Intelligent
Resource
Director

by W. J. Rooney
J. P. Kubala
J. Maergner
P. B. Yocom

Intelligent Resource Director (IRD), a feature of
the IBM eServer zSeries™ processors and the
z/OS™ operating system, manages multiple
heterogeneous workloads with various
business priorities toward achieving their
goals. It establishes a more synergistic
relationship with the Workload Manager (WLM)
component of z/OS and the zSeries hardware,
and augments the adjustments that WLM
makes to local sysplex members by managing
the set of logical partitions on a particular
central processing complex (CPC) that are part
of the same sysplex, known as a logically
partitioned (LPAR) cluster. This paper
describes the three primary areas that IRD
manages: LPAR CPU management, channel
subsystem priority queueing (CSSPQ), and
dynamic channel path management (DCM).

Introduction

IRD [1] further extends the lead of the IBM eServer
zSeries® processors in managing multiple heterogeneous
workloads with various business priorities. Through its use,
a more synergistic relationship is established between
z/OS* and the zSeries (formerly S/390*) hardware with
respect to the allocation of resources among logical
partitions. The WLM component of z/OS is responsible
for ensuring that customer policy goals are met for the set
of diverse applications and workloads that a customer may
run. This includes making changes or adjustments on the
local sysplex member level, as well as redistributing work

across members of a sysplex when needed, and is largely
thought of as moving the work to the resources.

With IRD, WLM augments the adjustments it makes
to local sysplex members by managing the LPAR cluster.
This can be thought of as moving the resources to the
work.

Processor Resource/Systems Manager overview
The IBM Processor Resource/Systems Manager*
(PR/SM*) currently supports the creation of up to 15
logical partitions on a single CPC. Each of these logical
partitions is fully capable of running an operating system
independently. The following are all supported in a logical
partition: z/OS (with or without Parallel Sysplex*), VM,
VSE/XA, TPF, UNIX** applications under UNIX System
Services (USS), and Linux**.

PR/SM allows granular levels of resource allocation.
Storage can be assigned to logical partitions in increments
of 1 to 128 megabytes, rather than gigabytes, depending
on processor model and total available memory. I/O
channel paths can be shared by logical partitions to fully
utilize the bandwidth of the IBM Enterprise Systems
Connection (ESCON*) and Fiber Connection (FICON¥)
channels. The PR/SM dynamic reconfiguration capability
offers allocation of additional resources to partitions with
demanding workloads without disruption to the workloads
in the logical partitions.

PR/SM management of central processor (CP) resources
allows for the use of either dedicated or shared CPs.
Although CPs can be dedicated to logical partitions, the
real power is in the effective use of shared processors.
With shared processors, when a workload in one partition

©Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

W. J. ROONEY ET AL.

567

568

goes idle, the available processing time is automatically
redistributed to other partitions with no intervention.

Logical partition processor weights are a priority
policy for logical partitions based on a user’s dispatching
priorities. They are specified when allocating the resources
of the machine to its workloads. Using processor weights
with shared processors, the user can use subprocessor
granularity for allocating machine resources to workloads.
Each logical partition is treated as a separate workload,
managed against the processor weight policy. Processor
weights define relative priorities of logical partitions for
determining which logical partition receives the resource
when there is contention for that resource. When there is
no contention for the resource (i.e., all logical partitions
are not, at the moment, trying to use all of the CP
resource they are entitled to), the other logical partitions
automatically fill that “white space” and use that excess
capacity. Even the redistribution of the “white space” is
done in accordance with the processor weight policy.
When the logical partition that was under-utilizing its
entitled resource requires it again, the resource moves
back to it in accordance with the processor weights. The
policy can be dynamically updated, with changes taking
effect immediately.

The z/OS operating system running in a logical partition
provides yet another level of heterogeneous workload
management. Multiple workloads within a z/OS logical
partition are given an even finer granularity of workload
management via the WLM component of z/OS. The
priority of the logical partition with respect to other
logical partitions is managed by PR/SM. The priority of
the individual workloads and applications within the
logical partition is managed by WLM. IRD creates a
synergy between the management done by PR/SM and the
management done by WLM, producing a fully dynamic
and automatic resource management capability that is
unmatched in the industry. The detailed knowledge of
WLM can be used to redirect the machine (PR/SM)
resource allocations according to workload priorities
across a set of logical partitions on a CPC called an
LPAR cluster.

Workload Manager overview
Instead of specifying low-level controls to tune system
resources, WLM gives the system administrator the
capability to specify goals for work in the system in
business terms. The operative principle is that the
system should be responsible for implementing resource-
allocation algorithms that allow these goals to be met.
WLM is unique in offering externals that capture business
importance and goals and implement them on behalf of
the system administrator.

The z/OS operating system can function in one of two
modes from a performance-management perspective.

