
by J. E. Barth, Jr.
J. H. Dreibelbis
E. A. Nelson
D. L. Anand
G. Pomichter
P. Jakobsen
M. R. Nelms
J. Leach
G. M. Belansek

Embedded
DRAM design
and architecture
for the IBM
0.11-�m ASIC
offering

This paper presents an overview of the macro
design, architecture, and built-in self-test
(BIST) implementation as part of the IBM third-
generation embedded dynamic random-access
memory (DRAM) for the IBM Blue Logic®

0.11-�m application-specific integrated
circuit (ASIC) design system (CU-11). Issues
associated with embedding DRAM in an ASIC
design are identified and addressed, including
fundamental DRAM core function, user
interface, test, and diagnosis. Macro operation
and organization are detailed and contrasted
with traditional DRAM designs. The use of
BIST, a key enabler for embedded DRAM, is
discussed while highlighting innovations
required by the embedded DRAM.

Introduction
As application-specific integrated circuit (ASIC)
technologies expand into new markets, the need for
denser embedded memory grows. To accommodate this
increased demand, embedded DRAM macros have been
offered in state-of-the-art ASIC library portfolios [1, 2].
This paper describes an embedded DRAM macro that

extends the on-chip capacity to more than 40 MB,
allowing historically off-chip memory to be integrated on
chip and enabling System-on-a-Chip (SoC) designs. With
memory on the chip, applications can take advantage of
the high bandwidth naturally offered by a wide-I/O
DRAM and achieve data rates greater than those
previously limited by pin count and off-chip pin
rates. Applications for this memory include network
processors, digital signal processors, and cache chips for
microprocessors. The integration of embedded DRAM
into ASIC designs has intensified the focus on how best
to architect, design, and test a high-performance, high-
density macro as complex as dynamic RAM in an ASIC
logic environment. The ASIC environment itself presents
many difficult elements that have historically challenged
DRAMs—specifically wide voltage and temperature
operating ranges and uncertainties in surrounding noise
conditions. These challenges dictate a robust architecture
that is noise-tolerant and can operate at high voltage for
performance and at low voltage for reduced power. With
the advent of embedded DRAM offerings in a logic-based
ASIC technology [3], the performance of embedded
DRAM macros has improved significantly over that
of DRAM-based technologies. Users are increasingly
replacing SRAM implementations with embedded DRAM,

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

675

placing additional pressure on macro performance and
random cycle time. This pressure extends into testing,
where use of traditional direct memory access (DMA)
is costly in silicon area and wiring complexity, and
introduces uncertainty in performance-critical tests. A
more attractive solution to this test problem is the use
of a built-in self-test (BIST) system that is adapted to
provide all of the necessary elements required for high
fault coverage on DRAM, including the calculation
of a two-dimensional redundancy solution, pattern
programming flexibility, at-speed testing, and test-mode
application for margin testing [4, 5]. This paper presents
an overview of the macro design, architecture, and BIST
implementation as part of the IBM third-generation
embedded DRAM for the IBM Blue Logic* 0.11-�m
ASIC design system (CU-11), offering a 4� density
advantage over SRAM.

Fundamental DRAM operation
DRAM memory arrays are composed of wordlines (or
rows) and bitlines (columns); see Figure 1. At the cross-
point of every row and column is a storage cell consisting
of a transistor and capacitor [6]. The data state of the cell
is stored as charge on the capacitor, with the transistor
acting as a switch controlling access to the capacitor. With
the switch on (wordline activated), charge can be read
from or written to the storage cell. The rest of the DRAM
support circuits are dedicated to controlling the wordlines
and bitlines to read and write the memory array.

Overview of embedded DRAM
The CU-11 embedded DRAM macro has been developed
around the idea of user simplicity while including a high
degree of flexibility, function, and performance. For
application flexibility, the embedded DRAM is growable
in 1Mb increments to provide macro sizes from a 1Mb
minimum to a 16Mb maximum and offers a 256-I/O width
and a 292-I/O width for applications requiring parity. The
wide I/O was chosen to provide maximum bandwidth; for
applications that do not require the full width, bit-write
control was included to facilitate masking. Multiple
embedded DRAM macros can be instantiated on an ASIC
die, enabling customers to make a performance/die-area
tradeoff specific to their application. Figure 2 shows a
high-level floorplan of the embedded DRAM. This
architecture lends itself well to providing two modes of
macro operation: single-bank and multi-bank interleave
modes. The single-bank operation provides a simple
SRAM replacement function, while the multi-bank mode
extends the macro performance by allowing concurrent
operations to independent banks.

Single-bank operation
Single-bank operation was intended to resemble an
embedded SRAM, supporting simple broadside addressing
with read/write control. To improve bandwidth, the user
can optionally use page mode, which was carried over
from conventional DRAM. The addressing is broken
down as follows:

● A0 –A2 decodes one of eight page (or column)
addresses.

● A3–A11 decodes one of 512 row addresses within a 1Mb
block.

● A12–A15 decodes which 1Mb block is to be accessed.

The number of high-order addresses (A12–A15) is
determined by the macro size. The diagram in Figure 3
shows an example of timing for a macro in single-bank-
mode operation. The horizontal lines indicate the logical
data state of the corresponding signals as they change with
time. The macro select signal (MSN) controls the active

Figure 2

Floorplan of 4Mb macro.

1Mb array core

1Mb array core

1Mb array core

1Mb array core

Power system

Column redundancy

Data I/O
Control

BIST engine

ROM SROM

Redundancy allocation

Row

decode

Row

decode

Row

decode

Row

decode

Column

decode

Column

decode

Figure 1

DRAM cell array.

R
o
w

s

Columns
Transistor

Cap

Wordline

Bitline

Cell

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

676

(tactp) and restore timing (tres) of the macro and latches
the row (A3–A11), column (A0 –A2), and block addresses
(A12–A15) on every falling edge of MSN (indicated by the
vertical lines). For a read cycle, write enable (WEN) is
held high; data-out (DO) is latched and transmitted off
the macro within time tacc. For a write cycle, WEN is held
low; data-in (DI) and bit write (BW) are received and
latched. Page mode, controlled by the page signal (PGN),
allows access to the additional bits along a wordline not
selected at the MSN falling edge. For successive page
cycles, falling PGN latches only WEN and a new column
address (A0 –A2); the row and bank addresses latched
during the MSN falling edge are reused. In page mode, DO
is latched and transmitted off the macro within time taccp.

Multi-bank operation
For the multi-bank-mode configuration, each 1Mb block
of the macro acts as an independent bank that shares a
common address and data bus with all other 1Mb blocks
within the macro. The number of banks within a macro
is determined by the macro size. Figure 4 shows a 4Mb
macro with four banks. A bank select (BS) pin is
associated with each bank (1Mb block) and controls
activation and pre-charge of that bank. The bank address
(BA) is decoded by control logic and arbitrates which
bank has control of the data path.

In multi-bank configuration, the macro does not employ
broadside addressing. Rather, the embedded DRAM
macro operates similarly to a synchronous DRAM
(SDRAM), in which addressing is performed in a row-
address strobe/column-address strobe (RAS/CAS) manner
and the macro select input (MSN) is treated like a master
input clock, latching the state of all other input pins with
each falling MSN edge. Figure 5 shows three cycles: Cycle
0 activates Bank 0, Cycle 1 activates Bank 1 and reads or
writes Bank 0, and finally Cycle 2 activates Bank 2, reads
or writes Bank 1, and pre-charges Bank 0. The MSN input
can be cycled at a maximum rate of 250 MHz (4 ns
assuming a nominal 50/50 clock duty cycle). All bank
select (BS) inputs must be defined at every MSN falling
edge to indicate whether each bank is to remain open or
closed or whether a bank is to become active/open (from
the pre-charge state) or become pre-charged/closed (from
the active state). This protocol supports simultaneous
activate, read/write, and pre-charge to three different
banks.

