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On greedy algorithms,
partially ordered sets,
and submodular
functions
Recent developments in the use of greedy algorithms in linear
programming are reviewed and extended. We find a common
generalization of some theorems of Queyranne–Spieksma–
Tardella, Faigle–Kern, and Fujishige about greedy algorithms
for linear programs in diverse contexts. Additionally, we extend
a well-known theorem of Topkis about submodular functions
on the product of chains to submodular functions on the
product of lattices.

1. Introduction
A greedy algorithm for solving an optimization problem
successively maximizes the variables in some chosen order.
Greedy algorithms are widely used in many contexts as a
heuristic, with a hope and a prayer (sometimes even a
proof) that the rapid calculation will yield an acceptable
answer. In this essay, however, we are interested
specifically in linear programming problems and in cases
where the greedy algorithms actually produce correct
answers.

While such cases are rare, they have been influential in
linear programming history. A sympathetic interpretation
of the 1781 paper by Monge [1] allows us to interpret a
passage in that remarkable pamphlet as the description of
a linear programming problem (actually of the important
subclass known as the transportation problem [2]) which is
amenable to a greedy solution. In fact, this notion was
eponymized in [3] to celebrate its pedigree. A survey of
the impact of the Monge concept is given in [4]. We provide
a technical description later.

A second influence has been the use of the idea of
greedy algorithms for linear programming to give a
general context to some famous combinatorial algorithms.
A leading example is the introduction by Edmonds [5] of
the concept of polymatroid, and the interplay between
greedy algorithms on polymatroids with greedy algorithms
on matroids (which, in turn, generalize some algorithms
for constructing minimum spanning trees for a graph). We
should also mention in this spirit the notion of (0, 1)
matrices in which the 1’s in each row (or in each column)
occur consecutively. Although introduced [6] in the first

place to provide a greedy (and correct) solution to the
caterer problem [7], it became an essential ingredient in
many arguments used to prove combinatorial theorems
using linear programming duality.

There is, unfortunately, no survey of the subject of
greedy algorithms in linear programming more recent than
[8], which is more than 15 years old. Our aim in this paper
is to review an interesting development in greedy theory in
a series of related papers appearing in the last few years,
to describe the common themes, to offer generalizations
of two of these themes, and to comment on weaknesses or
lacunae remaining in our treatment. Central to this work
being summarized and extended are the concepts (to be
defined below) of partially ordered set and submodular
functions.

2. Definitions; products of chains
A partially ordered set P is a set of elements {a, b, c, . . . },
together with a binary relation “�” on some pairs such
that a � b, b � c imply a � c, and a � a is never true.
Also, a � b means b � a. We say that a and b are
comparable if a � b, a � b, or b � a. A chain is a
partially ordered set in which any two elements are
comparable. P is said to be a lattice if, for every pair of
elements a, b, there is a unique least upper bound a � b
in P satisfying

c � a, c � b imply c � a � b, (1a)

and there is a unique greatest lower bound a � b in P
satisfying

c � a, c � b imply c � a � b. (1b)
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We later introduce the more general notion of
pseudolattice, but we postpone this to Section 3. In the
meantime, we frequently use L to denote the partially
ordered set with a lattice structure.

A real function r defined on a lattice L is said to be

modular if r�a � b� � r�a � b� � r�a� � r�b�; (2a)

submodular if r�a � b� � r�a � b� � r�a� � r�b�; (2b)

supermodular if r�a � b� � r�a � b� � r�a� � r�b�.

(2c)

Let k chains C1 , C2 , . . . , Ck be given, with respective
cardinalities c1 , c2 , . . . , ck . There is a natural partial
ordering on the Cartesian product C1 � . . . � Ck that
yields a lattice. A submodular function r� on this lattice
is called a Monge array in case k � 2, and we use the
same term for general k. Now consider the linear
programming problem arising as follows: Construct a (0, 1)
matrix A with c1 c2

. . . ck rows and c1 � c2 � . . . � ck

columns defined as follows: The rows correspond to the
Cartesian product of the chains, and the columns to the
union of the chains, with a 1 in a particular row and
column if the element corresponding to that column
is one of the multiplicands in the Cartesian product
corresponding to the row. Let d be a given nonnegative
vector with c1 � . . . � ck coordinates corresponding to
the columns of A, with r� being a submodular function
(Monge array) on the product lattice C1 � . . . � Ck

corresponding to the rows of A. Our linear programming
problem is the following: Choose a nonnegative y that
satisfies y�A � d�, and of all such y, choose one that
minimizes ( y, r). It is shown in [9] that the following
greedy algorithm solves the problem: Let � t be the row
of A corresponding to the greatest element (say t) of the
product lattice, d� the least entry of d corresponding to a
1 in � t . Let yt � d� , replace d with d 	 d� � t , delete from
A the column containing d� , and continue. This greedy
algorithm terminates with an optimum solution, or the
news that the problem is not feasible. (This news would
be using up the rows of A without attaining a feasible
solution.)

