Hierarchical
indexing data

by J. F. Silverio
Y. M. Ng
D. F. Anderson

structure method

for verifying the
functionality of
the STI-to-PCl
bridge chips

of the IBM
eServer z900

The IBM eServer z900 has an overall system
I/0 bandwidth which is three times that of
IBM S/390° G5/G6 servers, necessitating the
use of Self-Timed-Interface (STI)-to-Peripheral-
Component-Interface (PCI) bridge chips to
exploit this bandwidth. The chips are used

to form a layer between the networking
attachments of the z900 and its main storage
complex. The layer adapts the high-speed
point-to-point packet-oriented STI interface of
the 2900 to its multi-drop PCI bus structure.
This paper describes a method for verifying
the functionality of the STI-to-PCl bridge
chips by implementing a hierarchical indexing
method to support all address dispatching,

data management, and data integrity checking.
The method is at the core of the random-
element-level verification methodology to
support all data movement mainline testing of
the z900. Monitors, checkers, and drivers were
developed and integrated as part of the overall
methodology to verify all external interfaces.

Introduction

The IBM eServer z900 can accommodate 256 channels,
network adapters or Parallel Sysplex* attachments [1]. It is
through the use of a robust I/O subsystem based on new
chips exploiting the 24 1GB/s self-timed interface (STI)
connections of the z900 that its large 16-way processor

©Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

J. F. SILVERIO ET AL.

617

618

..........
t t t t / > Pr(()icessor
l L2 |<_> % zz)ra
ge
= complex
IMBA | IMBAI IMBA
[TTATT [TTTTT [TTATT
24 STI ports

Y To I/O cages or
G35, G6, zSeries servers

STI-to-PCI 1/0 subsystem

bridge

OSA-Express or FICON Express
(GbE, FE, ATM 155, Token Ring)
Y

y
7900 series server

Overall structure of a zSeries server. Its microprocessors (PUs) can
be CPs, system assist processors (SAPs), integrated facilities for
Linux, or integrated coupling facilities.

Y
<+—>(_STI behavioral
LGS 2900 | Chain| STI-to-PCI
dispatcher i
bridge
Data STI
management 1
Data MMU MMU
At Swi/ >
integrity A“r/lla _l behavioral
ADM
behavioral
~—_behavioral

STI-to-PCI bridge chip design verification environment structure.

complex can efficiently run applications. Figure 1 shows
the overall structure of a zSeries server, depicting the
processor complex and the STI-to-PCI bridge chip
integrated in the I/O subsystem. New complex chips used
for mainframe I/O channel, network, and Parallel Sysplex
attachments had to have their design and internal function

J. F. SILVERIO ET AL.

verified. Tight development schedules and cost efficiencies
associated with reducing the number of chip design passes,
or “RITS,” required new methods for verifying interfaces.
Mainline function of interfaces between the STI and
attachments and internal address and data management
functions were verified using innovative methods and
tools. Extensive simulation coverage of the new z900 chips
enabled the verification team to support the relatively
short z900 development schedule to bring its leading-edge
performance and function to our customers. Verifying
function used in the IBM OSA-Express GbE feature

and the high-performance FICON* Express channel

was a challenge. These high-bandwidth adapters were
respectively available in the z900 in December 2000 and
October 2001. Thus, the challenge was met and led to the
establishment of a method for verifying fast and complex
I/O interfaces and functions.

Element-level verification environment

The environment structure shown in Figure 2 was
implemented for all mainline functional simulation of the
STI-to-PCI bridge chips. The structure consists of four
behaviorals: three interface behaviorals and an address
and data management (ADM) behavioral.

Each of the interface behaviorals [the STI behavioral,
the local data storage (LDS) behavioral, and the PCI
behavioral] is further subdivided into two other
behaviorals: a monitor behavioral, which performs all
interface protocol monitoring and validation according to
the design specifications, and a driver behavioral, which is
responsible for driving the data and address information
on the interface buses. Basically the driver behavioral
performs two functions: One is to issue commands to the
chip, and the other is to respond to commands coming
from the chip.

All communication between the interface behaviorals
is achieved through the ADM behavioral. The ADM
behavioral is an event handler providing all address
dispatching and data management functions. First,
events occurring at the interfaces trigger the interface
behaviorals, and methods are subsequently invoked,
thus allowing the behaviorals to communicate with one
another. The ADM behavioral is also responsible for
handling all data integrity checking. A more detailed
description of all environment behaviorals is provided
later.

Integrated in the overall environment structure is the
device under test (DUT), which in this case is the STI-to-
PCI bridge chip.

Device under test

The STI-to-PCI bridge chip, the DUT shown in Figure 2,
is a high-performance interconnect chip which serves as
a bridge between the eServer zSeries STI bus and the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

industry-standard PCI bus. This chip was designed to
support an environment in which a processor is attached
via the PCI interface. This processor is referred to as
the channel processor. Various networking and channel
attachments, such as ATM, Fast Ethernet, Gigabit
Ethernet, and FICON, are also supported via the PCI
interface.

The STI-to-PCI bridge chip contains four basic
interfaces, of which two are STI interfaces. One interface
provides all data movement to and from the z900 memory,
and the other provides the STI chaining capability, making
it possible to attach another STI-to-PCI bridge chip in
a similar configuration for additional connectivity and
bandwidth. An SDRAM memory interface, also known as
LDS, provides a temporary memory staging area for data
movements in and out of the PCI-attached devices. The
LDS is controlled and protected with ECC, single-error
correction and double-error detection, by the on-chip
memory management unit (MMU). This unit provides a
high-speed memory access to the elements inside the chip.
The PCI interface is 64-bit, 33-MHz or 66-MHz, which
allows the z900 I/O subsystem to support the various PCI
adapters.