Any combination of banks within a macro can be active
simultaneously as long as each 1Mb bank is opened in a
sequential fashion. To avoid power-supply design limits,
multiple banks cannot be activated or pre-charged on a
single MSN clock cycle. Maximizing the number of banks
in a macro improves the probability of avoiding an open
(or busy) bank and maintaining the pseudorandom peak
bandwidth of 8 GB/s.

To activate a bank, the corresponding BS signal must be
low, and the row address for that bank must be supplied

Figure 4

Multi-bank architecture.

Data I/O latches

Data-bit redundancy

Bank 0
CS

BS

Bank 3
CS

BS

Bank 2
CS

BS

Bank 1
CS

BS

Control

Bank select <0:3>

(activation/pre-charge)

Bank address <0:1>

(data path arbitration)

Predecoded

bank address

Figure 3

Single-bank timing diagram.

MSN

A00–

A02

PGN

WEN

DI

DO

BW

CA2CA1 CA3

DI002

DO001DO000 DO003

CA0

BW002

Last read data

RA0

t
res

t
accp

t
acc

t
accp

t
actp

A03–

Ax

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

677

on address pins A3–A11 when MSN is clocked low. The
row address for each active bank remains latched until
the bank is pre-charged. This frees the row address bus
to allow other banks to be activated at a different row
address on subsequent MSN clock cycles. A bank is pre-
charged by placing a high level on the corresponding
BS input when the MSN is clocked low. No address
information is required to pre-charge a bank.

Once a bank has been activated, a read or write
operation can be performed to that bank by bringing PGN
low, selecting the state of the WEN pin (read � high,
write � low), specifying the column address on A0 –A2,
and specifying the bank address on A12–A15 as MSN is
clocked low.

Macro organization
The embedded DRAM is constructed from building
blocks: a 1Mb array core, a power system for generating
boosted voltage levels used by the array core, a control
system for buffering and generating the array core timing
signals, column redundancy for replacing defect data bits,
data I/O for receiving and transmitting off-macro data,
and BIST for testing the embedded DRAM macro. BIST
is composed of a microprocessor-based engine, instruction
memory (ROM/SROM), a data comparator, and a
redundancy allocation unit (Figure 2). The 1Mb array and
its support circuitry are replicated to construct the desired
macro size. Each embedded DRAM macro contains a
single control system, a common power system, and a
BIST.

The power system, for the scope of this paper, simply
supplies the necessary voltage network levels required

for biasing the DRAM cell matrix. The power system is
located at the midpoint of the 1Mb arrays (or 1Mb offset
in the case of odd-sized macros) to provide optimal power
distribution. The row decoder selects one of 512 words,
while the column decoder selects 256 of 2048 bits in
the 1Mb array. The control system is the primary unit
controlling signals to the array(s). It receives input signals
from either primary macro inputs or the BIST. Signals
to the array are selected by the system function mode:
normal operation mode or test (BIST) mode. The control
path also determines whether the embedded DRAM is
operated as a single bank or as a multi-bank part.

The final block in the embedded DRAM macro is the
BIST. The design goal of the BIST is to provide a test
engine, operable in the logic test environment on low-cost,
low-pin-count testers, that stimulates the control, data
paths, and array of the embedded DRAM and provides
fault coverage equivalent to that traditionally supplied
by high-cost memory testers to discrete DRAM. The
flexibility of the BIST system enables the test development
engineers to alter the instruction memory to create new
or modified test patterns or to change the sequence or
number of patterns applied at each manufacturing test
gate. Ultimately, the BIST locates all faults in each 1Mb
array segment, calculates the two-dimensional redundancy
solution required to repair these faults, and reports this
solution via standard scan string methods [7]. The
redundancy solution is permanently stored in a remote
fuse memory (nonvolatile) programmed with a laser
after testing.

Array core organization
The array core, shown in Figure 6, is the fundamental
building block of the embedded DRAM macro; it includes
the following:

1. DRAM cell array.
2. Row decoder for selecting one of many wordlines.
3. Level shift and driver for elevating the voltage level

of the selected wordline.
4. Wordlines for coupling storage cells to bitlines.
5. Wordline stitch regions for reducing the wordline

propagation delay with metal connections.
6. Bitlines for connecting storage cells to sense amplifiers

(sense amps).
7. Restore devices and sense amps for reading the small

signal level from bitlines.
8. Column decoder for selecting one of many sense amps.
9. Local buffers for driving the select sense amps to the

edge of the macro on a data line.

Each 1Mb array core is organized as 512 wordlines
(512 WL) by 2048 bitlines (2K BL). The 2048 bitlines are
decoded from eight to one, producing a 256-bit data word

Figure 5

Multi-bank operation.

MSN

BS0

BS1

BS2

BA<0:1> 0 1 2

Activate Bank 0

Activate Bank 1

Read/write Bank 0

Activate Bank 2

Read/write Bank 1

Pre-charge Bank 0

Cycle 0

Cycle 1

Cycle 2

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

678

with an 8-bit page depth (additional bits available in page
mode). The 292-parity option is implemented by adding
288 bitlines (or 36 data bits), extending the length of the
wordline. The cell array and sense amplifiers are mirrored
around a shared local buffer that drives the selected sense
amps onto a global data line running over the cell array,
parallel to the bitlines on third-level metal (M3). Each
of these 1Mb array segments (or banks) contains eight
redundant wordlines and eight redundant data bits that
can be used to repair faults in that 1Mb array. The
redundancy repair region is limited to the 1Mb bank to
allow independent repair, simplifying test and redundancy
allocation for macros constructed from multiple array
cores.

This organization provides high array utilization while
maintaining performance typically lost by creating longer
wordlines or bitlines. Faster core performance can be
achieved with shorter wordlines and bitlines, but at a cost:
Every wordline requires a decoder/driver, and every bitline
requires a sense amp. Cutting wordlines and bitlines in
half requires four times as many word drivers and four
times as many sense amps, resulting in a larger core
area for an equivalent memory size. Although smaller
arrays can run faster, there is a diminishing return in
performance due to increased total area and resulting
propagation delays, segment decoding, and data
multiplexing. A metric for measuring efficiency is array
utilization, which is calculated by multiplying the cell
area by the number of bits and dividing by the total
macro area. The large array block achieves a higher
efficiency because it can amortize the support circuit
overhead (word decoders/sense amps) across more
memory cells.

Array core operation
The following sections describe in more detail the
operation of the array core components including the row
system for activating wordlines, the sense system for
reading and writing data from the cell, and the data
path for delivering data to and from the array core.

