
by G. W. Doerre
D. E. LackeyThe IBM ASIC/SoC

methodology—
A recipe for
first-time
success

This paper describes the methodology
employed by the IBM Microelectronics Division
for the design of its Blue Logic® application-
specific integrated circuits (ASICs) and
system-on-a-chip (SoC) designs. This
methodology is used by both IBM ASIC and
SoC designers, as well as OEM customers. A
key focus of the IBM ASIC/SoC methodology,
outlined in the first section of this paper,
is the first-time-right methods of design and
verification that maximize correct operation of
the chip upon product integration. The second
section of this paper describes advances in
methodology that deal with the physical effects
of shrinking device geometries and enable
design using the performance and density
capabilities available in the new technologies,
and methodology advances that have
improved design turnaround time (TAT) for
large, complex designs. Upcoming nanometer-
level technologies present new opportunities
to integrate systems on a single chip,
including functional components of mixed
libraries and mixed analog and digital design.
The final section of this paper outlines
strategies that are enabling SoC design
at these levels.

Introduction
While the device dimensions and structures, chip
capacities, performance levels, and diversity and range
of intellectual property (IP) in the VLSI and ASIC/SoC
industries are most frequently described by silicon product
vendors, the methods and execution time of the underlying
design and integration processes are also critical factors in
the success of product designers.

Starting more than thirty years ago, based on the need
to integrate multi-million-gate computer systems from
thousands of hundred-gate chip designs, the modern ASIC
industry is on the threshold of 100-million-gate chip
design capability. Now many processors can be integrated
onto a single system-on-a-chip (SoC). Although multi-
million-gate ASIC and SoC designs are now routinely
manufactured, designing them correctly and producing
them on time, and in volume, with adequate
quality/reliability levels, all involve the methodology
of design.

ASIC/SoC methodologies are needed that offer
designers the integration of systems with a complete range
of reusable digital and analog functions, and ways to
integrate them onto a single chip [1]. Electronic design
automation (EDA) companies are focusing as much
on tool flow and integration as on the development
of traditional standalone tools in order to relieve the
complexity burden of ASIC/SoC design [2]. Finally, a

rCopyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

649

range of specialized third-party products and services,
from standard libraries to unique IP and chip-level
design, are now emerging to cover niches in the design
process and functional product spectra [3–5].

This paper describes the development of a single
methodology that the IBM Microelectronics Division has
used to provide a broad range of capabilities in hundreds
of ASIC/SoC designs.

The fundamental ASIC methodology
In the early 1990s, IBM became a commercial provider of
VLSI technology, ASIC methodology, and services. This
transition from internal supplier to industry provider
generated two fundamental questions regarding IBM
design tool strategy:

1. Which EDA tools (third-party vendor or IBM tools)
would be supported for ASIC design?

2. What should the methodology flow include
(in particular, front-end design, design signoff,
manufacturing test, and chip layout)?

To allow external ASIC customers to easily adapt their
chip designs and logic design methodologies to the IBM
offering, IBM provided support for front-end design tools
from leading third-party tool vendors. In particular, IBM

worked with logic synthesis vendors to ensure that key
optimization capabilities were effectively exploited by the
IBM ASIC libraries. Comprehensive VHDL [6] and
Verilog [7] libraries were developed to support use
by customers of a wide variety of third-party high-
performance logic simulation tools. Other vendor
offerings, including tools for logic entry, power analysis
and estimation, and formal verification, were similarly
supported in the IBM methodology flow. IBM leveraged
its internal design tools in three key areas: static timing
analysis, design for testability (DFT), and chip physical
layout.

The IBM Microelectronics Division developed its
Blue Logic* ASIC design methodology, which enabled
hundreds of ASICs and SoCs to be designed and operate
successfully in the customers’ products. Figure 1 depicts
the sequence of steps executed by the designer within a
set of IBM and third-party design tools that constitute the
methodology described in this section: design entry, design
reviews and checkpoints, simulation and other checking
and verification, logic synthesis, physical floorplanning,
DFT and automatic test-pattern generation (ATPG), clock
design, physical layout (place-and-route and timing
closure), and design release.

Register-transfer-level design and logic synthesis
Register-transfer-level (RTL) design descriptions were a
fundamental entry point for ASIC design. The growing
number of circuits in a typical ASIC design, and the
corresponding time required to design products of
increasingly functional complexity, required design
representations at a higher level of abstraction than a
gate-level design. RTL design languages, such as VHDL
and Verilog, provided a way to describe sequential and
combinational functions at the higher behavioral level.
The focus on RTL capability included methods to
incorporate macros such as arrays and embedded
intellectual property (IP) in the form of core functions in
either a hard core (full layout) or soft core (pre-layout
gate-level logic description). IBM created software to
generate functional interfaces with macros for rapid
integration in the RTL chip design, and to automate
the DFT signal connections to the macros [8].

Adoption of RTL methods led to the widespread use
of logic synthesis tools that map RTL descriptions to
gate-level implementations and optimize the timing
performance of the implementation. ASIC designers used
third-party logic synthesis tools to map their RTL to gates
based on gate representations in circuit libraries, and to
optimize the resulting implementation for timing and area.
An important criterion for synthesis tools and for the
modeling of circuits for synthesis tools was maintaining
close correlation between the timing data in the synthesis

Figure 1

Early 1990s ASIC methodology flow.