W. J. ROONEY ET AL.

WLM goal mode allows a system administrator to state
goals for the work in the system, and WLM is responsible
for allocating computing resources to meet these goals.
In WLM compatibility mode (sometimes referred to as
compat mode), the system administrator must use low-
level resource control to allocate computing resources
to the work in the system. Compatibility mode exists to
provide compatibility with the performance-management
externals provided in earlier versions of the operating
system. Goal mode is the focus of this paper. Except
where compatibility mode is specifically referenced, this
paper describes z/OS function available when running in
goal mode.

Two primary facilities that WLM goal mode provides
should be introduced at this point. The first is the ability
to partition the universe of work requests into mutually
disjoint groups, called service classes. This partitioning,
referred to as classification, is based on the attributes
of an individual work request, which might include
the userid that submitted the request, related accounting
information, the transaction program to be invoked or the
job to be submitted, the work environment or subsystem
to which the request was directed, and so forth.
Installations are able to specify which service class is
associated with each work request by specifying the value
for one or more attributes and the corresponding service
class. Defaults and other techniques may be used to
group work requests into each service class.

Each service class represents work requests with
identical business performance objectives. To address the
fundamental problem that the resource demands of most
work requests are unknown at the outset and can vary
depending on parameters that may be known only at
execution time, there is a need to allow the business
objectives to change on the basis of the resource demands
of the work request. This is quite different from the
requirement in other implementations that the resource
demands be known in advance.

A service class comprises a sequence of periods, with a
value defined by the installation to express how long a
work request is considered to belong to each period. This
“duration” is a measured amount of service consumed that
incorporates time spent actually running instructions on a
processor, along with other components of service defined
by the installation. Each work request starts in period 1
and is managed according to the first period goal (to be
described in the next few paragraphs) until enough service
is consumed to exceed the first period “duration.” The
work request is then moved to the second period and
managed according to the second period goal, and so
forth.

Each period has an associated goal and an associated
importance, as alluded to above. Note that the durations
may be assigned different values for distinct service

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

classes, even when comparing the same period. In the
same way, the goals for a given period in different service
classes may be distinct. An installation may specify
explicitly three major goal types for work requests. Certain
activities associated with system work may be managed
implicitly; these are accorded special treatment and do not
require installation specification. The goal types provided
by WLM are response-time, discretionary, and velocity.
These types of goals are now described in turn.

Response-time goals indicate a desire for internal
elapsed time to be, at most, a certain value. “Internal”
refers to the fact that the time is measured from the point
at which the work request is recognized by the system
to the point at which the work request is considered
complete. Note that elapsed time refers to wall-clock time
and therefore includes delays when programs are not
running on behalf of the work request. Use of wall-clock
time is desirable, since it reflects the impact on a user
awaiting completion of the work request. The precise
definition of when the clock starts or stops ticking to
capture the elapsed time is documented in Reference [2]
for each particular environment, and so is not elaborated
in this paper.

The second goal type, discretionary, indicates that there
is no business requirement for the work to complete
within a certain predetermined elapsed time, and the
system should use its discretion in giving resources to
such work when it is ready to run. In an unconstrained
environment, discretionary work will use available
resources. In a constrained environment, discretionary
work may be denied resources in favor of work requests
with other goal types. Optional controls not described in
this paper allow the installation to ensure that discretionary
work makes progress in a constrained environment.

The third goal type is velocity. Work requests that
are not considered discretionary and do not have a set
response-time objective may nevertheless need further
control to reflect the degree of delay that is tolerable
once the work request becomes ready to run. Such work
requests may be long-running (possibly “never-ending”)
and want to run periodically or intermittently, during
which time the work request must have access to
resources. Velocity goals address this category of work
requests.

A final concept associated with periods, which was
mentioned above, is that of importance. Importance is
merely a relative ranking of work and is a factor only in
constrained environments, where the algorithms must make
choices as to whose goals will be attended to first when
system resources are reallocated. The algorithms attend
to the goals of work at the highest importance before
attending to those at lower importance levels.

The concept of period was introduced to demonstrate a
fundamental behavior of WLM on work that addresses the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

variability of resource demands. WLM does not require
the system administrator to know these demands in
advance. Goals are allowed to change on the basis of their
cost. The term “period” is not used subsequently in order
to avoid certain technical discussions and difficulties that
are not central to the theme of this paper. The more
general concept of “service class” is used in the remainder
of the paper. For a more complete description of WLM
externals, see Reference [2].

The WLM philosophy for resource adjustment is
described in some detail in subsequent sections, but it is
essentially a receiver—donor loop with respect to adjusting
resources. The fundamental principle on which its success
is based is that the system need not determine the optimal
change at any given point. It is sufficient that the system
make an improvement when adjustments are made. This
principle allows WLM to avoid the trap of overanalysis,
where system overhead may balloon in search of optimal
solutions. By working on only a single problem at a time,
the algorithms leave intact resource allocations that are
working well.