Row system
The logical function of a DRAM word system is simple:
Select one wordline out of 512. However, the electrical
and physical implementations are far from simple. Most
DRAMs boost the wordline voltage above the bitline high
level to increase the voltage written to the one transistor
cell. The wordline high level is chosen to provide full
write-back while staying within device reliability
constraints. Overdriving the array cell allows the device
designer to increase the array FET threshold voltage to
achieve the low off-current required for data retention
while maintaining a reasonable device performance.
The physical implementation of the wordline driver

is challenged by the aggressive wordline pitch (or
periodicity). Each wordline must be decoded, level-shifted,
and transmitted on minimum-pitch second-level wiring
(M2). To minimize DRAM cell leakage, salicide used
by the logic process to lower diffusion and polysilicon
resistance must be blocked from the array. The resulting
DRAM polysilicon wordlines are highly resistive and must
be periodically connected to a parallel low-resistance M2
(or stitched) to meet the performance objectives. In the
row decode system (Figure 2), addresses (A3–11) are
received, and true– complement pairs are generated (Addr
T/C) and simultaneously sent to the pre-decode system
and redundancy compare circuits. The control block is
activated with the bank select signal and enables address
pre-decode and row latching. The redundancy circuits
compare the current address with stored addresses of
defective wordlines. If the incoming addresses match a
stored defective address, the defective wordline is held
inactive and a spare wordline is activated in its place.
Redundancy enables repair of defective elements and
improves yield.

Charge sensing
There are a variety of mechanisms for sensing charge
stored on a capacitor. Conventional VDD/2 sensing is
reviewed for background, followed by the high-speed
GND sensing scheme utilized by this work. The two
schemes are contrasted, highlighting the benefits of
GND sensing.

DRAMs operate on the principle of charge sharing, as
shown in Figure 7. By activating a wordline (WL), charge
from the cell storage capacitor (NODE) is transferred to
the bitline (BL), altering the potential of the bitline. The
change in bitline potential is limited by the transfer ratio
of the cell capacitance (Ccell) to the sum of the bitline
capacitance (CBL) and cell capacitance:

Figure 6

Physical layout of 2Mb array core.

2K BL
512 WL

Local buffer

Sense amps

Column decoder

R
o
w

 d
e
c
o
d
e
r

L
e
v
e
l

sh
if

t

R
o
w

 d
ri

v
e
r

Restore

Restore

66 Stitch gaps
512 WL

1Mb

cell

arrays

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

679

�V � �VBL � Vcell� � Ccell

CBL � Ccell
� .

For example, a transfer ratio of 1/5 and a bitline-to-cell
voltage difference (VBL � Vcell) of 600 mV would ideally
result in an active bitline voltage change (�V) of 120 mV.
The most reliable, low-power means to amplify this small

signal is with a cross-coupled differential sense amplifier.
Operation of the amplifier involves pre-charging the true
and complement bitlines (BT/BC) to an equivalent voltage
(pre-charge level) with an equalize pulse (EQP), activating
the select wordline (WL) to transfer charge from the cell
to the bitline, creating a small signal difference between
BT and BC (reading the cell), then driving the common
source lines of the p-FETs (SETP) to VDD and common
source lines of the n-FETs (SETN) to ground (GND). A
multiplexor device, controlled by the MUX input signal,
isolates the sense amp nodes (ST/SC) from the bitlines,
allowing fast amplification. The bitline with the higher
potential is driven to VDD and the bitline with the lower
potential is driven to GND. Once the sense amp has
stabilized, the data can be transmitted off the macro
through the local data lines (LDQT/LDQC) selected by
the column-select line (CSL). Bitlines are then returned
to their pre-charge level by reactivating the equalize
signal (EQP).

With differential sense, the active bitline (connected
to a selected cell) is compared to a reference bitline
(not connected to the selected cell). Positive signal,
as measured by the voltage difference between active
bitline and reference bitline, is amplified to a logical “1.”
Negative signal is amplified to a logical “0.” The reference
bitline must be conditioned to allow the sense amp to
reliably distinguish a low level stored in the cell from
a high level stored in the cell. There are a variety of
methods for preconditioning the reference bitline.
Conventional DRAMs precondition both the active
bitline and the reference bitline at VDD/2. Reading
a low level from the cell couples the active bitline
below the reference, and a logical “0” is sensed.
Reading a high level from the cell couples the active
bitline above the reference bitline, and a logical “1”
is sensed.

Pre-charge level
For VDD/2 pre-charge, the pre-charge level itself provides
an excellent reference. Reading a high level from the
selected cell moves the active bitline above VDD/2, creating
positive signal. Reading a low level from the selected cell
moves the active bitline below VDD/2, creating negative
signal. An alternative to VDD/2 pre-conditioning, shown
in Figure 8, is to pre-charge both the active and the
reference bitline to GND. This scheme, however, cannot
use the pre-charge level alone to provide a reference,
because reading a low level from a cell does not move the
active bitline (VBL � Vcell � 0), resulting in zero signal
and unpredictable amplifier operation. The most reliable
means of generating a reference level for GND pre-charge
is to condition the reference bitline with half charge from
a reference cell (RN) activated by a reference wordline

Figure 8

Schematic and simulation waveforms for embedded DRAM GND

pre-charge.

SETP

CSL

LDQT

LDQC

EQP

Strap

NODE0

WL0

BT

BC

Strap

RN1

RWL1

Strap

RN0

RWL0

REQP

NODE1

Strap
WL1

NODE0

BT BT

RN0

BC

RN1

LDQC
LDQC

RN1

RN0

RN0
NODE1

NODE1

V
ol

ts

Time

Write back RestoreWrite backRestore Read “0” Read “1”

V
DD

/2

V
DD

/2

C
BL

C
BL

Figure 7

Schematic and simulation waveforms for conventional DRAM

V
DD

/2 pre-charge.

SETP

SETN

CSL

LDQT

LDQC

MUX

EQP

V
DD

/2

V
DD

/2

Strap

NODE0

WL0

C
BL

C
BL

ST

SC

BT

BC

NODE1

Strap

WL1

Write back Restore

ST

SC

BT

BC

LDQC

NODE1

NODE1 NODE1

NODE0 NODE0

ST

SC

BT

BC
LDQC

Write backRestore Read “0” Read “1”

V
o
lt

s

Time

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

680

(RWL). This can easily be accomplished by writing VDD/2
into a reference cell with an additional access device
controlled by a reference equalize signal (REQP). When
the selected wordline is activated, an associated reference
wordline is activated, placing the half charge on the
reference bitline and resulting in a level exactly between
reading a high level and reading a low level.

GND pre-charge deviates from conventional VDD/2
pre-charge, but offers a wider operating range, and the
improved read and pre-charge performance required by
the ASIC environment. A difference to note is that GND
pre-charge transfers charge to the active bitline only while
reading a high level from the selected cell. Because there
is no charge transfer when reading a low level from the
active cell (cell and bitline are at the same potential),
GND pre-charge relies on half charge transfer from
the reference cell for reading a low level. In contrast,
VDD/2 sense schemes require charge transfer from the
active cell for both a low and a high level for a read
operation.

Cell read performance
When transferring a high level stored in a cell to the
bitline, charge transfer does not start until the wordline is
an array device threshold above the bitline. For VDD/2, it
takes more time for the wordline to reach VDD/2 than the
GND pre-charged scheme in which charge transfer begins
when the wordline is a threshold above GND. This is
critical for a longer wordline that will have a significant
slew rate: a 1-V/ns slew introduces an extra 750-ps delay
for VDD/2 pre-charge (@ � 1.5 V). Additionally, as a high
level is read out of the cell in the GND pre-charge case,
device overdrive (defined as Vgs � Vt) increases and is
always VDD/2 greater than the VDD/2 pre-charge case,
resulting in faster charge transfer. Although reading a
zero in the VDD/2 case begins when the wordline reaches a
threshold above the cell (GND), it loses overdrive as the
cell charges to the bitline VDD/2 potential. As a result of
wordline slew and overdrive, GND pre-charge develops
signal faster than the VDD/2 pre-charge.