Design entry

Initial design

review

Logic

synthesis
Floorplanning

Design for testability,

clocks, chip finishing

Signoff verification

Release to layout

Place and

route

Timing

closure

Signoff verification

and automatic test

 pattern generation

Release to checking

and manufacturing

Libraries

Gate level

- Schematic

- Synthesis

- Simulation

- Timing/power

- Physical

- Test

Wire loads

- Image

- Area

Chip level

- Image physical

- Package/image

 cross reference

Functional

simulation

Gate-level

simulation

Delay-based

simulation

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

650

models and the timing calculated with static timing
analysis sign-off tools.

In the early 1990s, statistical wire-load models (WLMs)
were developed to provide estimates of interconnect
delay, based on an estimated average distance between
connecting gates. The values provided in the WLMs were
based on die size, assuming that connecting gates could
appear anywhere on the chip. As technology products
offered increasing circuit densities, the contribution of
interconnect delay to overall logic path delay became
more significant. Beginning in 1995 with the CMOS 5L
technology product, IBM created area-based WLMs that
allowed reduced interconnect delay estimates based on a
more aggressive assumption that the connecting gates
would be constrained within a corresponding chip area [9].
Increased interconnect delay led to the partitioning of
chip-level logic designs and their assignment to physical
areas on the chip. Floorplanning tools were increasingly
used for planning the logic partitions, creating regions on
the chip for the partitions, and managing the WLMs to be
used by synthesis tools.

Static timing analysis and timing sign-off
By the early 1990s, static timing analysis was well
established within IBM as a highly productive method
of evaluating the performance of digital logic and
interconnect wiring between logic gates. Static timing tools
measure delays of all combinational logic paths and report
whether each path has met or failed to meet the timing
requirements established by the product designer, and
by how much. A reliable timing “signoff” can then be
performed at each step of the design cycle: The results
reported by the static timing tool are audited by the
product designer and the ASIC vendor to determine
whether the design can pass to the next step in the design
cycle, and ultimately whether the design can proceed to
manufacturing. Static timing analysis is efficient and
exhaustive for timing path coverage, and thus more
effective than the alternative offered by delay-based
gate-level simulation [10].

Race-free full-scan design for testability
The logic synthesis flow and the IBM ASIC DFT methods
have enabled designers to largely ignore hardware test
issues when designing the functional logic. While
providing this functional design flexibility, these DFT test
techniques also provide extremely high levels of stuck-fault
coverage (.99% on most ASICs) using ATPG software.
Through the use of these DFT methods (which include
software for DFT design automation and verification) and
ATPG, all patterns required for ASIC manufacturing test
are generated, and the ASIC designer is freed from the
need to develop test patterns.

The DFT methods are based upon level-sensitive scan
design (LSSD) [11]. All latches are connected into shift
registers known as scan chains. For test operation, LSSD
provides unique control of the clocking of the two latches
that comprise each register bit, as shown in Figure 2. For
the functional operation of the product, a single system
clock operates each latch pair as an edge-triggered flip-
flop. Separate clocking of the LSSD latch pair in the
test operation allows all scan operations and testing for
stuck-faults to be performed independently of the timing
behavior of the logic paths. Thus, LSSD is known as a
“race-free” test capability. Tools were developed [12] to
automate the insertion of DFT structures into the ASIC
design. The sequence by which the DFT synthesis tools
create an LSSD-compliant design from the output of
logic synthesis tools, and the repowering of the system
and test clocks, is depicted in Figure 2. The combination
of design automation, full-scan DFT structures, and race-
free test operation allows the RTL designer to largely
ignore hardware test issues when designing the product
function.

Figure 2

Automation of LSSD latch and clock mapping through the design

for testability and clock synthesis flows.

D L2

clk

D L2 D L2

Ideal clock net

Synthesized RTL

RTL design sample

clk

High-

performance

clock tree

LSSD_C

Noncritical

clock tree

LSSD_B

Noncritical

clock tree

LSSD_A

Noncritical

clock tree

ZB

ZCC

B

OSC
D

L1
I

C

A

D

I

C

A

D

I

C

A

L2

B

L1

L2

B

L1

L2

B

LSSD

latch pairs

After

design for

testability

synthesis

and clock

repowering

Clock

splitter

LSSD

scan-out

LSSD

scan-in

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

651

Physical design and correct-by-construction images
An ASIC design is composed of the following basic types
of physical components with varying design objectives:

● Circuits used as logic gates and macros. Placement and
interconnection involving these elements and their
interconnection is focused largely on logic performance
and avoidance of wiring congestion.

● Clock drivers. Placement and interconnection of these
elements is focused on minimizing clock skew and
meeting targets for latency and switching transition time.

● Circuits used for signal input/output (I/O) and electrostatic
discharge (ESD). Placement of these elements is both
determined and restricted by factors that include power
distribution, noise avoidance, and package constraints,
as well as the logic design itself.

● Wiring. This is a unique pattern of interconnections
among the circuits described above that fits within the
metal area available (wiring resource) for interconnection
on the chip.

● Filler cells. These provide separation between certain
types of circuits and voltage biasing cells.

An ASIC chip structure is made up of these basic physical
components:

● Wiring for power distribution.
● Package interconnection points for signal, test, and

power-supply I/O.
● Pre-defined (legal) placement locations and restrictions

for the various circuit types.

IBM has maintained competency in the placement and
routing of ASIC designs. Simplistically, a placement tool
optimizes the location of circuits on the die to meet the
timing requirements set by the product designer [13, 14],

while conforming to placement restrictions (e.g., for I/O
cells) and requirements for electrostatic discharge cells,
fillers for separation of some cell types, and biasing cells
to satisfy electrical requirements of the technology, as well
as legal placement locations. The placement tool places
the circuits optimally to provide adequate space for wiring,
while the routing tool provides an electrically correct and
uncongested distribution of interconnect wiring while
meeting the timing requirements.