The data movement between the STI and PCI interfaces
is accomplished by a register operation (RegOp) engine
and by two data mover queue (DMQ) engines. These
DMA engines can be controlled by the channel processor
via the PCI interface or by the system assist processor
(SAP) [2] via the STT interface.

The MMU switch and arbiter function within the chip
provides the internal data path between the data
movement functional units.

Verification methodology

Verification of the STI-to-PCI bridge chip was performed
with an IBM-designed cycle simulator called ZFS [3].
With a cycle simulator such as ZFS, the detailed timing of
the logic circuits is ignored, and the state of the logic is
evaluated on clock cycle boundaries. Timing was checked
and verified with tools other than ZFS. ZFS provides

the performance needed to support the large complex
STI-to-PCI bridge chip model. All mainline functional
implementation testing was done using ZFS as a single-
cycle simulator using the L2 portion of the L1/L2 SRL
structure.

All test-case coding was done using SimAPI [4]. SimAPI
is a common programming interface for simulation; it
provides a set of functions implemented by the user
programs and test cases to drive the simulation model.

Because of the structural nature of the behaviorals
shown in Figure 2, an object-oriented conceptual language
was used. Based on the availability of resources and skills,
C++ was the language implemented.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

(2) (b) ©
i @, | i e, > @,
ih Cm+1 ix Cmt1 il Cmt1
ih Cmt2 [ix Cm+2 }
| |
‘ ‘ i1 | Cm
: i1 | Cmri
] B 1 | Gnra
Lt Cmt1 [I

H
o
)
=

Hierarchical indexing data structure: (a) Higher-level index [7] and
entry [e] pairs corresponding to a given operation control block.
(b) Intermediate-level index and entry pairs with pointers to lower
levels down the hierarchy. (c) Lower-level index and entry pairs.
Indices A, x, and / represent any integer value; m is an integer
value associated with an entry.

ADM behavioral

Hierarchical indexing data structure

As shown in Figure 2, the address and data management
(ADM) behavioral is at the heart of the overall element-
level design-verification structure. The ADM behavioral

is an event handler acting as an address dispatcher for all
chip interface behaviorals. It supports all address and data
management functions and, in addition, it handles all data
integrity checking. For this purpose, the ADM behavioral
implements a hierarchical indexing data structure, as
depicted in Figure 3.

Each level within the hierarchy associates a given index,
which can be any integer value, with a set of entries. Each
entry at the highest and intermediate levels contains a
reference or pointer to the lower-level indices and so on
down the hierarchy. This reference is a key or an address
pointer. The entries at the lowest level of the hierarchy
contain the addresses and the source or target data
allocated for a given operation.

The control-block entries for a given operation are
indexed at the highest level of the hierarchy. The control
block contains information related to the operation setup

J. F. SILVERIO ET AL.

619

620

K(iofhv €0—m); (a)
K{(ig—p> €9)3 o> €9y)5 =5 (iofy €)] (b)

K> €g)i Uy €9y)5 =5 Uy €y)5 (g€,)] (€)

Key or address pointer index and entry pair representation, where
K is the key or address pointer, 7 is the index, and e is the entry:
(a) Highest-level pair; (b) intermediate-level pairs; (c) lowest-
level pairs.

addr, | (addr)/data,, be, | (a)

par,,

‘ data0,, ‘ datal | ‘(b)

An index and entry pair with the entry portion expanded: (a) Each
entry contains an address, and the location in memory to which
this address is pointing may contain another address or data. (b)
The data portion may contain 32 bits or 64 bits of data.

as well as all its associated controls, such as data
movement parameters, source address pointers, target
address pointers, data counts, and ending status. At the
intermediate levels, the index and entry pairs contain keys
or address pointers to lower indices down the hierarchy.
At this level, the entry blocks contain keys or address
pointers which are used to reference other addresses or
memory locations. The indices and entry pairs at the
lowest level are associated with actual data blocks in
memory.

The keys or address pointers at each level within the
hierarchy are represented as shown in Figure 4. The
highest-level key or address contains a single index and
entry pair, as depicted in Figure 4(a). Figure 4(b) shows
that intermediate levels contain two or more index and
entry pairs associated with a given key or address.

A lowest-level key or address which contains the
maximum number of index and entry pairs is represented
in Figure 4(c).

Figure 5 shows a single index and entry pair in which the

entry portion is expanded. The contents of each entry is

J. F. SILVERIO ET AL.

ifcSelCmd()
Command

setup and
address check-out

Address/data
processing and

ifcAddrDataProc(a,c)
dispatching
ifcCmdComplAddrCheckoff(a,c)

Command

completion and final
address check-off

ADM behavioral-state machine structure.

dependent on the level at which the entry is positioned
within the hierarchy. At the highest and intermediate
levels, the entry contains the address for each entry or
memory location. The actual contents of this memory
location are an address or a pointer to another address
location down the hierarchy. An entry at the lowest level
of the hierarchy also contains an address for each entry or
memory location, but the memory content to which this
address is pointing is the actual data and associated
information such as data parity and byte enables. Byte
enables define which bytes of data are considered valid.
The data parameter for each entry may contain 32 bits or
64 bits of data.