A number of benefits arise from the WLM philosophy
of goal-oriented performance management. The most
obvious of these benefits is the simplification in defining
performance objectives and initialization states to the
system. The system administrator is able to specify
business objectives directly to the system in business
terms. It is still the responsibility of the system
administrator to ensure that each service class contains
work with similar goals, business importance, and resource
requirements in order to acquire the maximum benefit
from WLM. Placing work with similar goals but diverse
resource requirements into the same service class limits
the ability of WLM to make effective resource tradeoffs,
to correctly project resource needs, and to project the
effects of resource adjustments.

At the outset, the system administrator does not have to
understand low-level technical controls. There is no need
to adjust dispatch controls. For example, the system
administrator does not have to understand tradeoffs for
setting dispatch priorities when a machine has a single
very fast processing engine vs. a single slower engine
vs. multiple slower engines vs. multiple very fast
engines.

Additionally, the business policy defined to WLM
handles mixed workloads, e.g., interactive, batch,
transaction processing, and data mining environments. The
system is responsible for resource management of work in
execution and for the management of delays and their
impact on attaining goals. There is no need to partition
the images or nodes of the parallel environment for each
separate workload. The system administrator does not
have to specify the resource demands of work in advance.

W. J. ROONEY ET AL.

569

570

Effective use of capacity is ensured by the management
algorithms.

S/390 1/0 overview

When the IBM MVS/Extended Architecture (MVS/XA*)
was made available in 1983, the responsibility for selecting
paths for driving I/O requests was moved from the
input/output supervisor (IOS) portion of the operating
system to a new component of the hardware known as the
channel subsystem (CSS). This offloaded work that had
previously been done by the central processing unit (CPU)
to processing units in the channel subsystem known as I/O
processors (IOPs) on bipolar processors and more recently
referred to as system assist processors (SAPs) on the
CMOS processors.

In order for this to function, the channel subsystem
must know what paths are available to access the device
which is the target of the I/O request. This is done by
defining the I/O topology through a program known as
the I/O configuration program (IOCP). The output of the
IOCP, known as the I/O control data set (IOCDS) is then
loaded into the CSS. Through this, the CSS can determine
the set of paths that are available to access a device.

The MVS/XA 1/O architecture allows for a maximum
of eight paths to be defined to each device. When the XA
I/O architecture was introduced, the method of physically
attaching I/O devices to a System/370* processor was via
the original equipment manufacturer interface (OEMI)
or parallel interface. With the parallel interface, the set
of paths which were defined via the IOCP was normally
equal to the set of paths which were physically possible.
That is, the channel subsystem typically knew of every
path to a device that was physically cabled.

When ESCON architecture was introduced in 1990,
and FICON architecture in 1999," this all changed. With
ESCON and FICON, channels are typically attached via
a fiber optic cable to an ESCON or FICON director (or
switch), which is in turn connected to one or more device
control units.

A director may have as many as 248 external ports, each
of which can be connected to either a channel or a control
unit port. (For instance, the switch may be connected
to 48 channels and 200 control unit ports.) This means
that the number of paths physically available to access a
control unit or device is much greater than the number of
paths that may be defined (i.e., eight). In this case, there
are 48 possible paths to a single control unit port, and if
the control unit has two or more ports connected to the
same switch, the number of possible paths would then be
48n, where n is the number of ports.

The I/O configuration definition process is complex and
requires significant skills. The process normally involves

I FICON bridge was introduced in 1999, followed by FICON native in 2000.

W. J. ROONEY ET AL.

determining the number of channels required by a control
unit to satisfy its bandwidth requirements and the number
of other control units, if any, that can share that same set
of channels.

There are availability considerations. For example, even
if only a single channel is ever required by a control unit,
two or more are normally defined to it in case of a failure
somewhere along the path.

The configuration process tends to be iterative. A
configuration is defined, measured, and analyzed. This is
repeated until the configuration has the desired response
time and availability characteristics.

Even if the configuration is defined perfectly the first
time, the characteristics of the workloads on systems
change. New workloads are added, some workloads grow
more quickly than others, and new I/O devices are added
to the configuration. Some workloads are less predictive
than others. Some may vary slightly from week to week,
and others may have sudden and unpredictable spikes in
demand. These factors combine to create a situation in
which an I/O configuration that allowed a user’s response-
time goals to be met last week is inadequate to do so this
week. To make matters worse, the user may actually have
sufficient I/O resources, just not where they are currently
needed.

In 1991, dynamic I/O reconfiguration was introduced.
This allowed the I/O configuration to be dynamically
modified. Devices could be added to or removed from the
I/O configuration, and the attributes of the devices could
be changed, all without requiring that the system be
restarted. Even devices that were currently in use could
have certain characteristics changed. For example, a path
could be added to or removed from a set of devices
without affecting the applications that were currently
using those devices.