The IBM Microelectronics Division has minimized
the occurrence of product problems related to power
distribution and electrical requirements by providing pre-
defined chip architectures (images) for varying die sizes
and package designs. These images include pre-designed
power distribution grids, signal I/O connection points, and
rows of legal placement locations for the various circuit
types.

Final checking
Once an ASIC design is completed, a series of final checks
are run before the design is released to manufacturing:

1. Verification checks that no changes to the original
functional design have resulted from logical structural
changes that occur throughout the design flow (for DFT
and clock automation, and for optimization); formal
logic equivalence checking [15] is used, comparing
the Boolean equations of the design version prior
to structural changes to the version following.

2. Logic structure checks required by the CMOS
manufacturing and test equipment, estimations of noise
and electromigration effects, and placement and wiring
checks.

3. DRC/LVS checks to ensure that process rules were
not violated during the physical design process.

4. Final static timing analysis and DFT verification.

With these checks, IBM achieved a record of first-pass
success. As designs became larger, the run time for these
checks had grown to almost two weeks. Through a
combination of early testing, parallelization, and other
innovative approaches, this turnaround time (TAT) has
been reduced (see Figure 3).

Summary—the early 1990s
The technical and organizational capabilities that were put
in place allowed IBM to quickly build a record of success
in ASIC design. This success was fueled by

● First-time-right quality (built upon static timing sign-off,
a comprehensive test methodology, and a comprehensive
verification system).

● Large-design enablement through the capabilities and
capacity of the tool set.

Figure 3

Turnaround time reduction for final ASIC checks.

1Q 2Q 3Q 4Q 5Q 6Q
0

2

4

6

8

10

12

14

16

D
a
y
s

SA12

SA12E

SA27

SA27E

CU11

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

652

● Technology capabilities: circuit performance and density,
I/O signal performance, and packaging.

● A full range of services for ASIC design (a front-to-back
methodology and front-end through physical design
services).

Building upon these capabilities, the ASIC methodology
evolved to meet emerging technology challenges and
industry requirements, as described in the next section.

Rapid ASIC technology growth at IBM
In 1999, six years after entering the ASIC market, IBM
Microelectronics became the largest ASIC supplier.
During this period of rapid growth, ASIC technology at
IBM continued to progress according to Moore’s law
[16], which predicted a continued doubling of on-chip
processing capability every eighteen months.

Shrinking device geometries required synthesis and
placement capabilities that accounted for interconnect
delay more accurately than WLMs. Better routing
solutions were needed to avoid signal routing congestion,
repower clocks at higher performance levels, and address
signal integrity and noise avoidance issues. Because I/O
circuits had been limited to the chip periphery, the
number of I/O signals could not grow as quickly as the
number of internal circuits, causing a communication
bottleneck predicted by Rent’s rule [17]. All of these
elements emphasized the need for a hierarchical design
process that managed the larger design content,
maintained or reduced design turnaround time (TAT),
and completely automated DFT.

Timing closure
Historically, ASIC design methodologies separated logical
and physical design. In 0.25-mm and earlier process
technologies, gate delay dominated interconnect delay.
Therefore, logic synthesis tools could use a rough
approximation of interconnect delay or ignore it
completely. Similarly, physical design focused on wirability
and not on timing.

With smaller geometries, interconnect delay became a
larger part of the overall delay and had to be factored in
for both synthesis and physical layout. This was partly addressed
with statistical wire-load models (WLMs) for synthesis.
The WLM-based timing closure design flow contained
convergence loops of the following three types (Figure 4):

1. Iteration between floorplanning and synthesis.
2. Iteration of timing and wirability fixes in layout.
3. Iteration between layout and floorplanning.

Even with statistical WLMs, logical/physical timing
correlation continued to degrade. Placement-based
synthesis [18], which calculates interconnect delays based

on an actual design placement, was developed in the late
1990s to address this. Commercial placement-based-
synthesis tools are now generally available [19, 20], along
with the IBM Placement-Driven Synthesis (PDS) tool [21].
A placement-based-synthesis methodology contains three
components:

1. Synthesis-determined placement. A placement engine
embedded in the synthesis tool allows synthesis to
determine gate placements. Synthesis drives the gate-
placement assignments together with the logical
implementation to optimize timing while achieving
a wirable design.

2. Understanding of the placement by synthesis. The
synthesis tool estimates a wire route based on gate
placement, and uses this wire route to estimate
interconnect delay. The wirability of the placement
is also determined from the estimated route.

3. Synthesis-based placement optimization. During final
layout, placement-based synthesis is used for late
timing correction, using an existing placement and

Figure 4

Timing closure improvements over traditional methodology: (a)

Traditional iterative timing closure flow; (b) improved non-

iterative timing closure flow with physical synthesis.

Design

entry

Design

entry

Logic

synthesis
Floorplanning

Design for

testability, clocks,

chip finishing

Design for

testability, clocks,

chip finishing

Release to layout Release to layout

Signoff verification Signoff verification

Place

and

route

Timing closure

- Local

 optimizations

- Local moves

Signoff verification

and automatic test

 pattern generation

Release to checking

and manufacturing

WLMs

Early

physical

synthesis

Floorplanning

- Block

 planning

Update

placement

and route

Late

physical

synthesis

Floorplan

correction

Local

fixes

Signoff verification

and automatic test

 pattern generation

Release to checking

and manufacturing

(a) (b)

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

653

routing. Logic and placement changes are more
restricted in this phase.