Next, consider the following variation of the
polymatroid. Let r be a submodular function defined
on the lattice of subsets of a finite set U, with r(�) � 0.
Let A be the (0, 1) matrix whose rows are the incidence
vectors of the subsets of U, d a nonnegative vector with
coordinates corresponding to elements of U. Consider
the linear programming problem y�A � d, y � 0,
minimize ( y, r). Again, a greedy algorithm starting
with the greatest element in the lattice—U itself—
solves the optimization problem.

In [10] it was pointed out that the validity of the
greedy algorithm for polymatroids can be shown to be a

consequence of the validity of the greedy chain-product
algorithm described above. (Among other interesting items
in [10] is a proof that the chain-product algorithm is valid
over any sublattice of the chain-product, and an allusion
to the theorem of Topkis about submodular functions on
chain-products; we comment on both later.)

The reasoning in [10] is that, in the polymatroid
problem, we can replace each element u of U with a two-
element chain. The greater element u� corresponds to
including the element u in a subset; the lesser element
u
 corresponds to omitting the element. This is how the
subsets of U are coded. Of course, we need to choose
values of the d vector to correspond to the different u
,
but it is easy to see how this is accomplished. Thus, [10]
succeeds in folding this class of polymatroids into the
multi-dimensional Monge array.

Further work [11–13] on topics related to those in [10]
is discussed later.

3. Modular, consecutive (0, 1) functions
In this section, we present an alternative approach to the
greedy algorithms discussed in Section 2.

Let U be a finite set and L a lattice, with least element
m and greatest element M. We are given functions f�L 3 2U

and r�L 3 �. We assume that

if f�a� � �, then a � m and r�m� � 0. (3)

For each u � U, let f(L, u) be defined by

f�a, u� � 1 if u � f�a�, 0 if u � f�a�. (4)

We assume that the function f satisfies the following:

for all u � U, f�L, u� is modular,

and

for all a � b, f�a� � f�b�. (5)

In addition to the given functions f and r, we are also
given a nonnegative function d�U 3 �, and we consider
the following linear programming problem:

minimize �
a�L

r�a� x�a�, (6)

where

x�a� � 0 for all a � L,

and

�
a�L

x�a� f�a, u� � d�u� for all u � U.

For this problem, we propose a greedy algorithm GL.
In the first step, we set x(M) to be the minimum of all
d(u) such that u � f(M), and we let u* be one of the
(possibly several) us where the minimum is attained. If we
delete from L all elements a such that u* � f(a), subtract
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d(u*) from all d(u) such that u � f(M), and delete u*
from U, it is observed from (3), (4), and (5) that the
remaining elements form a lattice, and these same
stipulations still hold for the remaining lattice and
remaining U, on which d is still a nonnegative function.
We continue this algorithm indefinitely, until we are
compelled to stop. We may stop because the remaining d
still has at least one positive coordinate, but the remaining
part of L is empty or consists just of m with f(m) � 0, or
we may stop because d has been reduced to 0.

Theorem 1
Assume that (6) is feasible. Assume also that (3), (4), and
(5) hold. Then GL produces an optimum solution to (6) if
the following additional conditions hold:

r is submodular, (7)

f�a� � f�b� implies a � b, (8)

a � b � c, f�a, u� � f�c, u� � 1 imply f�b, u� � 1. (9)

The reader should note that the consecutivity condition
(9) from [6] is significant in lattice polyhedra generally
(see [8, 14 –16]). What is different here from general
lattice polyhedra is (8), which specifies relations among
the various f(L, u) for different u, whereas we are usually
concerned just with properties of f(L, u) for each u by
itself. But assumption (8) is unavoidable: In fact, if any
one of (7), (8), or (9) is false, there is an instance of (6)
in which the greedy algorithm GL does not produce an
optimum solution.

Proof
To prove the theorem, all we need prove is the following:

There exists a feasible solution x* to (6) for which

x*�M� � d�u*�. (10)

The reason is that induction will then justify every step of
GL.