ADM behavioral structure

The structure of the ADM behavioral includes a state
machine with four distinct states: an idle state, a
command- or operation-setup and address-check-out state,
a processing and address-dispatching state, and an address-
check-off and operation-completion state. This state
machine structure is shown in Figure 6. The ADM
behavioral makes the transition from an idle state when it
is invoked with a command selection function call from
an interface behavioral [ifcSelCmd()]. This function call
implies that the interface behavioral is ready to process
or initiate an operation. After a supported command or
operation is selected at random, the ADM behavioral
transitions to the command-setup and address-check-out
state. In this state, the ADM behavioral will set up the
operation and check out all necessary addresses to support

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

the selected command or operation. When this setup is
complete, the transition to the address, data processing,
and dispatching state occurs. The ADM behavioral
remains in this state while it receives function calls from
the interface behaviorals [ifcAddrDataProc(a,c)] to
dispatch or process an address and its corresponding data.
The function is invoked with an address (a) parameter and
a command (c¢) parameter. If the command is a read from
the perspective of the chip, meaning that the chip is
performing a read operation, the ADM behavioral
dispatches the corresponding data associated with the
address parameter. In other words, the data is made
available to the interface driver so that it can be driven
on the input bus to the chip. If the command is a write,
which implies that the chip is performing a write, the
ADM behavioral will process the data for the interface
monitor or checker behavioral. This is depicted in more
detail in the flowcharts shown in Figures 7 through 9.
Finally, the ADM behavioral enters the final state when
it invokes the functional call to perform the command-
completion and final address and data-check-off routine.
This routine is called when the ADM behavioral receives
an ifcAddrDataProc(a,c) call in which, for this case,
address (a) corresponds to ending status data.

This triggers the ADM behavioral to invoke the
ifcCmdComplAddrCheckoff(a,c) function passing the
ending-status address and the write-command parameters.

The flowchart diagram shown in Figure 7 provides a
more detailed description of the command-setup and
address-check-out state implemented in the ADM
behavioral. The PCI and STI interface driver behaviorals
can invoke function ifcSelCmd() simultaneously, forcing
the ADM behavioral to transition from an idle state to the
command-setup and address-check-out state. In this state,
the ADM behavioral selects a command or operation
at random from a list of supported commands. The
commands or operations supported by the STI-to-PCI
bridge chip are described later. After the command
selection, the setup begins for all addresses and their
corresponding index and entry pairs. These addresses are
selected at random from a predefined range allocated
during chip configuration time. The address space
allocated to the STI behavioral is considered main storage
space, while the PCI behavioral will have its space
allocated in PCI-device memory-mapped addressable
range.

First, the highest level of addresses and corresponding
index and entry pairs, represented as K(i,, e,);, is set up
for the command control block, which includes the ending
response or status entry. This block contains address
pointers to destination and source address lists of data
blocks, as well as other miscellaneous control information
necessary to execute the operation. Index 4 can be any
integer value, meaning that several operations can be set

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Invoke ADM
ifcSelCmd(),

Select Cmd at Rand
Begin operation setup

1

K (ih’ e,);
for Cmd control block
and ending status entry

Y

I
1

Y

v

Ky €,) G e,)L
for miscellaneous
operation control

functions

K@iy, e,); (i e,)];
for address lists
corresponding to

destination data blocks

Ky e,): Gy e,)l:
for address lists
corresponding to
source data blocks

' v

K@y, e,); Goe,); Gpe,)l | | KlGye,)s Gse,); (e,)l
for destination data blocks for source data blocks

= I

To address/data

processing and
dispatching state

Flowchart diagram for the command- or operation-setup and ad-
dress-check-out state.

up at any time. Subsequently, the intermediate index
and address entry pairs are also set up. As shown in the
flowchart diagram, these are represented as K[(i,, ¢,);
(i,e); s (iy, e,)];. The destination and source data
blocks can be partitioned at random into smaller blocks
of data. Therefore, the lists of address pointers to

the smaller data blocks are grouped and set up with
intermediate indices and address entry pairs. The value
of index x can be any integer value, indicating that there
could be several indices and entry pairs associated with a
higher-level index /. Also, other miscellaneous control
functions are represented at the same intermediate level,
as are the lists of address pointers. For instance, LRC
and CRC starting and ending pointers are set up and
represented at this level of the hierarchy. At the lowest
level of the index and entry pair hierarchy, all data blocks
for the destination are set up, as well as the source data
blocks. The index and address entry pair representation for
these data blocks is K[(i,, ¢,); (i, e,); "3 iy, e); (i,e)]
An address at this level is represented by the maximum
number of indices and entry pairs. The lowest-level
index / can also be any integer value, and several indices
at this level are associated with a single index x at

the previous level within the hierarchy. Since any given
index may contain several entries, m can be any integer
value as well. Therefore, any index and entry pair at a

J. F. SILVERIO ET AL.

621

622

address-check-out state

]

ifcAddrDataProc(a,c);

[From command-setup and]

v

Perform key/address
linear or sequential search

Address
check
error

Y

Return entry data Return entry data to
to interface driver interface monitor and

behavioral checker behavioral

Check off address N
and entry data

'

To command

miscompare?

completion and final
check-off state

Data integrity
check error

Flowchart diagram for the address/data processing and dispatching
state.

lower level within the hierarchy can be associated with
only a single index at a higher level, and so on, as the
hierarchy structure is traversed from the lowest level to
the highest.