The IBM PDS tool has been enhanced with timing-driven
global placement techniques, quadratic placement
methods, design partitioning using quadrisection
techniques, placement-aware methods of buffering
and repowering, and control of clock delay [21–23].

Area array I/O—Defeating Rent’s rule
Until the late 1990s, as the number of logic gates on
a chip increased, the number of required signal I/Os
increased, but at a slower rate, generally following Rent’s
rule [11]. IBM addressed this impending bottleneck with
an area array I/O architecture [24], which covered the entire
chip with a uniformly spaced I/O pin array, more than
tripling the number of signal I/Os. However, as long as pin
spacing remains constant, the problem of increasing gate
density remains, until a point is reached at which Rent’s rule
no longer holds. When integration levels increase to the
point at which major logic functions are connected by buses,
the number of signal I/Os needed will drop substantially, and
then remain almost constant, even as gate count increases.
This is one of the key inflection points between the ASIC
and the system-on-a-chip (SoC) eras.

Hierarchical vs. flat physical design tradeoffs
Today, for designs with fewer than 200K circuits, it is
quicker and easier to use a flat design methodology,

because the entire chip can be processed within a few
hours, unconstrained by either hierarchical design
boundaries or the need to share routing resources. For
designs with 1M circuits or more, hierarchical layout
becomes a necessity: Tool capacity (memory requirements
and run time) make flat layout prohibitive.

Between these two extremes, IBM developed the
concept of flexible hierarchy. In one method, a flat layout
is subdivided into region constraints, and each region
is driven with a targeted set of placement objectives.
Regions are a soft boundary, however, allowing top-level
objects to be placed within the region, or allowing regions
to overlap. In another method, particularly important
when placement-based synthesis tools are used, the
hierarchy of the design is used during the placement
operation, which provides parallel processing capabilities
late in the design cycle. Also, like region constraints,
hierarchical placement allows a targeted set of placement
objectives for each hierarchical block. For both of these
methods, the design is flattened before routing, which has
the advantage of providing the router an unconstrained
problem: All metal wiring layers are available to any
interconnect route. In a full hierarchical design, metal
layers within the area of a block must be shared between
the block and the top level. Figure 5 depicts key
considerations for flat and hierarchical design methods.

Routing improvements
Routing, which had been constrained to a simple grid,
has recently become more complicated. Wider wires
are being used for long wiring runs, and in wire delay/load
balancing. Typically, these types of fatter wires are offered
at multiple widths of the wiring grid, but wiring tools
allowing variable width and spacing are now becoming
available. As interconnect-based RC delays increase, net
segments become more isolated from their drivers and
more susceptible to coupling from nearest neighbors,
which can introduce timing jitter. This jitter has to be
taken into account, and mutually disruptive signals may
have to be physically separated.

As a further complication, several types of routing
must be done concurrently:

● I/O routing – Routing between an I/O pin, its associated
buffer, and the internal chip logic.

● Clock routing – The high-fan-out, high-load interconnect
of on-chip clocks, with precise skew management.

● Power routing – Routing that ensures acceptable static
IR drop and contains voltage or current spikes during
large-scale switching.

● Critical signal routing – Unique balancing requirements,
including full balanced differential routing.

Figure 5

Flat vs. hierarchical design tradeoffs: (a) Flat design; (b) hier-

archical design.

Netlist Single

level

Single

level

Multilevel Multilevel

Floorplanning
and placement

Single

level

Region

constraints

Multilevel Multilevel

Wiring Single

level

Single

level

Single

level

Multilevel

Placeable

objects 200K 1.1M

Top level Top level

Block level Block level

Gate Gate Gate Gate Gate Gate Gate

Gate Gate

(a)

(b) (c)

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

654

● Support routing – High-fan-out nets supporting
nonfunctional operations (e.g., testing), which may or
may not have an at-speed performance requirement.

The most recent generation of IBM routing tools was
developed jointly with the University of Bonn [22, 23].

Dynamic image generation (image-on-the-fly)
With advances in ASIC process technology, pre-designed
“off the shelf” chip background images became
impractical, for several reasons:

● Large number of permutations. Each chip size, I/O
interconnect scheme, package type, and number of
wiring levels requires a unique image. As the number
of permutations increases, pre-design/analysis becomes
prohibitive.

● Performance requirements and deep submicron effects.
Wiring pitches are smaller, increasing coupling effects,
while voltage-supply levels/margins are decreasing.

● Physically large/constrained cores and IP. Arrays and
specialized logic may require different line pitches
and rules, or even different power supplies.

In the future, image designs will be created dynamically,
or “on the fly,” and the chip size, I/O type for each
legal pin location, and localized wiring and placement
terrains for different chip regions will be specified
separately. This is another inflection point in the
transition from ASICs to SoCs.

DFT automation
Before 1999, IBM Blue Logic ASICs offered insertion
of scan chains into the logical description (netlist) of the
chip. This included mapping of flip-flops to LSSD latches,
connecting the latches into scan chains, balancing the
number of bits in each scan chain to maximize test
efficiency, and connecting test clocks to the latches.
However, many aspects of the DFT logic remained
application-specific, including chip-level connections of
scan chains and test clocks to I/O cells, the logic required
to share functional I/O signals and test I/O signals on the
same chip pin, and boundary scan structures.