Reference cells
The reference cells and reference wordlines required by
GND pre-charge increase core area; however, they provide
many valuable features, including the following:

1. Bitline balance.
2. Equivalent WL-to-BL coupling for reference BL.
3. Lower sense amp operating point and more overdrive,

avoiding stall at low voltage/low temperature.
4. Interlock signal to mimic circuit performance and

generate sense amp timings.
5. SETN tied to GND, eliminating control and drive.

Implementation of reference cells provides both static
and dynamic bitline balancing. Static bitline balancing
is achieved by placing the equivalent capacitance of
a reference cell on the reference bitline. Without a
reference cell, the active bitline would see the extra
capacitance of the storage capacitor of the selected cell,
creating a 20% capacitance mismatch between bitline
and reference bitline. Transient bitline balancing is
accomplished by switching of the reference wordline,
providing dynamic coupling to the reference bitline that
is equivalent to the coupling from the selected wordline
to the active bitline. The reference cell and reference
wordline minimize the mismatch and coupling, allowing
the sense system to operate on less stored charge, which
enables increased performance and improved retention
characteristics.

GND pre-charge simplifies sense amp control and
provides faster amplification. With bitlines pre-charged
to GND, gating the sense amp n-type cross-coupled pair
source (SETN) is not required; consequently, SETN can
be tied directly to GND, as shown in Figure 8. In contrast,
VDD/2 pre-charge requires controlling both SETP and
SETN. GND sense achieves faster amplification by
applying full overdrive to the p-cross-coupled pair during
sense amp set (SETP driven to VDD). In the VDD/2 pre-
charge case, SETN is driven from VDD/2 to GND and
SETP is driven from VDD/2 to VDD, resulting in less
overdrive, essentially splitting the overdrive between the
n-cross-coupled pair and the p-cross-coupled pair. At low
voltage, this may not be enough overdrive to turn on
either the n or p devices, resulting in sense amp stall.
GND sensing was chosen for providing increased
overdrive to enable low-voltage operation and improved
performance at nominal voltage operation.

Bitline twisting
A key technology feature in achieving ASIC density and
performance is back-end wiring characteristics, specifically
metal pitch, resistance, and capacitance. Although a given
design point may be good for logic, it does not necessary
meet the ultralow-capacitance needs of the M1 bitline.
DRAMs, which can tolerate higher-resistance bitlines,
typically opt for metal half the thickness of the same-
generation logic process, resulting in less line-to-line
capacitance. The higher line-to-line capacitance not only
increases total bitline capacitance (and signal; see the
section on charge sensing) but also increases the noise
created by a neighboring bitline pair, introducing data-
pattern dependence. This data-pattern sensitivity must
then be included when testing for signal margin. To
counteract line-to-line noise, bitline twisting was
implemented. Bitline twisting uses a series of twists
to distribute the coupling effect of neighboring noise

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

681

equally into both the active bitline and reference bitline,
converting the noise into common mode (see Figure 9).
Bitline twisting has been shown to decrease the minimum
raw signal required from 100 mV to 30 mV, allowing the
sense amp to operate at a faster cycle time and lower
latency without suffering manufacturing yield loss.

Data path
Once the selected cell data has been captured by the sense
amplifiers, it is ready to be shipped to the edge of the
macro. The data path is responsible for selecting a subset
of sense amplifiers, sending data to the edge of the macro
and latching and then transmitting data to customer logic.
A wide I/O data path is desirable in order to maximize
core bandwidth. For the area efficiency described in the
section on array core organization, DRAM cores typically
access 2048 bits simultaneously and naturally offer very
wide I/O. Because of the minimum pitch of the bitlines, it
is unrealistic to drive all of the bits on a wordline off the
macro. A column decoder is placed adjacent to the sense
amps, selecting 256 of the 2048 bitlines and reducing the
I/O by 8:1. This reduction provides one bit of data on
approximately the same physical pitch as a 12-track logic
cell (4.8 �m). This feature reduces wiring congestion and
facilitates bit-slice design within and outside the DRAM
macro. Reducing the width from 2048 bits to 256 bits
provides for enough wiring room to accommodate
independent read and write data buses with ample
tracks for power and noise shielding. Because of noise
uncertainties in the surrounding ASIC environment and
wide operating conditions (voltage and temperature),
a robust, full-rail static data bus design was chosen.
Dynamic data-line pre-charge schemes can offer higher
performance, but typically burn more power and are
less noise-tolerant. Separating the read and write paths
eliminates design issues associated with bidirectional
bus control and enables higher-frequency read-to-write
performance. The timing specification in Figure 3 shows a
read cycle followed by a write cycle in which write data is
latched at the same time read data from the previous cycle
is being transmitted. With a bidirectional data bus, this

would typically require one dead cycle to allow for bus
turnaround.

Now that we have presented the DRAM macro
operation and core, we can turn our attention to methods
for guaranteeing the embedded DRAM macro functional
specifications in an ASIC environment.

Test strategy
As previously described, the cell arrays used in the
embedded DRAM macro are very similar to those of their
DRAM ancestors. We must assume that the cell arrays
will have the same sensitivities as those well known from
the development of DRAM, and require identification
at test. Many of the interactions in the DRAM cell
matrix are complex and are triggered only by certain
combinations of defects and test patterns. To deliver the
complex test patterns, commodity DRAMs use specialized
test equipment with algorithmic pattern capability for
generating the test sequences and large/fast-data-capture
memory with redundancy allocation hardware for
identifying and repairing faults. Considering how to test a
DRAM embedded in logic creates a dilemma: logic tester
or memory tester [8 –10]? The logic test platform that has
been developed for past generations of ASICs without
embedded DRAM can be characterized as a low-cost,
reduced-pin-count tester with no algorithmic pattern
generation or redundancy allocation hardware; it is
therefore unable to test DRAM without assistance.
The logic test patterns implemented are automatically
generated with software based on the customer’s netlist.
The test strategy comes down to either a two-tester
solution (memory tester and logic tester) or
comprehensive built-in self-test (BIST).

The two-tester approach suffers from the following
issues: 1) Multiple test gates are required, with an
associated increase in wafer handling; 2) cumbersome
requirements are placed on the customer to multiplex
the macro I/O to package pins; and 3) the required
part-number-specific test-pattern development is
typically difficult to automate. In the high-part-number
ASIC environment, it is essential to implement a
single tester platform utilizing BIST for memory test
and automated test generation for logic test.

BIST engine design point
The use of BIST to test embedded SRAM in ASIC
designs is not new. Much work since the late 1980s [11, 12]
has proven this technique, which capitalizes on the
similarities between the six-transistor SRAM memory cell
and standard logic. The engine used was a state machine
that simply ran through a predetermined sequence of
standard patterns to uncover faults in either the memory
array or the activation or decode support logic and
determine pass/fail. Only in the most sophisticated cases

Figure 9

Bitline twisting.

A

A

B

B

AB ABABAB

A couples equally into B and B.

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

682

was redundancy even considered, and then only in the row
dimension.