The ADM behavioral transitions unconditionally to the
next state when all necessary address index and entry
structures associated with and necessary to support the
operation are properly set up. This may take place during
the next machine cycle or several machine cycles later,
depending on when the event occurs at the interfaces.
Then this event or command triggers the interface
behaviorals to call the ADM behavioral. The next state to
which the ADM behavioral transitions is described in the
flowchart diagram of Figure 8. While in this state (the
address, data processing and dispatching state), the ADM
behavioral waits for the interface behaviorals to invoke it
by the interface monitors and checkers or by the interface
drivers. This is done via the ifcAddrDataProc(a,c) function
call. The parameters being passed are simply an address
(a) and a command type (c). A read command parameter
is passed by the interface driver, since from the
perspective of the chip, a read command means that the

J. F. SILVERIO ET AL.

dataflow is from the interface driver behavioral to the chip
inputs. On the other hand, a write command parameter is
passed by the interface monitor, since from the point of
view of the chip, the data movement is from the chip
outputs to the interface monitor behavioral. Whether it
is the interface driver or the interface monitor invoking
ifcAddrDataProc(a,c), the ADM behavioral will perform
a linear or sequential search of the address and entry
information [5]. This simple and straightforward
data search approach is implemented to facilitate the
communication between the behaviorals within the overall
structure. The interface behaviorals have no knowledge
of any of the chip operations or command information
and controls associated with a given address. The only
information the interface behaviorals have associated with
the address is whether that address location is being read
or written. The burden of checking and testing is shifted
to the ADM behavioral, which has the responsibility for
checking and testing all conditions and information related
to the address being passed by the interface behaviorals.

If the address being searched, with its associated data
information, has not been found after the linear or
sequential search has been performed, an error check
is flagged. In the event that the address and data
information is found, all indices and entry pairs associated
with this address are composed, and the data information
is returned to the interface driver in the case of a
read, or to the interface monitor in the case of a write.
Subsequently, this address and its associated indices and
entry pairs are checked off. Therefore, this address
has been visited, and its associated data and control
information has been properly checked by the interface
monitor behaviorals in the case of a write-type operation,
or it has been visited and its data provided to the
interface behavioral drivers in the case of a read
operation. Also, in the case of a write command, a data
integrity check is performed at this point. The entry
information returned to the interface monitor is compared
with the outgoing data. If a miscompare is present, an
error check is flagged, as shown in Figure 8.

The transition to the command-completion and final
check-off state, for any given operation, may occur at
any point in time if the interface behavioral invokes the
ifcAddrDataProc(a,c) function for one final time. The ADM
behavioral performs a linear or sequential search, and if
an ending status write is found, the ADM behavioral
calls the ifcCmdComplAddrCheckoff(a,c) function. What
constitutes an ending status write is determined by the
fact that it is a write operation to an address entry with
the highest-level index and entry pair associated with it.
The flowchart diagram representing this state is shown in
Figure 9. When this function is invoked, it is an indication
that the hardware model is completing the operation by
updating or writing to the response or ending status

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

address location. Once again the ADM behavioral
performs a linear or sequential search of this ending status
address. If it is not found, an error check is displayed; if
it is found, the index and entry pair for this address is
composed, and it is checked off. Subsequently, the ADM
behavioral performs a hierarchical indexing data search of
all addresses and their associated indices and entry pairs
from the highest level all the way down to the lowest
level. This search begins with the index and entry pair,
K(i,, e,);, for the ending status address entry. Then the
search continues with all addresses for all the intermediate-
level and entry pairs, K[(i,, e,); (i, €,); " *; (iy, e)
associated with this higher-level index. The search

then moves on to the lowest-level addresses, represented
as K[(i,, e,); (i,e,); s (iy, e); (i, e)] Al
addresses at this level, which are associated with a

given index at the previous level, are also visited. These
addresses refer to memory locations with actual data. If
any of the addresses or associated indices and entries are
not checked off, this operation is deemed unsuccessful,
and the addresses that were not visited will be displayed
for further debugging. This hierarchical search from the
highest level through the intermediate levels and on down
to the lowest level is critical to the overall mainline
dataflow testing and debugging, since many operations
may be outstanding at any particular time.

Supported commands or operations

The set of supported commands can be subdivided into
two subsets: commands from the memory bus adapter
(MBA) targeting the CCA registers internal to the chip or
to access other chained STI-to-PCI chips, or commands
targeted to the MBA. The commands from the MBA
targeting the CCA registers are initiated from the SAP or
PUs in the main storage complex. These can be referred
to as outgoing commands. The commands targeted to the
MBA are initiated from the STI-to-PCI bridge chip itself
or from a processor attached via the PCI interface. These
commands are considered to be incoming commands. The
outgoing commands are initiated from the STI behavioral
driver, and the incoming commands are emulated by the
PCI interface driver behavioral.

The outgoing commands from the main storage complex
via the MBA are called disconnected senses and controls
(D-S/C). These are implemented to support reads and
writes of internal CCA registers, logging, and maintenance
registers. In addition, they are used to perform similar
functions on a chip attached via the chained STI interface.
Disconnected senses are considered to be read commands,
while disconnected controls are thought of as write
commands.

The set of incoming commands are further subdivided
into two groups: storage commands and sense/control
commands. Storage commands can be initiated from the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

From the address/data
processing and
dispatching state

'

ifcCmdComplAddrCheckoff{(a,c);

'

Perform linear or sequential
search for ending response or
status address and entry data

Address or Address
entry data and entry
check error found?
Begin final check-off for all address and
entry pairs associated with the operation,
starting with the highest-level pair
Have all
Unsuc.cessful entries been
operation ahedkail

off?

Flowchart diagram for the command-completion and final address-
check-off state.

SAP or from a PCI-attached processor device. A fetch
storage command involves the transfer of data from the
main storage complex area to the peripheral device
attached to the PCI interface. For a store storage-type
command, the flow of data is to the main storage
complex. In the context of the STI-to-PCI bridge chip,
the operations which involve the movement of data

are controlled by an internal data mover queue (DMQ)
engine or by an internal register operation (RegOp) engine.
The hardware structure for the STI-to-PCI bridge chip
integrates two DMQ engines with the capability to execute
two queue entries simultaneously. It also contains one
register-operation engine. Register operations are
serialized, but they can be executed simultaneously with
DMQ operations. As part of an IP packet, the amount of
data movement supported, in terms of bytes, is a variable
number between 1 and 64. In addition, a maximum of
128 bytes is also supported. Internally, the STI-to-PCI
bridge chip can initiate sense- and control-type commands
as well. Control commands are used to modify bit vectors
in the MBA. Sense commands are implemented to
communicate channel subsystem timer values to the
MBA.