IRD extends the tools already available to WLM to
manage I/O by providing two new functions: dynamic
channel path management and channel subsystem priority
queueing. When used with WLM, these new functions
reduce the time and skills required to define an I/O
configuration, while at the same time allowing WLM to
modify the I/O configuration in response to the demands
of the workloads.

LPAR CPU management

Problem statement

As discussed previously, one of the resources that can be
allocated to a logical partition is the processor weight

of the partition. Weight determines the portion of the
machine’s shared CPU resource allocated to a logical
partition when there is competition for CPU among two
or more partitions. It is the job of the system programmer
to set processor weights so that the workloads running in

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

the logical partitions receive the CPU they require. If the
workload mix changes, the weights have to be reevaluated
and manually changed. Properly adjusting these weights
requires a worker to monitor workload performance and
understand the business goals and tradeoffs for these
workloads. An alternative would be to configure enough
CPU capacity to allow for peak workload demands so

that no critical work is ever delayed, but this would be
expensive. The goal of IRD LPAR CPU management is to
simplify this configuration task by automatically managing
physical processor resources to allow for high utilization
of physical CPU capacity, while ensuring that performance
objectives are met at times of peak demand.

LPAR CPU management overview

IRD LPAR CPU management extends WLM goal-
oriented resource management to allow for dynamic
adjustment of logical partition processor weights. This
function moves CPU resource to the partition with the
most “deserving” workload based on the WLM policy, and
allows the system to adapt to changes in the workload mix.
The processor weight exchange is done among logical
partitions in an LPAR cluster, which is the set of z/OS
images belonging to the same sysplex and running on the
same physical machine. WLM keeps the total processor
weight of the LPAR cluster constant, so that partitions
that are not part of the LPAR cluster are unaffected.

Logical CPU management
A companion function to LPAR weight management is
logical CPU management. This function optimizes the
number of logical CPUs online to a given logical partition
on the basis of the partition’s current processor weight
and current CPU resource consumption. There are two
primary reasons for doing this optimization. First, if WLM
increases the processor weight for a partition, the partition
will be unable to use the amount of CPU resource
represented by the new weight unless it has sufficient
logical CPUs online. For example, if a partition of a ten-
way physical multiprocessor is given a weight representing
50% of the physical capacity of the machine, it must have
at least five logical CPUs online. If the partition has only
four logical CPUs online, it is able to use only 40% of the
physical capacity of the machine.

The second reason for this optimization is based on the
mechanism PR/SM uses to dispatch the logical CPUs of
a partition on the physical CPUs of the machine. PR/SM
evenly divides the processor weight of a partition among
the logical CPUs online to the partition. The more logical
CPUs online to a partition, the lower the processor weight
of each logical CPU. This effectively makes each logical
CPU less powerful. Some workload performance improves
as the power of an individual logical processor increases.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

The extreme example of this would be a single tasking
workload, which can take advantage of only a single
CPU.

On the basis of these factors, the optimal number of
logical CPUs to have online to a partition is the smallest
number of CPUs that can provide the CPU capacity
required by the partition.

WLM CPU weight-management configuration
IRD LPAR CPU management works for uncapped shared
processors only.” Members of the sysplex with dedicated
CPs or capped shared CPs are not managed by WLM,
but they are tolerated. WLM is allowed to change the
distribution of the weights in the LPAR cluster, but
the partitions outside the cluster cannot be changed,
and the total of the weights in the cluster cannot be
changed.

To define logical partition controls for managing CPU
weights in an LPAR cluster, the following definitions are
needed for each logical partition:

o [nitial weight: The amount of processing weight the
logical partition is initially assigned. This defines the
amount of processing weight that is added to the LPAR
cluster when the logical partition joins the cluster. It
also defines the amount of weight that must be removed
from the LPAR cluster, regardless of where it has been
redistributed, when the logical partition leaves the
cluster.

e Current weight: Set initially from initial weight. This is
the current setting of the processing weight for a logical
partition, taking into account changes made by WLM.

® Minimum weight: A boundary condition below which
WLM cannot adjust the current weight of the logical
partition.

o Maximum weight: A boundary condition above which
WLM cannot adjust the current weight of the logical
partition.

The specification of minimum and maximum weights
is optional. However, all shared logical partitions are
required to have a minimum of 1 for a current weight.
Also, the current implementation limits weights to a
maximum of 999. These limits are used implicitly when
no limit is explicitly specified.

PR/SM provides interfaces with software to join
an LPAR cluster, as well as information about the
configuration of the LPAR cluster container. There is also
a mechanism to update the configuration of the LPAR
mce a defined capacity for variable Workload License Charge
products running in a logical partition, using what is sometimes referred to as a
“soft cap.” To do this, the hardware console is not used to turn on capping for the
logical partition. WLM turns capping on and off via software as needed to enforce

the defined capacity. The details of how this is done are beyond the scope of this
paper, but it is compatible with LPAR CPU management. 571

W. J. ROONEY ET AL.

572

cluster container, i.e., change the current weights of the
logical partitions within the LPAR cluster.