Additionally, many ASIC customers require compliance
to the IEEE 1149.1 test standard [25], a method to control
multiple chips in a board or product for chip-interconnect
testing and other customer-defined DFT methods unique
to their products or corporate test strategies.

To address automation of chip-level and custom test
logic, IBM developed the IOSpecDFT tool [26]. Like
many tools used in the industry, IOSpecDFT provides an
automated insertion capability of I/Os and IEEE 1149.1-
compliant structures. But IOSpecDFT goes further by

providing a means to easily describe customer-defined test
logic and inserting all of the resulting chip-level test logic.

Standard ASIC I/O port requirements described in an
IOSpecList file include I/O cell, system logic function of
the I/O, a test logic function, and product test logic
requirements. Custom requirements that cannot be
inferred automatically from the IOSpecList can be
described in a connections file. These include custom
boundary connections, special system test controllers
(such as array BIST, logic BIST, or scan debug), or any
other desired by the customer at the chip top level.
IOSpecDFT creates a chip-level logic implementation
based on the requirements specified in these two files.

The capabilities offered by IOSpecDFT, when coupled
with automated scan-chain insertion and automated
connections of macro test signals, have provided ASIC
customers with an integrated and automated method for
implementing the customer’s in-product test and the IBM
manufacturing test requirements.

Scaling, TAT, and infrastructure
An ASIC methodology may contain more than 150 steps,
as well as complex iterative loops. To manage TAT for
these iterations, customers are demanding that design
methodologies be fully hierarchical—they want to be able
to design parts of their chip separately from one another
in the following ways:

● Verification and engineering change order (ECO) localization.
Verification of complex logic now often requires as
much, if not more, effort than the logic design itself.
Once customers have verified a section of the design,
they do not want to give up or risk that integrity.

● Reuse. Customers want to be able to reuse their logic.
They may want to migrate a design from an older to a
newer ASIC technology, and make functional changes
while doing so. They may want to preserve a placement,
a topology, and/or a level of performance.

● Design concurrency. Customers manage TAT by doing
sections of the design in parallel. This may require
parts of the design to be integrated for simulation.

To manage this, IBM Microelectronics has developed a
design infrastructure called eDesign, and a methodology
integration platform called TheGuide (Figure 6), that will
be used together to support collaborative hierarchical
design, making geographic separation, tool and library
versioning, and different levels of design completion as
transparent to the designer as possible.

Future ASIC/SoC technology in IBM
Technology and product offering sets are being expanded
to include low-power and multiple-voltage products,
reconfigurable logic, custom design capability, and

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

655

analog/mixed-signal designs. Each of these offerings
requires a well-balanced coupling of technology
capabilities and design methodology. Massive growth in
the amount of logic available on a chip must be addressed,
with a significant reduction in the test volume required for
a given design content. Flexible and lower-cost methods
must be applied to the problem of alternating-current
(ac) or time-based testing.

Tool interoperability
An integrated design flow has been fundamental to IBM
ASIC success. This flow includes tools that are used in a
standalone manner, such as logic synthesis, static timing
analysis and signoff, timing-driven and congestion-driven
placement, global and local routing, layout optimization,
editing tools for logic and layout, and post-layout
extraction tools. What allows these tools to be used
standalone or integrated is their underlying integrated
control structure and design data model, and common
technology libraries (see Figure 7).

Common to all tools is a set of application program
interfaces (APIs) [27], which provide access and
modification to the design data (logical and physical
design content, properties, and constraints). The design
data resides in a common data model which is resident
in workstation or distributed memory and has an
accompanying file format. Built upon the common data
model and accessed by the APIs is a set of subsystems (for
example, timing/electrical and wiring) that are accessed by
the APIs and provide consistency across all applications

for timing calculations, constraint semantics, wire-based
calculations and estimates, etc.

Although industry-standard file formats, such as Verilog
and VHDL for logic and PDEF [28] for layout data can
improve communication between disjoint tools, these
file-based methods cannot compare to the incremental
and tightly coupled capabilities of tools built upon an
interoperable paradigm. What is needed is industry-
level standardization of libraries, data models, and APIs.
The IEEE 1481 timing and power standard (modeling
languages and APIs) that was led by IBM has been
adopted by several EDA vendors and silicon vendors [28].
A fully interoperable set of tool APIs and data models is
necessary to exploit the capabilities available across the
many EDA tool vendors.

Hierarchical design for systems-on-a-chip
As system-on-a-chip (SoC) designs become more complex,
the limitations and homogeneity of a flat approach
become more problematic:

● Locality. Customers generally favor hierarchical logic
design because, at an unplaced netlist level, hierarchy
imposes no design constraints. A hierarchical approach
allows the design to be partitioned so that several
designers can work in parallel, once the logical
interfaces between their parts of the design are fixed.

● Tool performance. With 64-bit addressing, tools may be
run flat for very large designs, but run times can extend
to several days. Parallelism and design partitioning can
reduce these times substantially.

● Reuse. Customers may want to reuse part of an earlier
design—at the RT level, the gate-level netlist, or the
placed/routed/timed design. They may want to use the
design as is, or make changes. Reuse is more difficult if
the designer cannot explicitly isolate the reused design
from the new work.

● Diversity. An SoC may have logic elements that must be
physically optimized, including unique gate-level design
and wiring terrains. Annotating a design so that the
physical design tools can track and regionalize this
diversity becomes almost impossible in a flat methodology.