J. F. SILVERIO ET AL.

623

624

Table 1 Format for DMQ entries.

Hardware response word
DMQ control word

PCI space address lists
2900 space address lists
Address list sizes
External address/zone 1D
CRC start pointer

CRC end pointer

LRC start pointer

LRC end pointer
Duplicate z900 address pointer
Pad bytes

— Valid bit and response code

— DMQ data movement operational parameters
— Pointer to top of PCI address list

— Pointer to top of z900 address list

— Valid PCI/z900 space address/count pairs

— Used to support 35-, 36-, or 48-bit addressing
— Address pointer to initial CRC seed

— Address pointer to ending CRC

— Address pointer to initial LRC seed

— Address pointer to ending LRC

— Bit-inverted copies of z900 addresses

— Doubleword multiples

Sense and control commands involve small movements
of data, normally 32 bits or 64 bits. Therefore, the address
being accessed by these sense and control commands
can be represented with a single index and entry pair.
Following the nomenclature to represent addresses
and their associated indices and entry pairs presented
previously, senses and controls can be represented as
K(i,, e,);- The representation used for sense- and control-
type commands is a subset of the hierarchical indexing
data structure presented before. On the other hand,
storage commands, which may involve large movements of
data, require several levels of indices and entry pairs in
order to be represented. For DMQ- and RegOp-type
operations, the hierarchical indexing data structure
implemented in the ADM behavioral is necessary to set
up, process, and dispatch all addresses and data to support
the operation. The following two sections provide a more
detailed description of DMQ and RegOp operations
and how the hierarchical indexing data structure is
implemented to support the testing and debugging of
these operations.

Data mover queue (DMQ) operations

The DMQ operation supports the transfer of large blocks
of data between main storage (z900) and a PCI-address-
mapped space, LPS or LDS. The generation of the
command streams to perform the data movement is
defined by the contents of the DMQ entry. This DMQ
entry can be initiated or set up by a PCl-attached channel
processor or by a z900 processor configured as a SAP. A
series of DMQ entry queues are stored contiguously in

a predefined portion of LDS or LPS space. Each DMQ
entry represents multiple movements of blocks of data.
The total length of a DMQ entry is configured by the
channel microcode at initialization time. A minimum of

J. F. SILVERIO ET AL.

twelve 32-bit words are required per DMQ entry. Table 1
shows the format of each DMQ entry. The configuration
time and initialization time mentioned here are emulated
by setting specific hardware facilities in the model or by
explicitly performing control commands targeted to the
chip configuration registers. A detailed explanation of the
initialization and configuration sequence implemented for
the STI-to-PCI bridge chip and the bit definitions for the
contents of the configuration registers is beyond the scope
of this paper.

The hardware response word can be read or written by
the internal DMQ engine. When it is read, a valid bit
indicates whether or not the entry can be executed by
the DMQ engine. The time at which this entry is written
by the DMQ engine is an indication that the engine is
completing the operation. The contents of this address
entry, referred to as the response code, indicate whether
the operation ended successfully or with a particular error.
The DMQ control word is used to control the operation.
The direction of the storage command, the LRC and CRC
controls, operation byte count, and several other controls
are defined in the DMQ control word. The address
pointers to the list of partitioned address and data blocks,
in both LPS and main-storage space, are respectively
defined by the PCI address list pointer word and by the
z900 address list pointer. The actual sizes of these lists are
defined in the fifth word of the DMQ entry. The extended
address and zone ID word are used to support 35-, 36-, or
48-bit addressing modes of operation. The following words
contain address pointers for initial and final or generated
CRC and LRC values. The following word is an address
pointer to the top of the duplicate of the z900 address list.
This block contains a bit-inverted copy of the addresses
from the normal list. As the data movement to and from
main storage takes place, the normal address list contents

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

are compared with this bit-inverted list. A miscompare
results in an error condition which causes the DMQ to
terminate. The last of the required words is used only
for padding purposes.

Implementing the hierarchical indexing structure
discussed before, the address for each one of these words
in the DMQ entry is referenced by a higher-level index.
Once again, following the nomenclature presented before,
each address, starting with the first word, is represented
as K(i,, e,);, followed by K(i,, e,); for the second word
address, and so on down to K(i,, e ,); for the last required
word address. K corresponds to the address for each one
of the words in the DMQ entry; (k) is a single integer
value to represent this particular DMQ queue entry. Each
entry (e) contains the addresses and the corresponding
data entries. In this case, the data entries are actual
address pointers to other locations in memory where other
address list pointers (the z900 and the LPS address list
pointers) reside. These blocks containing the address list
pointers are represented at the intermediate levels of the
hierarchy as K[(i,, e,); (i, ¢,)]; for the block of LPS
addresses and as K[(i,, ¢,); (i, e,)]; for the block of
2900 addresses, where (x) is a single unique integer value
referencing the block of address pointers to the actual
data words or doublewords in memory. For instance, an
address pointing to the top or first entry of a list of LPS
addresses is represented as K[(i,, ¢,); (i, ¢,)];. An address
pointing to the actual data entry block corresponding to
this index and entry pair representation can in turn be
represented as K[(i,, e,); (i, ¢,); (i, €,)];, where (I) is a
unique integer value referencing this particular block of
data. For example, the address of the data in the fifth entry
of this data block is represented as K[(i,, e,); (i, ¢,); (i, e,)];-
An address pointing to the fourth entry of a list of z900
addresses can be represented as K[(i,, ¢,); (i, e,)];.
Subsequently, for instance, the address of the data in the
sixth entry of this data block is represented as K[(i,, e,);
(i, e,); (i, e5)];. The addresses for the entries pointed
to by the rest of word entries in the DMQ queue entry
block can be represented by two levels of index and entry
pairs. This representation has previously been shown as
K[(,, e,); (i, e,)];. For example, the addresses of the actual
CRC start value, CRC ending value, LRC start value, and
LRC ending value would be represented respectively as
K[y €); (i €)1 KIG,o €,); o €T KIG €); G €]
and K[(i,, e,); (i, e,)];.