By the hypothesis of the theorem, (6) is feasible.
Further, the feasible region is bounded, so an optimum
solution to (6) exists. Let x be an optimum solution in
which x(M) is as large as possible, but x(M) is less than
d(u*). This means that, for each u � f(M), there exists
at least one a � L, a � M, such that

x�a� � 0 and u � f�a�. (11)

Let a be a maximal element of the partially ordered set L
satisfying (11). By (8) and (5), there is at least one u � f(M)
(say u�), that is not in f(a). Thus, there exists at least
one element b � L, b � a, so that

u� � f�b�, u�� f�a�. (12)

Suppose that b and a are comparable. Then, by the
definition of a, b � a, and we would have, with M �

a � b, and (12), a violation of (9). Hence, a and b are
incomparable. Let � be a positive number not greater than
the minimum of x(b) and x(a). Reduce x(a) and x(b) by �,
and raise x(a � b) and x(a � b) by �. By (5), the new x is
feasible; by (7), the new x is optimal. If M � a � b, we
have contradicted the definition of x. If a � b � M, we
still have a � b � a, and have contradicted the definition
of a. Hence, we have proved (10) and the theorem.

It remains to show that each of (7), (8), and (9) is
needed. The necessity of (7) is obvious, and indeed was
pointed out in [17]. For (9), let L be the chain a � b � c,
U � {1, 2, 3}, f(a) � {1, 2}, f(b) � {1, 3}, and f(c) �

{2, 3}. Let d(1) � d(2) � d(3) � 1, and let r(a) �

r(b) � r(c) � 1. Then (7) and (8) are true, (9) is not, and
GL does not produce an optimal solution; it does not
even produce a feasible solution, though one exists.

For (8), let L, U, r, and d be as above. Let f(a) �

{1, 2}, f(b) � {1, 2, 3}, f(c) � {3}. Let r(a) � r(b) �

r(c) � 1. Then GL does not produce an optimal solution,
even though (7) and (9) are true. e

Observe that the theorem clearly covers the case of
polymatroids. It also covers the case of chain-products, as
we see in the next section. Besides its conclusions, our
theorem has the feature of divorcing (partly, but not
totally) the lattice L from the set U. In the other examples,
and others to be cited later, U comes from the definition
of L. However, our separation is not complete because of
conditions (5) and (8).

4. Products of lattices
In this section we consider, more generally than the
product of chains in [10], the product of lattices and the
extension of the results in Section 3 to such products.

Theorem 2
Let L1 , . . . , Lk be lattices; U1 , . . . , Uk disjoint sets;
fi�Li 3 Ui , i � 1, . . . , k, each satisfying the conditions
in Section 3. If we define the product lattice
L � L1 � . . . � Lk � {(a1 , . . . , ak)�ai � Li , i � 1, . . . , k},
with a � b if and only if ai � bi for all i; and we define

f � � f1,. . ., fk�3 U � U1 � . . . � Uk

by

f�a1,. . ., ak� � f�a1� � . . . � f�ak�,

we will have satisfied the conditions of Section 3 for f, L,
and U.

If, in addition, we introduce a submodular r�L 3 R,
we have extended the material on chain-products in [10]
to lattice products. It is interesting to observe, however,
some facts about submodular r defined on lattice products.
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Topkis [18] proved that for a product C � C1 � . . . � Ck

of chains, r is submodular on C if

r�a � b� � r�a � b� � r�a� � r�b� (13)

holds when a � �a1, . . . , ak� and

b � �b1, . . . , bk� differ in at most two coordinates. (14)

We will prove Theorem 3.

Theorem 3
Let L � L, � . . . � L, r�L 3 �. Let a � (a1, . . . , ak) and
b � (b1, . . . , bk). Assume that (13) holds in the following cases:

For each i, ai and bi are comparable, and

ai � bi with two exceptions, (15)

and

ai � bi with one exception. (16)

Then r : L3 � is submodular.

Note that if L is the product of chains, (16) is
immediate, and (15) is the same as (14). We think it
interesting that proving r submodular on L needs only
(15) when L is restricted to be the product of two element
chains.

To prove that (15) and (16) imply (13), we first consider
the case k � 2. Assume a � (a1 , a2), b � (b1 , b2), and
define

c1 � �a1 � b1�, d1 � �a1 � b1�;

c2 � �a2 � b2�, d2 � �a2 � b2�.

