were presented, and the first COIN-OR “installfests”

[38, 39] and user meetings were held. Seminars on COIN-
OR were given at the University of Arizona, Cornell
University, two IBM Research Centers, the Optimization
Symposium of the INFORMS Austin Texas Chapter, and
the Third International Workshop on Integration of Al
(Artificial Intelligence) and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems
(CP-AI-OR’01) in Wye, England. At the 2001 INFORMS
International Meeting in Hawaii, three technical talks on
COIN-OR related projects were given, and the initiative
was mentioned by name in the Omega Rho Distinguished
Lecture by William Pulleyblank. In fact, COIN-OR has
been mentioned in more than half a dozen university and
conference presentations, including presentations on the
state of the art at the first INFORMS conference for
practitioners in La Jolla, California. Several articles on

2 Guglielmo Lulli and Suvrajeet Sen, “A Branch-and-Price Algorithm for Multi-
Stage Stochastic Integer Programming with Application to Stochastic Batch-Sizing
Problem,” submitted for publication.

R. LOUGEE-HEIMER

63

64

COIN-OR have been submitted; a conference paper for
CP-AI-OR’01 [13], an ORMS Today article [14], and an
INFORMS Computing Society Newsletter article have
appeared, and a book chapter is forthcoming [15].

As a result of the interest surrounding COIN-OR,
conference organizers of the 2001 INFORMS meeting in
Miami, Florida, invited the COIN-OR team to organize
the first invited cluster on open source. Five technical
presentations from nine authors at six different
institutions, a workshop on open-source tools for branch,
cut, and price, and a panel discussion to explore new
directions for the MPS file format involving ILOG, Dash
Optimization, IBM, Maximal Software, and AMPL were
held. We expect that COIN-OR will play a significant role
in creating and providing tools for this new standard. In
addition, three talks involving open-source software were
also contributed in the traditional invited cluster on
discrete optimization [40-42].

Currently groups at the University of Arizona,
Rutgers University in conjunction with Sandia National
Laboratory, and Simon Fraser University are actively
involved with the COIN-OR initiative, as well as
core-team members at Clemson University, Lehigh
University, the Pentagon, and Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin (ZIB). We hope that their
innovative computational work will be opened to the
community, either on COIN-OR or elsewhere.

Conclusion

In this paper we have described the motivation, goals, and
status of COIN-OR. It is our hope that the operations
research community will find COIN-OR to be a key asset
in promoting future development. COIN-OR invites
participation and contributions at all levels, whether from
users, developers, contributors, or thought-provokers. In
addition to expanding existing projects, new projects (e.g.,
modeling languages, visualization, spreadsheet plug-ins,
solvers) and people to lead them are welcome.

To maximize software reuse, it would be ideal if the
projects under COIN-OR used licenses that allowed
source code from one project to be used in another.
Because of the lack of such licenses, we encourage
all contributors to use the same license, and suggest
the CPL. Contributed projects and licensing decisions are
considered on a case-by-case basis. A list of OSI-certified
licenses is available through the Open Source Initiative
Web site at http://www.opensource.org/.

The code in the COIN-OR repository is available for
practitioners, academics, and students for use in business,
research, and teaching. We encourage anyone who is
interested in open source for OR to join the mailing lists,
to visit the COIN-OR Web site at http://www.coin-or.org/,
and to help make the vision of open source in OR a
reality.

R. LOUGEE-HEIMER

Acknowledgments

The author thanks her fellow COIN-OR core-team
members, J. P. Fasano, John Forrest, Robert Harder
(U.S. Air Force), Laszlo Ladanyi, Tobias Pfender (ZIB,
Germany), Ted Ralphs (Lehigh), Matthew Saltzman
(Clemson), and Katya Scheinberg; colleagues in academia
and industry, Ranga Anbil, Vernon Austel, Francisco
Barahona, Andy Conn, Bob Daniel (Dash), Brenda
Dietrich, Marta Eso, Jonathan Eckstein (Rutgers
University), Lou Hafer (Simon Fraser University,
Canada), Bjarni Kristjansson (Maximal Software),
Bertrand Le Cun (University of Versailles, France),
Guglielmo Lulli (University of Arizona), Irv Lustig
(ILOG), Mikhail Nediak (Rutgers), Greta Pangborn
(Cornell University), Suvrajeet Sen (University of
Arizona), and Stephen Tse (Simon Fraser University);
as well as the many other COIN-OR users and
mailing-list participants for their contributions of code,
documentation, licenses, enthusiasm, and ideas which
collectively are COIN-OR. Special thanks are due Brenda
Dietrich, Marta Eso, Laszlo Ladanyi, Ted Ralphs,
Matthew Saltzman, and Eric Wolman (George Mason
University) for their helpful suggestions on an earlier
draft of this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, Sun
Microsystems, Inc., or The Open Group.