When each address is visited, as a result of the linear or
sequential search when the interface behaviorals invoke the
ifcAddrDataProc(a,c) function call, a check-off parameter
is tagged with this address, indicating that there is a match
for the associated data and that the address was found.

When the ending status or response word is written,
indicating the end of the operation, the ADM behavioral
is triggered to perform the final completion check-off. All

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

entries associated with highest-level index are visited to
make sure that the check-off parameter has been set for
all of them. Then all indexed entries referenced by the
address pointers in the DMQ entry are also visited. These
are the intermediate indexed entries within the hierarchy.
Finally, all indexed entries at the lowest level of the
hierarchy which are associated with the previous levels
are also visited. Hence, the ADM behavioral performs the
checking by traversing the hierarchical indexing structure
from the highest level to the lower levels.

Register operations

Register operations are used to pass control information
between the channel processor and the z900 storage
complex. In addition, these operations are used to
generate single storage commands. A register operation
can be initiated from the channel processor via the PCI
interface or from the SAP via the STI interface with a
D-S/C sense command.

Register operations are set up by microcode in PCI-
defined space as a control block. This control-block
format, shown in Table 2, defines all data movement as
well as all control parameters. The register operation is
started with a write operation to the blocked register
operation pointer. The nomenclature shown above to
represent addresses and their associated index and entry
pairs is also used for the RegOp commands. Therefore,
the address containing the blocked RegOp address pointer
is represented as K(i,, e,);. This is the highest-level index
and entry pair representation. The content of this blocked-
register operation pointer points to an address at the top
of the location where the actual register operation block
resides in memory. A block of data is fetched starting at
the address location, and the register operation begins.
The format for this block of data is shown in Table 2.

The addresses and associated index and entry pairs are
considered at the intermediate level and are represented
as K[(i,, e,); (i, e,)];- The first four words within this
block of data contain the header and extended data
header information as required by STI IP packet transfer
protocol [4]. The extended data header word 1 contains
an address pointer to the main-storage location for the
destination of the data. The following word is an address
pointer to the PCI address space where the source of the
data is located. All addresses associated with these entries
are at the lowest level of the indexing structure hierarchy
and can be represented as K[(i,, ¢,); (i, ¢,); (i, e,)];- The
addresses for the rest of the words in the RegOp block
are represented with the intermediate-level index and
entry pair. At the completion of this operation, the STI
status register word is written with the proper status
information, such as IP control or interface error
information, or simply the information received in the
response IP packet. Just as with DMQ-type operations,

J. F. SILVERIO ET AL.

625

626

Table 2 Format for RegOp entries.

Header word 0

Header word 1
Extended header word 0
Extended header word 1
PCI space address
Register op control word
Data register word 0
Data register word 1
LRC start pointer

LRC end pointer

CRC start pointer

CRC end pointer

STI status register word

— STI IP header word 0

— STI IP header word 1

— STI IP extended data header word 0

— STI IP extended data header word 1

— Pointer to PCI space address block of data

— Control word to support RegOp execution

— Data word 0; used as source/destination data transfer
— Data word 1; used as source/destination data transfer
— Address pointer to initial LRC value/seed

— Address pointer to final LRC value

— Address pointer to initial CRC value/seed

— Address pointer to final CRC value

— Ending status word

the final check-off and operation-completion state in

the ADM behavioral structure performs a hierarchical
indexing data structure search starting at the highest level
of the hierarchy to make sure that all addresses related to
this RegOp command are properly checked off and their
associated data processed correctly. The ADM behavioral
proceeds with the intermediate levels all the way down to
the lowest level.

STI behavioral

The STI-to-PCI bridge chip implements two STI
interfaces; one provides the connection with the MBA and
the other allows the connection to other chained STI-to-
PCI bridge chips. The STI behavioral emulates both the
MBA interface and any other attachments to the chained
STI interface. In this paper, the focus is on the dataflow
of IP packets. The following section discusses the STI
behavioral structure in the context of movement of IP
packets for mainline testing and debugging purposes.
These IP packets can be in the form of commands, also
known as outgoing packets, or responses, which are
considered to be incoming packets.

The STI interface is a full-duplex link structure which
comprises two 10-wire connection links. One link is used
for receiving IP packets and the other is used for sending
IP packets. Each 10-wire connection contains an 8-bit
serial data interface, one wire is used as a parity or
control bit, and the tenth wire is implemented as the clock
which travels with the data. Since the clock travels with
the data, the physical receive layer of the STI link handles
skew and jitter in the transmission link by retiming each
data bit with the transmitted clock. Thus, this interface
is known as a self-timed interface [6].

J. F. SILVERIO ET AL.

The verification of the timing constraints, clock jitter,
and skew on the STI link are not addressed in this
random single-cycle simulation environment. This
environment focuses on functional testing, and it does
not handle timing issues. Therefore, the STI interface is
modeled such that each bit of data is clocked with a single
pulse. This is true for all eight data wires. Thus, after
eight clock pulses, a byte of data would be transmitted
over each wire. With eight wires, an IP packet containing
a minimum of 64 bits would be transmitted after eight
clock pulses. Each z900 main-storage 32-bit address
points to a memory location with 64 bits of data.