The software in a logical partition “decides” to join an
LPAR cluster when it is initialized (IPLed’). As logical
partitions join an LPAR cluster, their initial weight is
added to the pool available for WLM to manage within
that LPAR cluster. WLM running in the logical partitions
can then redistribute the weights, respecting any specified
or implied minimum or maximum weights for the logical
partitions within that LPAR cluster.

When a logical partition is system-reset, re-IPLed,
or deactivated, it is removed from the LPAR cluster
by PR/SM. When a logical partition is removed from an
LPAR cluster, processing weight equivalent to the initial
weight of that logical partition is removed from that
LPAR cluster. If the current weight of that logical
partition is no longer equal to its initial weight, a
redistribution of weights among the remaining logical
partitions in that LPAR cluster is needed, and this can
cause the current weights of the remaining logical
partitions in the cluster to increase or decrease. This
redistribution is performed proportionally to the current
weights of the remaining logical partitions at the start of
this process.

WLM policy-adjustment algorithm

The WLM subfunction responsible for allocating
computing resources based on the WLM policy is called
the policy-adjustment algorithm. It is the job of the policy-
adjustment algorithms to determine whether there are
service classes missing goals and to decide which, if any,
resource reallocations are appropriate to help one of
these classes to meet its goals. The functions of the policy
adjustment are fully described in Reference [3]. These
functions, which are relevant to WLM involvement in IRD
LPAR CPU management, are briefly summarized in the
following sections.

State sampling

The first step in solving the performance problem of a
service class is to find out why the work is being delayed.
Many delays can be measured quite precisely, but the

cost is prohibitive. WLM solves this problem with state
sampling. Four times a second, WLM samples every work
unit in every system being managed. From these samples,
the WLM builds a picture of the work in each service
class. It learns where each service class is spending its
time. It learns how much each class is using each resource,
and how much each class is delayed waiting for each
resource. The samples are aggregated over time, and from
this picture of the work in each class, WLM can determine
what to do.

3 IPL: initial program load.

W. J. ROONEY ET AL.

Performance index

A fundamental problem with trying to meet performance
goals and making tradeoffs among different work with
different goals is knowing how well work is proceeding
with respect to its goals and with respect to other work.
The solution used by WLM is the performance index. The
calculation of the performance index for a class with a
response-time goal is as follows:

actual_response_time

performance_index = - .
- goal_response_time

It is a calculated measure of how well work is meeting

its defined performance goals. The performance index

allows comparisons between work with different goals. A

performance index of 1.0 indicates that the class is exactly

meeting its goal. A performance index greater than 1.0

indicates that the class is performing worse than its goal,

and a performance index less than 1.0 indicates that the

class is performing better than its goal.

Policy-adjustment framework

The policy-adjustment algorithm is invoked every ten
seconds to assess reallocation of system resources to
better meet performance goals. This period of ten seconds
is referred to as the policy interval. The effects of the
resource reallocations made during one policy interval are
observed in subsequent policy intervals and function as a
feedback loop for continuous adaptive policy adjustment. The
following pseudocode outlines the steps taken to determine
what (if any) resource reallocation should be done:

Main_Loop: Do until a resource reallocation has been
done or no more potential receiver service classes exist.
Choose the next most eligible receiver service class.
Do until a resource reallocation has been done or no

more bottlenecks for the receiver.
Find the next biggest bottleneck for the receiver.
Call “Fix Routine” for bottleneck.
Determine how much of the bottleneck resource
the receiver needs.
Find the most eligible donor of the bottleneck
resource.
Determine whether reallocating resource of donor
to receiver is a “good tradeoff.”
If action is a “good tradeoff,” reallocate resource
and exit Main_Loop.
End.
End.

The first step is to choose the most eligible receiver
service class. This is defined to be the most important
service class missing its goals. If there is a tie with
respect to importance level, the service class with the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

highest performance index is chosen. The next step is to
determine which resource is the biggest source of delay
for the receiver. This is done by searching the state
samples for the receiver service class to find the delay
samples with the largest count for the receiver. The
resource corresponding to these delay samples is
considered the receiver’s biggest bottleneck. Once a
bottleneck has been chosen, a resource-specific fix
routine is called to attempt to resolve the bottleneck

by reallocating more of the bottleneck resource to the
receiver service class. The WLM policy-adjustment
framework is designed to be extendable. New resources
can be added to WLM goal-oriented management by
adding a fix routine for that resource to the policy-
adjustment framework. The only requirements are the
following: 1) a delay that indicates a lack of the resource
must be able to be sampled; 2) a control variable
controlling access to the resource must be able to be
defined; and 3) a relationship must exist between the
control variable and the resulting delay samples.