References

1. Occupational Outlook Handbook 2000-2001 Edition,

U.S. Department of Labor, Washington, DC; see
http://stats.bls.gov/oco/ocos044.htm.

2. Murray Gill, M. Saunders, J. A. Tomlin, and M. Wright,
“On Projected Newton Barrier Methods for Linear
Programming and an Equivalence to Karmarkar’s
Projective Method,” Math. Program. 36, 183-209 (1986).

3. J. J. H. Forrest and J. A. Tomlin, “Implementing Interior
Point Linear Programming Methods in the Optimization
Subroutine Library,” IBM Syst. J. 31, No. 1, 26-38 (1987).

4. SHARE; see http://www.share.org].

5. L. Papayanopoulos, “Linear Programming System for the
0S/360,” IBM New York Scientific Center, Doc. No.
69NYSC1, New York, June 1969.

6. L. Bodin, M. Grigoriadis, K. Harrow, L. Papayanopoulos,
K. Spielberg, S. Torok, and W. White, “The NYLPS/
MIPIS System for Mixed Integer Programming,” IBM
Philadelphia Scientific Center, Doc. No. 71PSC1, February
1971.

7. Thomas J. Watson, Jr., Father, Son & Co.: My Life at IBM
and Beyond, Bantam Books, New York, 1990.

8. Eric S. Raymond, The Magic Cauldron, June 1999; see
http://www.tuxedo.org/~esr/writings/magic-cauldron/.

9. Eric S. Raymond, The Cathedral and the Bazaar, O’Reilly,
1999; see http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/hacker-history].

10. Rex Brooks; see http://www.vrml.org/TaskGroups/vrml-ipr/
open_source_overview.html.

11. Concurrent Versions System; see http://www.cvshome.org/.

12. Netcraft; see http://www.netcraft.com/, July 2001.

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Robin Lougee-Heimer, “The COIN-OR Initiative: Open
Source Software for Optimization,” Proceedings of the
Third International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’01), Wye, England,
2001, pp. 307-319.

Robin Lougee-Heimer, Francisco Barahona, Brenda
Dietrich, J. P. Fasano, John Forrest, Robert Harder,
Laszlo Ladanyi, Tobias Pfender, Theodore Ralphs,
Matthew Saltzman, and Katya Scheinberg, “The COIN-
OR Initiative: Open Source Accelerates Operations
Research Progress,” ORMS Today 28, No. 4, 20-22
(October 2001).

Matthew J. Saltzman, “COIN-OR: An Open-Source
Library for Optimization,” Programming Languages and
Systems in Computational Economics and Finance, Soren
S. Nielsen, Ed., Kluwer Academic Publishers, Boston,

in press.

William Pulleyblank, Brenda Dietrich, John Forrest, and
Robin Lougee-Heimer, “Open Source for Optimization
Software,” presented at the International Symposium for
Mathematical Programming (ISMP), Atlanta, August
2000; abstract, p. 33.

Matthew J. Saltzman, “The COIN-OR Open Solver
Interface: Toward Solver Independent MIP Algorithms,”
presented at the INFORMS Annual Meeting, San
Antonio, Fall 2000; abstract, p. 106.

Francisco Barahona and Ranga Anbil, “The Volume
Algorithm: Producing Primal Solutions with a Subgradient
Method,” Research Report RC-21103(94395), IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, 1998.
Francisco Barahona and Ranga Anbil, “On Some Difficult
Linear Programs Coming from Set Partitioning,” Research
Report RC-21410, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1999.

Francisco Barahona and Ranga Anbil, “Solving Large
Scale Uncapacitated Facility Location Problems,”
Research Report RC-21515, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1999.
Francisco Barahona and Fabain Chudak, “Near-Optimal
Solutions to Large Scale Facility Location Problems,”
Research Report RC-21606, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1999.

Laura Bahiense, Francisco Barahona, and Oscar Porto,
“Solving Steiner Tree Problems in Graphs with
Lagrangian Relaxation,” Research Report RC-21847, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 2000.

Egon Balas, Sebastian Ceria, and Gerard Cornuejols, “A
Lift-and-Project Cutting Plane Algorithm for Mixed 0-1
Programs,” Math. Program. 58, 295-324 (1993).

Robin Lougee-Heimer, “The COIN-OR Cut Generation
Library: Toward Greater Code Reuse,” presented at the
INFORMS Annual Meeting, San Antonio, Fall 2000;
abstract, p. 106.

M. Eso, L. Ladanyi, T. K. Ralphs, and L. E. Trotter, Jr.,
“Fully Parallel Generic Branch-and-Cut Framework,”
presented at the 8th SIAM Conference on Parallel
Processing for Scientific Computing, March 1997.