Design planning and RTL signoff
Traditional chip design methodologies have been serial in
nature [29], as shown in Figure 8(a). In the traditional
design flow, much of the iteration is caused by functional
changes to the design during the ASIC design process.
The serial nature of the methodology flows can be
reduced by separating these two design step types, as
shown in Figure 8(b). Steps involving design IP should
be moved to the front of the overall design flow. Steps
involving design processing and optimization should be
deferred as long as possible. The objective is to achieve

Figure 6

Architecture of TheGuide.

Methodology advisor

Data organizer

Process supervisor

Upgrade assistant

C
o
n
fi

g
u
ra

ti
o
n

m
a
n
a
g
e
r

T
o
o
l

la
u
n
c
h
e
r

Floorplanning

methodology,

tool interfaces,

scripts

Netlist processing

 and signoff

methodology,

 tool interfaces,

scripts

Physical design

methodology,

 tool interfaces,

scripts

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

656

design (i.e., timing, power, wirability, noise) closure in a
single pass. To do this, chip design planning flows must
provide the following:

● RTL analysis and partitioning
• RTL and technology characterization to estimate

physical size, timing, and power.
• Regrouping the logical hierarchy into physical blocks

to optimize the interconnecting signals between
blocks.

• Block-level physical sizing and time-budgeting based
upon chip-level constraints.

● High-level floorplanning
• Optimizing I/O locations for package requirements on

the basis of block, pin, and latch placements. I/O cells
carry special placement restrictions due to frequency,
switching, and voltage requirements of chip-
interconnect signals and their susceptibility to noise.
The floorplanning tool must optimize placement
within these restrictions.

• Simultaneous consideration of key placement
constraints for the top level and for each block.

These include block pin locations, the size, shape,
and aspect ratio of each block, and the location
and orientation of each block at the top level.

● Estimation/metrics extraction and design data
generation
• Timing.
• Wirability estimates (congestion).
• Static and dynamic power consumption.
• Testability (scan-based coverage).
• Partition data: block shapes, I/O and block pin

placements, macro placements.
• Synthesis data: timing budgets and wire loads.

Low-power design and voltage islands
Power-managed design is becoming a pervasive need for
even the highest-performance designs, which may not be
allowed to use any more power than the system they
replace. Trading off power for performance must be
accomplished differently for each design because of the
different market requirements [30]. For some designs,
shutting off most of the chip except when it is needed to
perform a function may provide the greatest leverage.

Figure 7

Integrated data model.

external

definition

physical

external

definition

netlist placement shapes-

based

power

stick

figure

global

wires

(binary)

stick

figure

detailed

wires

(binary)

shapes-

based

prewires

shapes-

based

wires

PrtRef

Definition TechnologyNetlist
Physical

cell
Placement Wiring

Common Model Services

procedural interface

– load

– unload

– save

Electrical

Technology

description

Wires +

power

Place

Tool command language

Context

Defs, DPins

Usages

Nets

Protos, PPins, Usages, UPins, Nets

Pins

Pins, NetsParasitics

Protos, Usages, Pins, Nets

Timing

Occurrence

model

Folded

model

Integrated data model

procedural interface

– netlist

– logic

– timing

– electrical

– physical cell rule

– path

– shapes

ShpWirePreWireWireGWirePowerPlaceProto PhysCellDef

PDL PDM

LogicCell
PhysCell

Logic

external

definition

SRule

Logic cell

technology

information

 RLC

 data

(binary)

U = usage

P = proto

D = definitions

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

657

As mentioned earlier, IBM customers already had
reasons for partitioning large ASIC/SoC designs into a
hierarchy. The need to design different parts of the chip
to operate at different voltage supply levels could now be
added.

Test efficiency and ac effects
With increasing raw chip capacity for a given test
methodology comes the need for increased test data to
contain the required test-pattern sets. With the effects of
shrinking geometries of device and interconnect scaling,
and the need for ever-increasing design performance,
comes the need to exercise and detect time-dynamic or
transitional defects, and to limit chip power consumption
during the test application.

Chip designers and silicon vendors have traditionally
approached the issue of test data reduction through
methods such as logic BIST (LBIST) [31]. Although
LBIST structures are highly effective in reducing the
amount of data required for testing, the effectiveness of
LBIST is reduced by logic structures resistant to random
test patterns (high-fan-in structures, decoders, and
comparators are examples). Whereas IBM ASIC chip test
coverage levels nearly always exceed 99%, the issue of
random resistance often limits LBIST coverage to the
range of 85%–95% or less.

To meet the needs of reduced test data volume while
maintaining product quality, IBM has devised enhanced
versions of the traditional LBIST approaches. First, our
ASIC chips have recently been provided with a built-in
signature compression capability. Traditional IBM test

patterns are input to the ASIC; however, all scan data
pins (traditionally pairs of scan data pins support a single
scan chain and scan-in and scan-out ports) are now
devoted to scan-in ports, the number of scan chains is
doubled, and scan-chain bit lengths are halved. The test
results for the doubled set of scan chains are shifted
into the signature register at the end of each test. This
approach significantly reduces the data volume for test
through the reduced size of the test results (using
signature compression), and halved scan-chain lengths.
Also, since the signature register is available as a parallel
chip output, diagnostics are greatly simplified compared
to traditional LBIST methods.

Shrinking device geometries increase the exposure
of the chip to dynamic transition errors, or ac defects.
IBM employs an ac test methodology for the highest-
performance designs, whereby scan-based test patterns are
deployed to expose specific nodes for transition (rise/fall)
observability, and the tester applies pulses to the test
clocks of programmable width and edge separation.
The observed transition performance is compared for
compliance within the delay range anticipated by the
timing sign-off engine. Failures represent ac defects. IBM
will deploy ac tests for increasing the number of ASIC
chips in advanced technologies, with a focus on increased
automation and reduced manual setups.