The job of the fix routine is twofold. First, it must
determine whether the performance of the receiver can
actually be improved by providing more of the bottleneck
resource. It makes this determination by projecting how
much the performance index of the receiver will improve
if the receiver is given more of the bottleneck resource.
For a resource reallocation to be considered worthwhile, it
must result in a minimum performance index improvement
or the elimination of a minimum number of delay samples.
This minimum required improvement to the receiver is
called receiver value. The receiver value criteria are
designed to reject very small improvements. The
reason for rejecting actions having too little receiver
value is to avoid making changes that yield only marginal
improvements. Instead, the policy-adjustment algorithm
goes on to select and assess another bottleneck for the
current receiver or to select a new receiver.

The receiver value criteria also indicate to the fix
routine the point at which it has given the receiver enough
help. These criteria keep one system in a sysplex from
trying to solve all of the performance problems of a class
when the class is running on more than one system. The
criteria also keep multiple systems in the sysplex from
trying to solve all parts of the problem simultaneously
and running the risk of making too great a correction.

The second job of the fix routine is to project the impact
on other work of providing additional resource to the
receiver and determining whether the overall impact of the
reallocation is a “good tradeoff” on the basis of the WLM
policy. The fix routine must project how the performance
index of each service class affected by the resource
reallocation will change. For example, if the action being
considered is to raise the CPU dispatch priority of the
receiver, every service class with a CPU dispatch priority

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

between the old priority of the receiver and its proposed
priority inclusive is potentially affected by the change and
must have a new performance index projected. The service
classes whose performance will be adversely affected by the
resource reallocation are known as donor service classes.
Once a performance index projection has been done for each
donor, the next step is to determine whether the resource
reallocation is a good tradeoff with respect to the receiver
and each donor. This decision is based on the importance
and performance index of the receiver and donors. For
example, if the donor is less important than the receiver and
the receiver is missing its goal, the resource reallocation is
considered a good tradeoff with respect to that donor. On
the other hand, if the donor is more important than the
receiver and is missing goals, or if the action would cause the
donor to miss its goals, the action is not a good tradeoff. If
the receiver and donor are equally important, the action

is considered a good tradeoff if the improvement in the
receiver performance index is at least as large as the increase
in the donor performance index and the action causes the
performance indexes to converge. If the resource reallocation
is found to be a good tradeoff with respect to the receiver
and each donor, the action is taken. Otherwise, the fix
routine returns to the main policy-adjustment algorithm

so that another bottleneck for the same receiver can be
addressed or another receiver chosen.

CPU dispatch priority management

Before discussing the WLM processor weight-management
algorithm, a brief discussion of the WLM CPU dispatch
priority-management algorithm is in order, since the
weight-management algorithm is based on the same
underlying concepts as dispatch priority management.

Maximum processor demand

The first problem with projecting the effects of dispatch
priority changes is that the inherent processor demand

of the work units in a service class cannot be measured
directly. If a class consumes x amount of CPU time when
it runs at dispatch priority A, it cannot be assumed that it
will still consume the same amount of CPU time when it
runs at a higher or lower priority or with a more or less
competing demand. WLM solves this with an algorithm to
project the consumption of a class at any dispatch priority,
known as the maximum processor demand.

Maximum processor demand is defined as the
theoretical maximum percentage of total processor time
available to a logical partition that work units in a service
class can consume if the work units experience no
processor delay, viz.,

Maximum_demand_percentage

number_of_work_units X processor_using_samples

- (total_samples — processor_delay_samples) X number_logical_CPUs

W. J. ROONEY ET AL.

573

574

The term processor_using_samples/(total_samples —
processor_delay_samples) measures the percentage of time
that the average work unit would execute on a CPU if it
were to experience no CPU delay. Multiplying by the
number of work units converts the average to a total
demand. Dividing by the number of logical CPUs adjusts
for the available CPU capacity. Maximum demand is
calculated for each service class and accumulated for

all of the service classes at each priority.

Wait-to-using ratio

A second basic concept is the CPU wait-to-using ratio,
which is the ratio of CPU delay state samples to CPU
using state samples. The wait-to-using ratio is a measure
of how competition for CPU is affecting the performance
of a given service class. The more CPU competition a
service class has, the higher the wait-to-using ratio of the
service class. Competition from work with higher CPU
dispatch priority has a larger impact on the wait-to-using
ratio than work at the same CPU dispatch priority. Lower
priority has little to no impact on the wait-to-using ratio."
WLM measures the wait-to-using ratio both at the service
class level and the total wait-to-using ratio for all work at
a given CPU dispatch priority.