Since the same set of six to eight SRAM test patterns
have remained constant for a number of generations,
little, if any, capability to alter the SRAM test sequence
was required. However, DRAM is sensitive to far more
subtle systematic and random process variations and
defects, requiring a more complicated and dynamic test
sequence to identify and repair these faults. It is generally
not possible to predict all data patterns or write/read
patterns that will ultimately be needed to reduce the
test escape rate to less than ten parts per million
(10 ppm). The complicated dynamic pattern set and the
multidimensional redundancy allocation (row and column)
required by DRAM testing rendered earlier generations of
BIST technology inadequate for DRAM testing. The new
fail mechanism and pattern sensitivities specific to DRAM
required reconsideration of the BIST engine dexterity. To
address unique requirements of embedded DRAM test,
a processor-based BIST engine with a high degree of
program flexibility was developed [1]. A programmable
BIST engine design provides a very flexible test pattern
development system as well as a standard set of patterns
for manufacturing test. This enables the test and
characterization engineers to define the necessary patterns
used at each test gate and the order in which they are
applied. Test instructions that communicate with tester
pin stimulation allow for external control of pauses used
during retention-time testing and provide extended
capability for exercises such as burn-in.

The BIST can be subdivided into eight major
components: test multiplexor, instruction memory,
sequencer, address generator, data generator, cycle
generator, redundancy calculator, and clock generator,
as shown in Figure 10.

Test multiplexor
The test multiplexor, controlled by the test input, enables
the BIST to take control of the DRAM macro. With the
test signal deactivated, the DRAM operates normally,
responding to the user inputs. These two modes are
referred to respectively as test mode and mission mode.

Instruction memory
The instruction memory is composed of a ROM and
scannable read-only memory (SROM) and consists of 226
addressable words by 34 bits, with the SROM contributing
34 words. The ROM is programmed in the back end
of the chip fabrication and contains instructions that
represent predetermined patterns expected to be used
during test of the embedded DRAM. The purpose of the
SROM is to dynamically extend the programmability of
the BIST. It allows new and unique patterns to be loaded
into the program space in addition to the patterns hard-

coded into the ROM. If a pattern is continuously used
within the register array, it can be programmed into
the ROM on a new metal mask release. There are also
various utility instructions programmed into the ROM that
allow the processor to reorder, reconfigure, eliminate, or
add test patterns. The index addresses of the instruction
memory are partitioned such that the processor can
operate out of hard-coded ROM, SROM initialized at
the start of test, or a combination of both.

The recent improvement made to this scheme consists
of the addition of the capability to allow the SROM to be
reloaded an unlimited number of times in any given test
pass without upsetting the state of the rest of the BIST
processor. This is especially important for the generation
and preservation of cumulative redundancy calculation
results over all patterns tested. The use of this feature
eliminates concern over the choice of the size of
ROM/SROM included in the design being adequate to
contain all patterns necessary for a particular test gate.
The SROM need now be only large enough to store the
longest pattern, and the ROM can be sized to improve
test time and efficiency.

Sequencer
The sequencer is the backbone of the BIST engine. It is
responsible for the execution flow of the programs stored
in the BIST instruction memory. It contains a program
counter used to fetch an instruction from the instruction
memory. Once an instruction has been fetched, the
sequencer calculates the next address for the program
counter based on the instruction’s branch and branch
operation code (opcode) fields.

Figure 10

BIST block diagram.

DRAM

array

S
e
q
u
e
n
c
e
r

Address

generator

Data

generator

Cycle

generator

Clock

generator

In
st

ru
c
ti

o
n

m
e
m

o
ry

R
e
g
is

te
r

User inputs

Register

Test

 T
e
st

 m
u
lt

ip
le

x
o
r

Register

Compare

Redundancy calculator User data

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

683

Two types of instructions are used in the BIST. The
first is a normal instruction indicated when bit 31 of the
instruction word is set to a logical “0.” The second type of
instruction is a test-mode instruction, indicated when bit
31 of the instruction word is set to a logical “1.” It is used
to set various latches in the BIST. These latches control
modes of operation, set digital-to-analog converts (DACs)
to offset internal voltages and timings for margin testing,
program the data scramble, and set the utility counter.

Address generator
The address generator is responsible for generating the
addressing for the array during self-test. This is done with
the aid of three counters: row, column, and block, which
are controlled by the appropriate fields of the BIST
instruction. The counters can be incremented or
decremented as defined by the increment/decrement
bit of the instruction.

Data generator
Because of the difficulty in predicting what actual data
patterns will be necessary in the embedded DRAM array
matrix to activate and expose subtle faults, a flexible data
generator was introduced. The previous versions allowed
only a short list of pre-coded patterns that provided
blanket lows or highs, checkerboard lows/highs, row
stripes, and column stripes to the matrix. This approach
was found to be inadequate for proper test-pattern
development and not directly reusable for varying array
architectures. Thus, a design that accounts for current row
and column address, adjacent data bit, and physical or
logical data state stipulated in the pattern was added
[4, 13]. The algorithm to be used by the data generator
for a given test is specified with a mode-set instruction
prior to executing any writes or reads to the DRAM. This
instruction alters the states of latches in the design that
govern the operation of the generator. Odd and even data
bits are generated and replicated across the 256-bit data
word. Odd and even data bits are a function of the
program data scramble (PDS), the current address, and
the data state specified in the read or write instruction.
The PDS contains latches that are programmed with a
test-mode instruction. These latches allow the test pattern
to generate stripes of various sizes, checkerboards, or
other desired patterns in the 1Mb array(s).

The term logical data refers to the state of the data at
the macro inputs, logical “1” being a high voltage level
and logical “0” being a low voltage level. Logical data is
simply written as is, regardless of the bitline connection
to the sense amp and its location in the array. The term
physical data refers to the voltage level stored on the
DRAM cell capacitor. DRAM architectures routinely
invert logical data when writing to the cell; i.e., a logical
“1” may be stored as a physical “0.” Inversion is address-

dependent and is acceptable as long the architecture
reinverts the data when it is read. Controlling physical
data is required because many defect mechanisms are
sensitive to the physical data state stored. When physical
data is desired, the data is modified according to the
bitline connection to either the true or complement side
of the sense amp. Also taken into consideration is the
location of the bit with respect to array topography.
During a read or write operation, data is generated at
the time of instruction execution. In a write operation,
data is sent directly to the data path latches. During a
read operation, the data generator produces expected
data for the comparator.

Cycle generator
The cycle generator is responsible for generating the row
and column signals used in single-bank mode for the 1Mb
array(s). When in multi-bank mode, the cycle generator
must generate the bank select signals as well. The
protocols for the single-bank and multi-bank modes of
operation are different. Examples of the signals required
in each of these modes are shown in Figure 3 and Figure 5.
These signals are created as a function of the internal
BIST clocks and the cycle opcode defined by the
instruction.

When running BIST prior to redundancy repair, the
control signals, generated to stimulate the array, are
restricted to a single 1Mb array, so only the single-bank
operating mode is required. The logical addressing to the
1Mb array under test is defined by a group of latches
in the BIST. This restriction is enforced because the
redundancy calculator can compute a solution for only
a single 1Mb array at a time.

Once a redundancy solution has been computed for
each 1Mb array, the macro can be repaired. The macro
can then be stimulated either through the single-bank or
the multi-bank protocol as a complete macro. If a fail is
found at any point after the macro has been repaired, the
macro is considered a reject.

Redundancy calculator
A key enhancement to BIST schemes used previously for
embedded SRAM macros is the inclusion of a redundancy
calculator, also referred to as redundancy allocation logic
(RAL), for two-dimensional redundancy. The function of
the redundancy calculator is to compare data read from
the array with expect data from the BIST engine and
optimally allocate redundancy for array fails. In this
system [1], the BIST processor calculates row and data-bit
redundancy for wide-I/O embedded DRAM macros. Each
1Mb array contains its own redundant elements, which
may not be shared with other 1Mb arrays. For this
reason, BIST calculates and stores only 1Mb worth of a
redundancy solution at a time. Calculation of the full

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

684

16Mb repair solution would require 16 times the number
of fail counters and address registers, increasing the
silicon area required for the BIST to an unacceptable
level.