Conclusion
In developing ASIC methodologies, IBM has balanced the
use of its own internal tools and infrastructure with key
third-party vendor tools and industry-standard methods.

Figure 8

(a) Traditional ASIC flow; (b) improvement in design-planning flow.

Early signoff

Signoff

Design processing and optimization

Functional

design and

verification

Metric/data extraction

DFT and clock planning

Register-transfer-level analysis
Register-transfer-level

floorplan

Design planning

Synthesis

Placement

Optimization

Routing

Physical

synthesis

optimizations

(b)

SynthesisFloorplanning

Signoff

Signoff

Functional design and verification

Placement

Optimization

Routing

Timing closure

Clock insertion Clock planning

DFT insertionDFT design

(a)

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

658

This enabled IBM to initially enter the market with a
combination of first-time-right quality leadership, along
with a front-end design environment familiar to most
external ASIC designers.

Continued methodology improvements throughout the
1990s, along with strong process technology leadership,
enabled IBM to achieve and sustain a leading market
share in the OEM ASIC business. Area-array I/O
capability gave IBM a clear lead in signal I/O accessibility
to ASIC chips. Improvements in placement and routing
tools, placement-based synthesis flows, key clocking
improvements, and dynamic image generation substantially
reduced design TAT. Pushbutton design-for-testability
methods and tool infrastructure initiatives further
addressed both TAT and usability issues.

Advancing the design methodology in the near future
will embrace three basic principles:

1. Increased early, front-end focus in the design flow.
2. Expansion of technology and product offerings.
3. Extension of base silicon technology leadership.

The front-end focus provided by design planning and RTL
signoff will move design issues traditionally addressed in
the back end of the design flow to front-end design, where
the leverage over performance, die size, power, and TAT
is the greatest. New offerings will be enabled through
the use of low-power design methods, reduced die size
requirements and mixed terrains, and new system-on-a-
chip capabilities that include analog and mixed-signal
design. Base silicon technology leadership will be extended
through a number of enhancements that address
nanometer-level physical and electrical issues. Test
enhancements will focus on containing the huge number
of patterns required for increasing chip densities and
addressing issues of ac defects and power consumption
during test. The tool infrastructure is a fundamental
enabler with respect to most of the above requirements,
and the fully interoperable IBM tool infrastructure, as
well as its established file interchange protocols with third-
party tools, will realize these improvements in the IBM
Blue Logic ASIC/SoC methodology flow.

Acknowledgments
The authors recognize the achievements of numerous
teams whose contributions advanced IBM to a position
of ASIC OEM leadership. In particular, the authors
recognize the IBM Blue Logic ASIC Methodology,
Technology Product Development, Embedded Product
Development, and Product Engineering organizations, for
developing a first-time-right design methodology; the IBM
EDA organization and IBM Research and university
partners, whose design capacity, algorithmic strengths, and
technology correlation led to the development of a unique

integrated design tool; the Research Institute of Discrete
Mathematics of the University of Bonn, Germany, which
developed timing-driven placement, optimization, and
routing capabilities that have enabled design of some of
our most complex ASICs; the IBM Design Centers, where
methodology, tools, and design process management were
applied to ASIC/SoC design; and the numerous IBM
product development locations, including Rochester,
Austin, Poughkeepsie, and Boeblingen, whose models of
successful design execution have played a large part in the
definition of methodology, tools, and design process used
for ASIC design.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. Cadencew “AMS Designer,” q 2002 Cadence Design

Systems, Inc.; see http://www.cadence.com/products/
amsdesigner.html.

2. “Design Process Automation,” q 2001 Interweave Tech
Corporation; see http://www.interweavetech.com/.

3. Get2Chipw, “Get2Chip and Prolific Liquid Cell Study,”
q 2001 Get2Chip.com, Inc.; see http://www.get2chip.com/
docs/white_papers/g2c-lci.asp.

4. eSiliconw, “eSilicon Access,” q 2001 eSilicon Corporation;
see http://www.esilicon.com/services/access.html.

5. Artisan Componentsw, “Process-Perfect Products,” q 2001
Artisan Components, Inc.; see http://www.artisan.com/
products.

6. IEEE Standard 1076-1993, “IEEE Standard VHDL
Language Reference Manual,” q 1998 –1999 IEEE; see
http://standards.ieee.org/reading/ieee/std_public/description/
dasc/1076-1993_desc.html.

7. IEEE Standard 1364-1995, “IEEE Standard Hardware
Description Language Based on the Verilogw Hardware
Description Language,” q 1998 –1999 IEEE; see http://
standards.ieee.org/reading/ieee/std_public/description/dasc/
1364-1995_desc.html.

8. “Memory Arrays in IBM ASICs,” IBM Application Note,
q 2001 International Business Machines; see http://
w3asics.btv.ibm.com/.

9. J. Czilli and A. Nordstrom, “Synthesizing a 650K Gate
Deep Submicron ASIC,” presented at the 1997 Synopsys
Users Group (SNUG ’97), San Jose; see http://www.snug-
universal.org.

10. J. J. Engel, T. S. Guzowski, A. Hunt, D. E. Lackey, L. D.
Pickup, R. A. Proctor, K. Reynolds, A. M. Rincon, and
D. R. Stauffer, “Design Methodology for IBM ASIC
Products,” IBM J. Res. & Dev. 40, No. 4, 387– 406 (July
1996).