CPU dispatch priority decisions
When the biggest bottleneck for a service class is CPU
delay, the policy-adjustment algorithm calls the CPU
dispatch priority fix routine. To help the receiver service
class, the CPU dispatch fix routine projects the effect of a
combination of potential CPU dispatch priority changes.
These changes include increasing the priority of the
receiver and lowering the priority of other service
classes that have an equal or higher dispatch priority. If
a combination of potential CPU dispatch priority changes
is found that gives the receiver enough benefit to pass the
receiver value test and is considered a good tradeoff with
respect to the donor service classes, WLM considers the
set of priority moves to be the solution to the bottleneck
and implements the service class dispatch priority tradeoff
changes. On the other hand, if a combination of dispatch
priority changes is found not to be a good tradeoff, the
moves are abandoned, and a new set of dispatch priority
moves is evaluated. If no more potential dispatch priority
changes can be found, the receiver bottleneck cannot be
solved by dispatch priority changes, and WLM will
consider increasing the processor weight of the current
logical partition.

A good predictor of the wait-to-using ratio at a given
priority is the combination of the total maximum

4 Because z/OS uses a time-slice-based dispatching, low-priority work can cause
some delay to higher-priority work.

W. J. ROONEY ET AL.

processor demand of service classes with a CPU dispatch
priority higher than that priority and the maximum
processor demand of service classes at that priority. The
total maximum processor demand at higher priority has
the strongest relationship with the wait-to-using ratio. To
project the effect of CPU dispatch priority moves, WLM
builds a table called the processor data table (PDT). This
table contains one entry for each CPU dispatch priority
that WLM uses. Each of these entries contains the
measured wait-to-using ratio for service classes at that
priority, the sum of the maximum processor demands for
service classes at that priority, and the sum of maximum
processor demands for the priority and all higher
priorities. From this table WLM learns the relationship for
each priority of that priority’s wait-to-using ratio, the total
maximum processor demand at work at higher priorities,
and the maximum processor demand at the priority.

WLM also uses this table to project the effect of a
priority change. For each potential service class CPU
dispatch priority change, WLM subtracts the maximum
processor demand of the service class from the maximum
processor demand fields in the PDT for the current
priority of the class and adds this value to the fields for
the new priority of the class. Then, using the learned
relationship between processor maximum demand and the
wait-to-using ratio of a priority, WLM projects the new
wait-to-using ratio for each priority affected by the priority
move. From the change in wait-to-using ratio for each
service class that will receive worse CPU access after the
change, WLM projects the amount of additional CPU
delay time the service class will experience. For the
receiver service class, WLM projects the reduction in CPU
delay time it will experience. From the change in CPU
delay times, WLM calculates a new performance index.
On the basis of the new performance index for each
affected service class, WLM determines whether the
benefit to the receiver meets the receiver value test and
whether the action overall is a good tradeoff.

Processor weight-management algorithms

Data collection

WLM processor weight management functions by using a
peer-to-peer relationship between the systems in the
LPAR cluster. There is no master WLM instance making
decisions for the whole LPAR cluster. Instead, WLM on
each system determines whether work running on its
system could be helped by increasing the processor weight
of that system. That instance of WLM then determines the
best system in the cluster to give up weight, and whether
the weight reallocation is a good tradeoff. For a given
WLM instance to make a judgment on whether a weight
reallocation is a good tradeoff, it must be able to project
the impact of the weight change on work running on the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

tradeoff system whose weight is being reduced. To make
this projection, each WLM instance in the LPAR cluster
must have access to data describing the performance of
each service class on every member of the LPAR cluster.
To make this data available to all members of the LPAR
cluster, WLM uses a coupling facility. (A coupling facility
is a shared-memory device that can be shared by members
of a z/OS sysplex.) See Reference [3].

WLM creates one data structure in the coupling facility
for each LPAR cluster in the sysplex: the LPAR cluster
structure. The structure for a given LPAR cluster is
uniquely identified by including the machine serial number
as part of the name of the data structure. The sysplex
name does not have to be included as part of the data
structure name, because a coupling facility cannot be
shared across sysplex boundaries.

Within the LPAR cluster structure, there is one entry
for each member of the LPAR cluster called the LPAR
data entry (LDE). The LDE contains performance data
for each service class with work active on the associated
system. This data includes the state samples of the service
class, its local performance index, its maximum processor
demand on the associated logical partition, and its CPU
dispatching priority on the associated system. The LDE
also contains the processor data table (described above)
for the associated system. At the beginning of the policy
interval, each system writes its LDE to the coupling
facility and reads the LDE of every other member of the
LPAR cluster into local storage for easy access in later
processing.