By (16),

r�a1, c2� � r�a1, d2� � r�a1, a2� � r�a1, b2�,

r�b1, c2� � r�b1, d2� � r�b1, a2� � r�b1, b2�,

r�c1, a2� � r�d1, a2� � r�a1, a2� � r�b1, a2�,

r�c1, b2� � r�d1, b2� � r�a1, b2� � r�b1, b2�. (17)

By (15),

r�c1, c2� � r�a1, b2� � r�c1, b2� � r�a1, c2�,

r�c1, c2� � r�b1, a2� � r�c1, a2� � r�b1, c2�,

r�d1, d2� � r�a1, b2� � r�d1, b2� � r�a1, d2�,

r�d1, d2� � r�b1, a2� � r�d1, a2� � r�b1, d2�. (18)

Adding one half of (17) and (18) yields (13).
We now consider the case of general k � 3, assuming

(inductively) that the theorem has been proved for k 	 1.
Let us consider L � L1 � . . . � Lk as L � L*

1 � Lk ,
where L*

1 � L1 � . . . � Lk	1 . This brings us back to the
case of two lattices, but we must verify the hypothesis.

First, for fixed ak , r is a submodular function on L*
1 by

induction. For fixed a � L*
1, r is a submodular function

on Lk by the original hypothesis. Next, (15) holds, from
the theorem of Topkis. Thus, the induction step is
complete.

5. Pseudolattices
In [11–13], further examples in the spirit of [10] were
presented. To explain them, we first define the following:
In a partially ordered set P, we say that b covers a if
a � b and there is no c such that a � c � b. Next, an
ideal � of P is a subset such that a � �, b � a imply
b � �. Observe that the union (and also the intersection)
of two ideals is an ideal. An antichain � � P is a set of
mutually incomparable elements. If � is an antichain,
then [�] denotes the ideal of all b � P such that b � a
for some a � �. If � is an ideal, �� is the antichain
consisting of the maximal elements of �.

Let a partially ordered set P be given, and consider the
lattice L(P) of all ideals contained in P. [L(P) is itself a
partially ordered set, ordered by inclusion, with union
and intersection respectively the operations � and �.]
Let � be the set of elements of P, and define a mapping
f�L(P) 3 2U by

f��� � � �. (19)

It is shown in [11] that, when P is a forest, a suitable
generalization of the greedy algorithm described in [10]
is valid. Note that, when P is a forest, the mapping (19)
satisfies the hypothesis (and conclusion) of Theorem 1
above. If P is not a forest, then the greedy algorithm is
not in general valid. But [12] points out that an additional
hypothesis about the submodular function r�L(P) 3 �,

if e is covered by at least two elements, then

r�� � 
e�� � r��� (20)

is sufficient to justify the greedy algorithm even when P
is not a forest. An interpretation of this result in terms
of submodular flows is given in [13]. The key idea in both
papers to establish that, if �1 and �2 are ideals in P, then
the antichain

� � f��1� � f��2� 	 f��1 � �2� is an antichain, (21)

and

��� � �1 � �2 . (22)

Further, every element in

��1 � �2� 	 ��� is covered by at least two elements. (23)

From (20), (22), and (23), we infer that r([�]) � r(�1 � �2),
hence

r��1 � �2� � r����� � r��1� � r��2�. (24)
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Instead of the arguments used in [11] and [12], we
propose to include the result of [11] in the framework
of our approach in Theorem 1 by slightly extending the
definitions used therein. Note that Theorem 1, as it stands,
cannot encompass [12] because (5) is false. On the other
hand, if one wants to exploit (20)–(24), we have the
difficulty that, in (20), [�] is not �1 � �2.

Our tactic is to extend Theorem 1 by using the notion of
pseudolattice. A partially ordered set P is a pseudolattice
if, for every pair of elements (a, b) there is a designated
element a �* b satisfying a �* b � a, b, and there is a
designated element a �* b satisfying a �* b � a, b.

Further, if a and b are comparable, a �* b � max(a, b),
a �* b � min(a, b).

Theorem 4
If, in Theorem 1, the term pseudolattice and the
pseudolattice operations �* and �* are substituted for the
term lattice and the lattice operations � and �, then the
theorem remains valid.

The proof is simply to revisit the proof of Theorem 1
and observe that it remains valid in the more general
setting without changing a single word. Further, with this
change, we accommodate [12] by observing that when we
define

�1 � * �2 � �1 � �2

and

� � * �2 � ���, (25)

where � is defined by (21), then (5) holds along with all of
the other hypotheses of Theorem 4, so [12] is included in
the general setting.

6. Some questions

1. It is easy to see that in the partially ordered set
m � a, b, c � M with {a, b, c} mutually incomparable,
no function f satisfying our hypotheses is possible. It
would be nice to know what partially ordered sets
permit functions f.

2. A theory for combining greedy linear programming
problems on polytopes of the form { x��x � b, x � 0}
is presented in [17]. We have no appropriate theory if
the polytopes are of the form { x��x � b, x � 0}.
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