11. S. Oakland, J. Monzel, R. Bassett, and P. Gillis, “An
ASIC Foundry View of Design for Test,” Proceedings
of the IEEE International Test Conference, 1994, Test
Synthesis Seminar addendum, paper 4.2.

12. V. Chickermane, B. Koenemann, T. Guzowski, T. W.
Williams, A. Sullivan, and S. Oakland, “DFT: Test
Synthesis and Beyond,” Proceedings of the IEEE
International Test Conference, 1994, Test Synthesis
Seminar addendum, paper 3.3.

13. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulated Annealing,” Science 220, No.
4598 (1983).

14. J. Vygen, “Algorithms for Large-Scale Flat Placement,”
Proceedings of the 34th Design Automation Conference,
1997, pp. 746 –751.

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 G. W. DOERRE AND D. E. LACKEY

659

15. G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean
Comparison of Hardware and Flowcharts,” IBM J. Res.
& Dev. 26, No. 1, 106 –116 (January 1982).

16. G. E. Moore, “Cramming More Components onto
Integrated Circuits,” Electronics 38, No. 8, 114 –117
(1965).

17. H. B. Bakoglu, Circuits, Interconnections, and Packaging
for VLSI, Addison-Wesley Publishing Co., Reading, MA,
1990.

18. D. Lackey, “Applying Placement-Based Synthesis for On-
Time System-on-a-Chip Design,” IEEE Custom Integrated
Circuits Conference, 2000, pp. 121–124.

19. Cadencew “Physically Knowledgeable Synthesis,” q 2002
Cadence Design Systems, Inc.; see http://www.cadence.com/
products/pks.html.

20. Synopsysw “Unified Synthesis and Placement,” q 2002
Synopsys, Inc.; see http://www.synopsys.com/products/
unified_synthesis/unified_synthesis.html.

21. J. Darringer, E. Davidson, D. J. Hathaway, B.
Koenemann, M. Lavin, J. K. Morrell, K. Rahmat, W.
Roesner, E. Schanzenbach, G. Tellez, and L. Trevillyan,
“EDA in IBM, Past, Present and Future,” IEEE Trans.
Computer Aided Design 19, No. 12, 1476 –1497 (December
2000).

22. A. Hetzel, “A Sequential Detailed Router for Huge Grid
Graphs. Design, Automation, and Test in Europe,”
Proceedings of the IEEE International Conference on
Computer Aided Design, 1996, pp. 332–338.

23. C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Cycle
Time and Slack Optimization for VLSI Chips,”
Proceedings of the IEEE International Conference on
Computer Aided Design, 1999, pp. 232–238.

24. M. Kuzawinski, “High-Density Package Applications
for Wire Bond and Flip Chip,” Proceedings of the
Semiconductor Packaging Technologies Symposium—
SEMICON West ’99, 1999.

25. IEEE Standard 1149.1-1990, “IEEE Standard Test Access
Port and Boundary-Scan Architecture,” q 1998 –1999
IEEE; see http://standards.ieee.org/reading/ieee/std_public/
description/testtech/1149.1-1990_desc.html.

26. V. Chickermane, D. Lackey, D. Litten, and L. Smudde,
“Automated Chip-Level I/O and Test Insertion Using
IBM Design-for-Test Synthesis,” IBM Micronews 6, No. 2,
18 –22 (Second Quarter 2000).

27. D. Lackey and J. Morrell, “Interoperability, an IBM
Perspective,” IBM Microelectronics Division 2001,
presentation at the 2001 Design Automation Conference
Interoperability Workshop.

28. IEEE Standard 1481-1999, “Integrated Circuit (IC) Delay
and Power Calculation System,” q 1999 IEEE; see http://
standards.ieee.org/reading/ieee/std/dasc/1481-1999.pdf.

29. D. Lackey, “Design Planning Methodology for Rapid Chip
Deployment,” Proceedings of the Eighth IEEE/DATC
Electronics Design Processes Workshop (EDP 2001), pp.
111–116.

30. A. Dean, D. Garrett, M. Stan, and S. Ventrone, “Low
Power Design for ASIC Cores,” VLSI Design, pp. 1–15
(2000).

31. P. Bardell and W. McAnney, “Self-Testing of Multiple
Chip Modules,” Proceedings of the IEEE International Test
Conference, 1982, pp. 200 –204.

Received January 24, 2002; accepted for publication
August 15, 2002

George W. Doerre IBM Microelectronics Division,
East Fishkill facility, Hopewell Junction, New York 12533
(doerrg@us.ibm.com). Mr. Doerre manages ASIC and EDA
strategy for IBM Microelectronics Product Development.
In 1980, he joined IBM in Burlington, Vermont, working
on advanced DRAM development. Since then, he has
held management positions in VLSI product and process
development and ASIC design methodology development and
integration. He holds M.S.E.E./C.S. and M.S. physics degrees
from MIT.

David E. Lackey IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (delacke@us.ibm.com).
Mr. Lackey is a Senior Technical Staff Member in the IBM
ASIC Product Development group, responsible for ASIC
methodology development. In 1978 he joined IBM in
Poughkeepsie, New York, in the Mid-Hudson Valley
Development Laboratory. Since 1994, Mr. Lackey has
developed leading-edge design methodologies for IBM and
external ASIC designs. He received a B.S.E.E. degree from
Rensselaer Polytechnic Institute in 1978 and an M.S.C.E.
degree from Syracuse University in 1983. He is a member
of IEEE and Eta Kappa Nu.

G. W. DOERRE AND D. E. LACKEY IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

660