M. Eso, S. Ghosh, L. Ladanyi, and J. Kalagnanam, “Bid
Evaluation in Procurement Auctions with Piece-wise
Linear Supply Curves,” Research Report RC-22219, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 2001.

R. Anbil, F. Barahona, L. Ladanyi, R. Rushmeier, and J.
Snowdon, “Airline Optimization,” ORMS Today 27, No. 6,
26-29 (December 1999).

L. Ladanyi, J. J. Forrest, and J. Kalagnanam, “Column
Generation Approach to the Multiple Knapsack Problem
with Color Constraints,” Research Report RC-22013, IBM

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

Thomas J. Watson Research Center, Yorktown Heights,
NY 2001.

29. F. Barahona and L. Ladanyi, “Branch and Cut Based on
the Volume Algorithm: Steiner Trees in Graphs and Max-
Cut,” Research Report RC-22221, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 2001.

30. Theodore K. Ralphs and Laszlo Ladanyi, COIN/BCP
User’s Manual, 2001; see http://www.coin-or.org/.

31. Andrew R. Conn, Katya Scheinberg, and Ph. L. Toint,
“On the Convergence of Derivative-Free Methods for
Unconstrained Optimization,” Approximation Theory and
Optimization: Tributes to M. H. D. Powell, A. Iserles and
M. Buhmann, Eds., Cambridge University Press,
Cambridge, England, 1997, pp. 83-108.

32. Andrew R. Conn, Katya Scheinberg, and Ph. L. Toint,
“Recent Progress in Unconstrained Nonlinear
Optimization Without Derivative,” Math. Program. 79,
397-414 (1997).

33. Andrew R. Conn, Katya Scheinberg, and Ph. L. Toint,
“A Derivative Free Optimization Algorithm,” presented
at the 7th AiIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St. Louis,
1998.

34. Robert Harder, OpenTS—Java tabu search; see
http://www.coin-or.org/OpenTS/, 2001.

35. Robert Harder, “OpenTS: An Open Source Java Tabu
Search Framework,” presented at the INFORMS Annual
Meeting, Miami, 2001.

36. George L. Nemhauser and Lawrence A. Wolsey, Integer
and Combinatorial Optimization, John Wiley & Sons, New
York, 1988.

37. Donald K. Rosenberg, “A Primer on Open-Source
Software,” presented at the INFORMS Annual Meeting,
San Antonio, Fall 2000; abstract, p. 62; see http://
www.stromian.com/.

38. Laszlo Ladanyi, J. P. Fasano, Robin Lougee-Heimer, and
Matthew J. Saltzman, “COIN Installfest for Linux: A
Hands-On Workshop Using Open Source Software for
OR,” presented at the INFORMS Annual Meeting, San
Antonio, Fall 2000; abstract, p. 22.

39. Laszlo Ladanyi, J. P. Fasano, Robin Lougee-Heimer, and
Matthew J. Saltzman, “COIN Installfest for Window: A
Hands-On Workshop Using Open Source Software for
OR,” presented at the INFORMS Annual Meeting, San
Antonio, Fall 2000; abstract, p. 33.

40. Laszlo Ladanyi and Ted K. Ralphs, “Branch, Cut & Price:
The Next Generation,” presented at the INFORMS
Annual Meeting, Miami, 2001; abstract, p. 52.

41. Suvrajeet Sen and Guglielmo Lulli, “A Branch & Price
Algorithm for Stochastic Lot-Sizing,” presented at the
INFORMS Annual Meeting, Miami, 2001; abstract, p. 52.

42. Ted K. Ralphs and Joseph C. Hartman, “Branch & Cut
for Capacitated Network Routing,” presented at the
INFORMS Annual Meeting, Miami, 2001; abstract, p. 52.

Received November 21, 2001; accepted for publication
July 25, 2002

R. LOUGEE-HEIMER

65

66

Robin Lougee-Heimer I[BM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (robinlh@us.ibm.com). Dr. Lougee-Heimer
received her Ph.D. degree in mathematical sciences from
Clemson University, joining IBM in 1994 as a Research Staff
Member in the Mathematical Sciences Department. As an
industrial researcher, Dr. Lougee-Heimer is charged with both
conducting basic research and supporting IBM’s businesses.
Her main research interest is in developing efficient solutions
to large-scale discrete optimization problems arising in
industry. Dr. Lougee-Heimer is a leader in the initiative to
promote open-source software for the operations research
community. As a member of the Common Optimization
Interface for Operations Research (COIN-OR) core team,
she is a principal infrastructure manager and is leading the
development of an open cutting plane library.

R. LOUGEE-HEIMER

IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