Several further enhancements have been made to this
system to heighten manufacturability. The first of these
enhancements deals with the definition of a “must-fix”
data bit. A fault was previously defined as a “must-fix”
data bit if there were more row addresses failing within a
data bit than there were redundant row elements available
to fix them. This was hard-coded into the calculator logic
as the true must-fix limit. The redundancy calculator
was modified to allow the option of specifying, at the
beginning of test, what definition of must-fix data bit the
calculator will use. The choices supported are one quarter,
one half, or the full number of available redundant row
elements. The choice is communicated to the redundancy
calculator via scan initialization. With this option,
decisions can be made as to how faults will be fixed if the
fabricator may be prone to a certain mix of fault types.

The second enhancement to the RAL portion of the
BIST is the integration of redundant row testing. To
ensure high final module yield, redundant rows must be
tested prior to use. In the previous BIST design [1],
redundant rows were tested with a separate set of
patterns. The results from redundant row test were then
merged offline with the RAL solution from the normal
test patterns, producing a modified laser fuse solution
when defective redundant rows were identified. To
eliminate the need for multiple-pass testing and offline
data manipulation, the failing row address calculator
portion of the RAL was modified along with the row
address generator in the processor. The row address was
extended to a nonbinary value to include address space for
selecting the redundant rows in each address schedule.
The choice to include redundant addresses in the pattern
is optional via test mode. The content-addressable
memory (CAM) in the failing row address calculator
recognizes failing redundant rows and eliminates them
from the final redundancy solution reported at the end of
test. With this combination of modifications, a single test
pass provides a redundancy solution that accounts for
failing redundant elements and their effect on total macro
fixability.

The third and final enhancement to the redundancy
calculator comes with the capability to reload the SROM
instruction memory discussed earlier. By segmenting the
scan string and reloading only the SROM, neither the
state of the BIST engine nor the current state of the RAL
calculated redundancy solution is upset. Thus, additional
patterns can continue to be applied one after another,
with the redundancy solution being calculated on the
cumulative failure set from all patterns.

Clock generator
The final component of the BIST is the clock generator,
which is responsible for generating all of the necessary
clocks needed for self-test of the DRAM. It has the ability
to receive external clocks and pass them directly to the
BIST, or generate its own clocks from an external
oscillator.

To maximize system performance, 250-MHz timing rules
are provided to describe the RAM core performance.
Testing at speed (high-frequency or ac testing) becomes
essential to ensure the high-performance timings,
especially in the presence of speed-sensitive fails
commonly found in DRAMs. As the complexity of chip-
level integration grows, so do the challenges for ac test.
The DRAM core performance specifications include only
those delay elements within the core boundary. Accurate
evaluation of these delays requires that they be measured
either directly at the core boundary or from test points
where the delay from the macro boundary to said test
point is known.

Effective ac testing requires that the stimuli be provided
with sufficient speed and accuracy, and efficient ac testing
requires that constraints for cost-competitive manufacturing
be met. A basic BIST design can be enhanced to provide
an effective, efficient means of ensuring ac performance
specifications for cycle and access times.

Placing BIST units in such a way that the delays
between the BIST and the RAM core boundary are
minimized and predictable greatly simplifies ac test
development. An example of such a design is one in which
each instance of a RAM core comes with its own BIST.
While this approach may use more silicon area than
others, savings in design, test development, and test cost
can be realized through the reuse of the same integrated
RAM/BIST core across a wide range of applications. In
some environments, the results that can be derived from a
finite design and test development resource are enhanced
by focusing on the development of a reusable core rather
than the development of a specific customer part number.
The RAM/BIST integrated core design point enables
effective ac test by reducing the delay between the RAM
and the BIST that minimizes the timing uncertainties
introduced by process variability and typical tester
hardware. Efficient ac test is realized by leveraging the
self-test concept. Performing data compare and storing
fail locations in the BIST reduce the demands on
tester resources to input only. Eliminating the need for
expensive high-speed data capture hardware in the test
head greatly simplifies requirements from the point of
view of both bandwidth and calibration. Another large
step toward reducing tester demands by containing critical
timings within a BIST is taken when clock multiplication
capability is added.

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

685

Clock multiplier
For example, with very modest test equipment a 10-MHz
clock can be used as input to a 20:1 clock multiplier,
creating a 200-MHz BIST test environment. The clock
multiplier receives a single clock from a tester and
multiplies it by a factor (MULT) ranging from 2 to 32.
The multiplier is designed such that the only restriction
on the tester clock cycle, t(CYCTESTER), is that

t�CYCTESTER�

MULT
� t�CYCTARGET� .

The range of target cycle, t(CYCTARGET), is limited by
silicon area, process, and operating conditions. If an
internal target of a 2.5-ns cycle is desired and a 50-ns
tester clock cycle is used, MULT should be 20.

DRAM random-access cycle and data path cycle times
typically differ by factors of three to eight times. The
faster data path cycle time allows for higher bandwidth
in spite of the relatively slow random-access cycle time.
A clock-shaping function can simplify the creation of
appropriate DRAM test patterns from a single high-speed
clock. Within the BIST, the multiplied clock is “shaped”
to create control signals with the desired duty cycle.
Specifically, the BIST shapes the clock into row and
column controls that are used to stress row cycles and
column cycles. For example, the BIST can shape the clock
to generate a six-cycle row active, two-cycle row pre-
charge, one-cycle column low, and one-cycle column high.
As another example, a 200-MHz input to a clock shaper
can be used in such a way that data path operations occur
every 5 ns, while random-access events occur at 15-ns
intervals. The random-access duty factor for this example
would be 2/3 active, 1/3 pre-charge. Allowing selection
from any number of high-speed clock periods from one
to 16 for each basic DRAM core event enables the test
engineer to selectively stress individual timing values. The
combination of clock-shaping and clock-multiplication
capabilities provides a very flexible and highly accurate
test environment for DRAM cores with minimal demands
on test equipment and device interface hardware.

dc test
DRAMs require voltages above VDD and below GND to
provide a sufficient difference between array transistor
on- and off-currents. If the off-current is not low enough,
DRAM retention time is compromised; if the on-current is
not high enough, cycle time is compromised. Charge pump
circuits are used to generate high-voltage supplies and are
delivered to the DRAM array via distribution networks.
For efficiency, from the point of view of both silicon area
and power consumption, these pump systems are designed
with modest overhead and standby operating modes.
Defects in the pumps or on the networks can inhibit

proper operation and must be detected. While functional
patterns could be created to detect these defects, it is
often more efficient to use dc test modes. For example,
a functional failure can occur when a parasitic network
leakage exceeds the capacity of the standby portion of the
pump system. The functional test to detect this failure
would require putting the DRAM into a standby state
prior to activating each address. The time required for
this type of functional test is much longer than the time
required to perform the dc test that checks the network
for parasitic leakage. This type of dc testing requires a
test-mode control that turns the pump system off and
provides access to the network from the tester such that
the network leakage can be measured. Another means of
enhancing DRAM test coverage is to check for operating
margins around the nominal set-points for these network
voltages. Methods selected for exciting these margin tests
could use the same tester connection as the leakage test,
or the pump output voltage set-point can be modified.
Providing these types of test modes and enabling test-
mode activation through BIST instructions improve test
effectiveness and efficiency.