STI behavioral structure for dataflow testing

The STI behavioral interfaces with the STI via the 8-bit
serial interface, and it communicates with the ADM
behavioral using a 32-bit z900 main-storage address. In
addition, the other parameter used to communicate with
the ADM behavioral is the command type, whether the
command is a read from main memory or a write to main
memory.

The structure of the STI behavioral includes a monitor
behavioral and a driver behavioral. The STI monitor
behavioral also includes several checking routines to
handle all data-integrity checking as well as controls and
protocol checking. When the STI behavioral receives an
IP packet for a write request to main memory (in other
words, an incoming packet where the data is flowing out
of the chip and into the STI behavioral), it will invoke the
ADM behavioral with function call ifcAddrDataProc(a,c),
where (a) is the 32-bit z900 main-storage address and (c)
indicates that the command is a write operation. This is
handled by the receive state machine internal to the STI

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

monitor behavioral. The ADM behavioral returns the data
associated with this address, and the STI monitor invokes
a checker routine to perform the data-integrity checking.
If a mismatch occurs, this routine will flag a check error.

The driver behavioral integrated in the STI interface
behavioral communicates with the ADM behavioral via
two functional calls: the ifcSelCmd() call, which is used
when the STI driver wants to initiate a command, and the
ifcAddrDataProc(a,c) function call, which is invoked when
the STI driver receives a read request operation. When
ifcSelCmd() is called, a SAP or MBA command is
selected at random from a list of supported commands. As
discussed before, the ADM behavioral sets up all address
indices and entry pairs for the selected operation. The
state machine in the STI driver behavioral responsible for
handling SAP- or MBA-initiated commands is called the
initiate state machine. This state machine also supports
the testing of commands initiated via the chained STI
interface.

The function ifcAddrDataProc(a,c) is invoked when the
STI driver receives a read request operation—for instance,
a fetch storage command. The ADM behavioral returns
the 64-bit data associated with the z900 32-bit address,
and the STI driver places it on the STI interface transmit
side.

PCI behavioral

PCI is a multi-drop bus which supports multiple devices
on the bus through a bus arbiter. The PCI interface
behavioral emulates the activities of the PCI devices on
the bus. Each PCI device on the interface is represented
by a class instance of the PCI interface behavioral. The
bridge chip internal PCI arbiter can support four PCI
devices on the interface. One of the PCI devices is
connected to a microprocessor which handles the PCI
configuration as well as setting up the controls for the
DMA engines. The PCI behavioral can be operated at a
clock rate of 33 MHz or 66 MHz. Each class instance can
be programmed independently to support 32-bit or 64-bit
transactions. The PCI interface behavioral has three basic
operation states: the idle state, the command/address
state, and the data state used for both the monitor and
driver function of the behavioral. Protocols, data, parity,
and PCI arbitration are checked by the monitor function
within each operating state. The monitor also helps to test
the tri-state bus requirements in a two-value (0 and 1)
simulator environment by monitoring the output-enable
signal of all of the bidirectional drivers. The driver function
of the PCI interface behavioral is implemented with two
independent state machines to handle master and target
operations. The driver stress-tests the interface by
randomly driving all of the control signals, including

the bus requests, as long as they are permitted by the
specification. In the case of a master operation, during

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

the command/address state, the PCI interface behavioral
calls the ADM behavioral with ifcSelCmd() to get a
command and address to initiate a transaction on the bus.
The transaction can be for any PCI device, including the
bridge chip on the bus. The data obtained from the ADM
behavioral for a write operation is sent to the bus, while
the data for a read operation is used to compare with

the received data from the bus. When responding

to a target operation during the data state, the PCI
interface behavioral calls the ADM behavioral with
ifcAddrDataProc(a,c) to obtain information to validate the
receiving data for a write operation or return data to the
requester for a read operation. With the help of the ADM
behavioral, the PCI interface behavioral need only process
and check a piece of data at a time, leaving the more
complex job of verifying the full transaction completion

to the ADM behavioral.

LDS behavioral

The LDS interface behavioral can be programmed to
represent a variety of SDRAMs with different latency
requirements and sizes supported by the MMU. It can be
configured to contain up to four external banks of memory
on the bus. The LDS interface behavioral does not contain
any real storage area. It depends on the ADM behavioral
to keep track of the data being moved into and out of the
SDRAM. The structure of the LDS interface behavioral is
similar to that of the PCI interface behavioral, with both
monitor and driver function. Each bank of memory is
represented by a class instance of the LDS interface
behavioral. The LDS interface behavioral monitors the
interface, checks protocols, and provides responses to the
bus according to the SDRAM specification. It checks

the power-on and wake-up sequences required by the
SDRAM. It also verifies the refresh, scrubbing, and ECC
function of the MMU with the information collected from
the memory interface. The LDS behavioral has only the
target states to handle requests from the memory bus.

It is not required to perform any master operation such

as initiating commands. Upon receiving a data-moving
command from the memory bus, the LDS behavioral uses
ifcAddrDataProc(a,c) to call the ADM behavioral to obtain
data to prepare for the bus operation. The LDS interface
behavioral utilizes an ECC function to generate the check
bits for the data. In a memory read operation, data from
the ADM behavioral along with ECC check bits are sent
to the bus. In a memory write operation, data from the
ADM behavioral together with ECC check bits are used to
verify the received data from the bus. With just a simple
communication path to the ADM behavioral, the task of
handling the data for memory operations becomes much
simpler for the LDS interface behavioral.

J. F. SILVERIO ET AL.

627

628

Concluding remarks
The verification method described here, which utilized
three interface behaviorals and an address and data
management behavioral, was first developed to support
the verification of the STI-to-PCI bridge chip integrated
in the I/O subsystem of the Multiprise™ 3000 and G5/G6
S/390 series servers. During the verification-environment
planning stages of the STI-to-PCI bridge chip for the
I/O subsystem of the eServer z900, it became more cost-
effective, from a resources and skills point of view, to
reuse an existing environment structure with some
modifications to support new or added functional logic
requirements. As a result, the use of the environment
structure described in this paper contributed to a
two-pass (RIT) design and on-time delivery of the
most complex I/O chip integrated in the eServer I/O
subsystem to date. In addition, this environment structure,
with its verification implementation and tools methodology,
should be useful for future derivative chips.
Industry-standard buses are used to provide the high-
performance “line speed” attachments for mainframe
channels (FICON Express) and network adapters (OSA-
Express GbE) to the STI buses. Chip-verification methods
such as the hierarchical indexing of data structures have
made it possible to achieve excellent simulation coverage
and team success for state-of-the-art designs implemented
in leading-edge technologies. The methods, successfully
used on the z900 chips used in the IBM OSA-Express
GbE feature and the associated FICON Express channel
should be useful for other eServers as they evolve and
require more I/O bandwidth support for their powerful
microprocessor complexes.

Acknowledgments
The authors would like to thank Bruce Wile and David
Fox for their valuable comments regarding this manuscript.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. C. L. Rao, G. M. King, and B. A. Weiler, “Integrated
Cluster Bus Performance for the IBM S/390 Parallel
Sysplex,” IBM J. Res. & Dev. 43, No. 5/6, 855-862 (1999).

2. T. A. Gregg, “S/390 CMOS Server 1/O: The Continuing
Evolution,” IBM J. Res. & Dev. 41, No. 4/5, 449-462
(1997).

3. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M.
Lasko, P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert, S. M.
Licker, R. G. Sheldon, W. D. Wollyung, W. J. Lewis, and
R. J. Adkins, “Functional Verification of the CMOS S/390
Parallel Enterprise G4 System,” IBM J. Res. & Dev. 41, No.
4/5, 549-566 (1997).

4. G. G. Hallock, E. J. Kaminski, K. M. Lasko, and M. P.
Mullen, “SimAPI—A Common Programming Interface
for Simulation,” IBM J. Res. & Dev. 41, No. 4/5, 601-610
(1997).

J. F. SILVERIO ET AL.

5. Clifford A. Shaffer, A Practical Introduction to Data
Structures and Algorithm Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1997.

6. J. M. Hoke, P. W. Bond, T. Lo, F. S. Pidala, and G.
Steinbrueck, “Self-Timed Interface for S/390 I/O Subsystem
Interconnection,” IBM J. Res. & Dev. 43, No. 5/6, 829-846
(1999).

Received October 17, 2001; accepted for publication
February 12, 2002

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Jose F. Silverio IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (silverio@us.ibm.com). Mr.
Silverio received a B.S. degree in electrical engineering from
the University of Hartford, Connecticut, in 1990. That same
year he joined IBM as a logical designer on an advanced I/O
processor project. He received an M.S. degree in computer
engineering from Syracuse University in 1995. In 1996, he
received an IBM Team Award for his work on the IBM S/390
G3 fast internal bus design. Mr. Silverio joined the Advanced
I/O Connectivity Hardware Verification team in 1996; he

is currently an Advisory Engineer. He has received IBM
Outstanding Technical Achievement Awards for his design
verification work on the STI-to-PCI bridge chip for the S/390
G4 (1999), Multiprise 3000 (2000), and z900 eServer (2001).

Y. Ming Ng IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (mingng@us.ibm.com). Mr. Ng
is an Advisory Engineer in the eServer Connectivity Solutions
Development Group. He received B.S. and M.S. degrees in
electrical engineering from the New Jersey Institute of
Technology in 1976 and 1978, respectively. In 1978 he joined
IBM in Endicott, New York, where he worked as a logic
designer in processor development. In 1992, he moved to
Poughkeepsie, New York, to work on hardware simulation

in I/O development. He has received an IBM Invention
Achievement Award and several IBM Outstanding Technical
Achievement Awards.

David F. Anderson [BM Server Group, 2455 South

Road, Poughkeepsie, New York 12601 (dfa@us.ibm.com). Mr.
Anderson received a B.S. degree in engineering from the
United States Military Academy, West Point, New York, in
1976. He also received an M.B.A. degree from the University
of Puget Sound in 1979 and an M.S. degree in engineering
science from the Rensselaer Polytechnic Institute in 1993. Mr.
Anderson joined IBM in 1981 to work on resource planning
and has worked on almost all of the large systems which have
been designed and manufactured in Poughkeepsie in the past
20 years, including the IBM 3033, 3081, 3090 E/S/J, ES/9000,
9121, 9672 CMOS Parallel Enterprise Servers through
Generation 6, and, recently, the zSeries. In July 1999, he took
an assignment managing a department responsible for the
logic design and simulation of advanced I/O hardware (chips).
The department designed, developed and debugged channels
(ESCON, FICON and FICON Express) and OSA-Express
network adapters (such as GbE) in the IBM z900. Mr.
Anderson received an IBM Excellence Award for his work

on the zSeries I/O chip development. He is currently a

Senior Engineer educating and consulting with customers
approximately 80% of his time in the Poughkeepsie eServer
Briefing Center. He spends the remainder of his time working
with eServer teams across IBM on future products and
announcements.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

J. F. SILVERIO ET AL.

629