Test and diagnostic capability
In the ASIC environment, where the BIST has all of the
capability and flexibility to test the DRAM with minimal
tester interaction, the tester must still obtain the results
from the BIST. Upon completion of a functional pattern,
several types of data must be acquired from the BIST.
Each of these data types has been considered in designing
the BIST and the rules for integration of the DRAM/BIST
core into an ASIC design system. The most frequently
needed type of information is pass/fail data, which is
supplied by three bits: one bit to flag successful
completion of the BIST sequence; one bit to separate
“perfect” from “not perfect”; one bit to separate “fixable”
from “not fixable.” Since the design system integration
rules are set up in such a way that these bits are
immediately accessible, overhead for the results-unload
operation is minimized. Another data type to be
considered is the repair data needed for fusing. The
three pass/fail bits are the first out during a serial unload
operation. If the part is fixable, the redundancy solution is
unloaded from the BIST and passed on to the fusing tool
for permanent redundancy implementation. If the part is
either perfect or not fixable, no further BIST unloading is
necessary. Skipping the redundancy unload step for
perfect and non-fixable parts further reduces overhead.
Another data type that deserves design-for-test attention is
bit-map results. The essential elements for BIST bit-
mapping are the ability to identify failing cycles and
acquire the data-out states for the failing cycles.
Enhancements to this minimum requirement can
significantly reduce the effort required to create bit-

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

686

maps. Specifically, the failing address is acquired directly,
eliminating the need to create and query a cycle count
to address cross-reference. The failing data-out state is
flagged and positioned for easy acquisition from the BIST
comparator, so the need to create and query a cycle count
to expected data cross-reference is eliminated. Providing
easy access to a synchronized set of address and compare
states makes it possible to create bit-maps for any BIST
pattern with a minimal amount of offline processing. In
this scheme, BIST design-for-test efforts have had a
significant positive impact on both test overhead costs
and diagnostic capabilities.

In the early stages of embedded DRAM development,
painful steps involving an iterative process of trial and
error were taken to ensure the validity of the BIST
patterns for manufacturing test. This process required the
interactions of several individuals and many hours because
of the lack of a methodology and an environment for test-
pattern developers to use when coding and verifying
patterns. Patterns were initially developed as binary
vectors or strings of 1s and 0s that were loaded into the
BIST scan chains. It was virtually impossible to ensure
that the correct bits were set without sitting at a tester
and debugging the vectors. This led to the development
of a microcode for constructing ROM patterns and a
software package to ensure the correctness of the binary
vector and of the pattern developed.

The test-pattern development methodology involves
three steps centered around logic simulation. These steps
form a cyclical path of verification performed by
a pattern developer. The first step involves writing the
test-pattern file (TPF). Once the TPF is written, it is
translated into a vector that can then be applied to
the macro using a simulator. When the simulator has
successfully completed, the final step involves verifying the
results and extracting the initialization vector and expect
vector required by manufacturing test. The final step
required to produce a valid manufacturing test vector is
to extract the data from the simulation graphics file. The
data extractor takes as input the same scan-chain files
used by the compiler and the graphics file generated from
simulation. The extractor parses the graphics file and
extracts the initialization vector and expect vector from a
desired trigger provided as an argument. Once the data
has been extracted, the vectors can be written to a file
format appropriate for the tester platform to be used
during manufacturing test.

Future work
Future work in this area includes development of a
compiler system that expands the configurations offered
and provides the customer with the ability to optimize
performance, density, power, and aspect ratio. The
compiler also facilitates support of multiple core designs in

which each core can be tailored for the performance/density
tradeoff. This will open the door for novel architectures
that target specific design goals such as fast cycle or low
latency. BIST enhancements include enabling the BIST
to test the entire memory space without unloading the
redundancy solution between repair regions. Eliminating
redundancy unload is key to reducing test time and
minimizing tester interaction. Maintaining the entire
repair solution on-chip, combined with electrically blown
fuses, enables module-level repair, further improving
manufacturing productivity.

Summary
This paper has presented an overview of the macro design,
architecture, and BIST implementation as part of the IBM
third-generation embedded DRAM for the 0.11-�m ASIC
design system (CU-11). A growable embedded DRAM
architecture with a simple SRAM-like memory interface
was chosen to provide customers with the highest degree
of flexibility while maximizing design and characterization
reuse. A robust GND sensing array core has enabled the
wide range of operating conditions required by a diverse
set of ASIC applications. The advantages of the built-in
self-test implementation have been described, along with
a series of features designed to satisfy the demanding
requirements of DRAM test in a logic environment. We
expect to see continuing growth of embedded DRAM
utilization as performance and density continue to enable
new applications.

Note: Portions of this paper are based on “A 300 MHz Multi-
Banked, eDRAM Macro Featuring GND Sense, Bit-Line
Twisting and Direct Reference Cell Write,” by J. Barth, D.
Anand, J. Dreibelbis, and E. Nelson, 2002 IEEE International
Solid State Circuits Conference, Digest of Technical Papers, Vol.
45, � 2002 IEEE.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor

Based Built-In Self Test for Embedded DRAM,” IEEE J.
Solid-State Circuits 33, No. 11, 1731–1740 (November
1998).

2. T. Yabe, S. Miyano, K. Sato, M. Wada, R. Haga,
O. Wada, M. Enkaku, T. Hojyo, K. Mimoto, M. Tazawa,
T. Ohkubo, and K. Numata, “A Configurable DRAM
Macro Design for 2112 Derivative Organizations to be
Synthesized Using a Memory Generator,” IEEE J. Solid-
State Circuits 33, No. 11, 1752–1757 (November 1998).

3. S. Crowder, R. Hannon, H. Ho, D. Sinitsky, S. Wu,
K. Winstel, B. Khan, S. R. Stiffler, and S. S. Iyer,
“Integration of Trench DRAM into a High Performance
0.18-�m Logic Technology with Copper BEOL,”
International Electron Devices Meeting, Digest of
Technical Papers, 1998, pp. 1017–1020.

4. T. Obremski, “Advanced Non-Concurrent BIST
Architecture for Deep Sub-Micron Embedded DRAM
Macros,” Ph.D. Dissertation, University of Vermont,
Burlington, May 2001.

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

687

5. N. Watanabe, F. Morishita, Y. Taito, A. Yamazaki, T.
Tanizaki, K. Dosaka, Y. Morooka, F. Igaue, K. Furue,
Y. Nagura, T. Komoike, T. Morihara, A. Hachisuka, K.
Arimoto, and H. Ozaki, “An Embedded DRAM Hybrid
Macro with Auto Signal Management and Enhanced on
Chip Tester,” IEEE International Solid-State Circuits
Conference, Digest of Technical Papers, 2001, pp. 388 –389,
469.

6. R. H. Dennard, “Field Effect Transistor Memory,” U.S.
Patent 3,387,286, June 4, 1968.

7. E. B. Eichelberger and T. W. Williams, “A Logic Design
Structure for LSI Testability,” J. Design Automat. Fault-
Tolerant Comput. 2, 165–178 (May 1978).

8. J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Built-In
Self Test for Embedded DRAM,” Proceedings of the IEEE
North Atlantic Test Workshop, West Greenwich, RI, 1997,
pp. 19 –27.

9. R. McConnell, U. Moller, and D. Richter, “How We Test
Siemens’ Embedded DRAM Cores,” Proceedings of the
International Test Conference, 1998, pp. 1120 –1125.

10. R. Aitken, “On-Chip Versus Off-Chip Test: An Artificial
Dichotomy,” Proceedings of the International Test
Conference, 1998, p. 1146.

11. J. Dreibelbis, J. Barth, Jr., R. Kho, and T. Kalter, “An
ASIC Library Granular DRAM Macro with Built-In Self
Test,” IEEE International Solid-State Circuits Conference,
Digest of Technical Papers, 1998, pp. 74 –75.

12. H. A. Bonges III, R. D. Adams, A. J. Allen, R. Flaker,
K. S. Gray, E. L. Hedberg, W. T. Holman, G. M.
Lattimore, D. A. Lavalette, K. Y. T. Nguyen, and A. L.
Roberts, “A 576K 3.5ns Access BiCMOS ECL Static Ram
with Array Built-in Self Test,” IEEE J. Solid-State Circuits
27, No. 4, 649 – 656 (April 1992).

13. P. Jakobsen, J. Dreibelbis, G. Pomichter, D. Anand, J.
Barth, M. Nelms, J. Leach, and G. Belansek, “Embedded
DRAM Built In Self Test and Methodology for Test
Insertion,” Proceedings of the International Test
Conference, 2001, pp. 975–984.

Received October 23, 2001; accepted for publication
July 26, 2002

John E. Barth, Jr. IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452
(jbarth@us.ibm.com). Mr. Barth received the B.S.E.E. degree
from Northeastern University in 1987, and the M.S.E.E.
degree from National Technological University in 1992.
During his B.S. degree work he was a co-op student from
1984 to 1985 at the Timeplex Development Laboratory
in Rochelle Park, New Jersey, where he wrote data
communications and network monitoring software. He was
also a co-op student in 1986 at the IBM Development
Laboratory in Essex Junction, Vermont, where he was
involved in the design and characterization of the 1Mb
DRAM product. After receiving his B.S. degree, Mr. Barth
joined IBM at the Development Laboratory in Essex Junction,
and was involved in the design of a 16Mb DRAM product
featuring embedded ECC and SRAM cache. Following this,
he worked on array design for the 16/18Mb DRAM product.
In 1994 he began work in his current field of wide-I/O, high-
performance DRAM macros for embedded applications.

Jeffrey H. Dreibelbis IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452
(jdreib@us.ibm.com). Mr. Dreibelbis received the B.S. degree
in electrical engineering from Lehigh University in 1973.
Upon graduation, he joined the U.S. Air Force, where he
served as a Communications Electronics Engineer for the
USAF Communications Service at Griffiss AFB, Rome,
New York, until 1977. In 1977 he joined the semiconductor
development laboratory of the IBM Microelectronics Division
in Essex Junction, Vermont, where he first worked in n-MOS
SRAM and DRAM product design. He later became a key
developer in CMOS SRAM projects, CMOS commodity
DRAM designs, and embedded SRAM macros. He is
currently a Senior Technical Staff Member in the IBM
Advanced Memory Design group, working on the
development of embedded DRAM macros for IBM ASIC
offerings. Mr. Dreibelbis is a member of Tau Beta Pi, Eta
Kappa Nu, and the IEEE.

Erik A. Nelson IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (eanelson@us.ibm.com).
Mr. Nelson received the B.S.Ch.E. degree from Cornell
University. He joined IBM in East Fishkill, New York, in
1982, working on wafer fabrication process development
for bipolar transistor products. In addition to process
development, he has experience in electrical characterization
and wafer manufacturing. Since 1993, Mr. Nelson has worked
on DRAM product development in Essex Junction, Vermont.
After working with IBM development partners on 64Mb to
256Mb commodity DRAMs, he turned his attention to
embedded DRAM, contributing to product development
and introduction to manufacturing for SA-27E and CU-11
products.

Darren L. Anand IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (danand@us.ibm.com).
Mr. Anand received a B.S.C.E. degree from Clarkson
University in 1997. After his junior year at Clarkson, he
interned with IBM Microelectronics in Essex Junction,
Vermont, in 1996, working in the PowerPC development
group. In 1997, he became a full-time employee of IBM
Microelectronics in Essex Junction, working on high-
performance 16Mb SGRAM design. In 1998, he began work
in his current field, high-performance embedded DRAM
macro design. In addition to eDRAM data path and array

J. E. BARTH, JR., ET AL. IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

688

design, Mr. Anand has worked on a 144Mb SRAM
replacement based on the eDRAM macro and has done
extensive work on eFuse development.

Gerald (Gary) Pomichter IBM Microelectronics
Division, Burlington facility, Essex Junction, Vermont 05452
(garypp@us.ibm.com). Mr. Pomichter received his B.S.C.E.
degree from Clarkson University in 1990. He subsequently
joined the IBM Workstation Division in Kingston, New York,
where he was involved with high-speed 3D workstation
graphics controller design. After moving to the IBM
Microelectronics Division in Essex Junction, Vermont, in
1994, he helped to design the IBM family of synchronous
graphics RAMs. Since 1998, he has been working on the IBM
wide-I/O, high-performance DRAM macros for embedded
applications.

Peter Jakobsen IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (jakobsp@us.ibm.com).
Mr. Jakobsen received the B.S.C.E. degree from Pennsylvania
State University in 1997. During his B.S. degree work he was
a co-op student with IBM in Essex Junction, Vermont, where
he tested 4Mb SGRAM and wrote data extraction software
to analyze circuit simulation data. In 1998 he joined the
IBM SDRAM development group which later developed
RAMBUS. In 2000 he began work in his current field
of wide-I/O, high-performance DRAM macros for
embedded applications.

Michael R. Nelms IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (mnelms@us.ibm.com).
Mr. Nelms received a B.S.E.E. degree from the University
of Vermont in 1998. During his B.S. degree work, he was
an intern at Game Financial Corporation in Plymouth,
Minnesota, writing and maintaining software for a customer
call center. He also was a co-op student at IBM in Essex
Junction, Vermont, where he modeled 256MB DIMMs and
motherboard configurations. After graduation, he joined IBM
in Essex Junction, where he now works on developing
embedded DRAM macros for the IBM ASICs program.

Jeffrey Leach (current address unavailable). Mr. Leach
received a B.S. degree in computer engineering from Clarkson
University in 2000. In 1998 he was a co-op student at GE
Power Systems as a Y2K database design engineer. In 1999
he was a co-op student with IBM on the ASIC ROM
development team writing software to automate schematic
verification. At Clarkson he was a software systems
architecture teaching assistant. After receiving his bachelor’s
degree, Mr. Leach joined the IBM Microelectronics
embedded DRAM design team in Essex Junction, Vermont,
as a circuit design engineer. He left IBM in November 2001.

George M. Belansek IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452
(georgeb@us.ibm.com). Mr. Belansek received his B.S.E.E.
degree from Pennsylvania State University in 1983, and his
M.S.E.E. degree from the University of Vermont in 1990.
While an undergraduate, he twice interned with IBM in the
Essex Junction, Vermont, facility working in final test and
DRAM design. Upon graduation he joined the IBM

Microelectronics Division in Essex Junction. Mr. Belansek
has held various assignments at IBM, including lead
characterization engineer for IBM SRAM products, Project
Manager for the IBM graphic memory (SGRAM) product
line, and, currently, Design Manager of the high-performance
embedded DRAM and SRAM development team.

IBM J. RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002 J. E. BARTH, JR., ET AL.

689