Receiver processing
The LPAR processor weight fix routine is called when the
CPU dispatch priority fix routine is unable to take an
action to help the receiver service class, either because
of a lack of receiver value or because no potential CPU
dispatch priority change is a good tradeoff. The LPAR
processor weight fix routine determines whether the
receiver CPU delay bottleneck can be addressed by raising
the partition processor weight and thereby increasing the
CPU capacity of the partition. The approach to determining
whether increasing the weight of the partition is the
appropriate action to address the receiver bottleneck
is the same as the other WLM resource-management
algorithms—the action must improve the receiver
performance enough to meet the receiver value test,
and the action must be a good tradeoff with respect
to all donor service classes. In this case the impact to the
donor service classes comes from removing CPU resource
from work running on the partition whose weight is
reduced.

The first step is to determine how much additional
weight must be given to the partition to help the receiver
enough to meet the receiver value test. WLM considers

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

raising the weight of the partition by a fixed percentage of
the average weight of the members of the LPAR cluster.
To project how much the weight increase will improve

the performance index of the receiver, WLM uses an
approach similar to what is done to project the effect

of a CPU dispatch priority change. First WLM adjusts the
maximum processor demands in the PDT on the basis of
the proposed increase in the partition weight. Maximum
processor demand represents the percentage of the overall
CPU capacity of the logical partition that a service class
could use if unconstrained. Raising the capacity of a
partition by raising its processor weight in turn lowers

the maximum processor demand of each service class
proportionally. WLM adjusts the maximum demand of
each service class on the basis of the proposed weight
change and then recalculates the total maximum processor
demand values in the PDT on the basis of the new service
class values. Once the PDT has been updated for the
proposed weight change, WLM projects the performance
index improvement to the receiver using the same
algorithm that is used for CPU dispatch priority changes.
If the improvement is not enough to pass the receiver
value test, WLM will consider a weight increase of twice
the original increment. If that increment is not enough to
meet receiver value, WLM will try three times the original
increment, and so on. The largest weight increment WLM
will consider is 30% of the total weight of the LPAR
cluster. If the projected improvement to the receiver

of that weight increase is not large enough to meet the
receiver value test, WLM abandons the attempt to help
the receiver.

Donor selection

If a weight increase is found that improves the receiver
performance enough to meet the receiver value test, the
next step is to pick another member whose weight can be
reduced by this amount. In choosing a logical partition
from which to take weight, WLM attempts to take
resources from the lowest-importance work. Therefore,
WLM prefers to lower the weight of a partition running
a large amount of low-importance work instead of a
partition running only high-importance work. To
understand the importance of the work running on each
system, WLM maintains a table known as the service-by-
importance table (shown as Table 1) for each member of
the LPAR cluster. The table contains seven rows. The
seventh row contains the total CPU service’ used by
discretionary work, which WLM considers importance 6.
The sixth contains the total CPU service used by
importance 6 work plus the contents of the seventh row.

5 CPU service is a measure of CPU time used normalized for the speed of the

CPU. 575

W. J. ROONEY ET AL.

576

Table 1 WLM service-by-importance table.

Importance

0 Total CPU service used by system

1 CPU service used by importance 1-6 work
2 CPU service used by importance 2—-6 work
3 CPU service used by importance 3—6 work
4 CPU service used by importance 4—-6 work
5 CPU service used by importance 5-6 work
6 CPU service used by discretionary work

(importance 6)

The fifth row contains the total CPU service used by
importance 4 work plus the contents of the sixth row,

and so on. The first row adds in the CPU service used by system
work (considered importance 0) and represents the total
CPU service used by the logical partition.

In order to choose a partition whose weight to reduce,
WLM converts the weight increment into an amount of
CPU service required by the logical partition being helped
using the expression

weight INC

—————— X total_CPU_service_capacity_of _machine.
total_weight - - _capacity_of_

WLM then searches the service by importance tables for
each member of the LPAR cluster. The logical partition
where the required service is available furthest down the
partition’s service by importance table is chosen as the
candidate to have its weight reduced.

Donor projections

The next step is to project the increase in performance
index for every service class with work on the logical
partition whose weight is to be reduced, otherwise known
as the donor partition. Because reducing the weight of the
donor partition reduces its CPU capacity, the percentage
of that capacity that each service class demands is
increased proportionally by the weight reduction.
Therefore, WLM recalculates the maximum processor
demand of each service class on the donor partition. The
new service class maximum processor demand values are
then used to update the processor maximum demand
fields in the PDT of the donor partition. From there
WLM can project the performance index change for each
service class using the same algorithm as used in the CPU
dispatch priority management algorithm. On the basis of
the performance index increase on the donor partition,
WLM can determine whether the weight reallocation is

a good tradeoff. If the reallocation is a good tradeoff,
WLM calls PR/SM to adjust the partition weights of the
receiver partition and the tradeoff donor partition. If the
reallocation is not a good tradeoff, WLM repeats the
search for a donor partition, excluding donors already

W. J. ROONEY ET AL.

tried. If no donor partition can be found, WLM abandons
the weight-adjustment attempt and returns to the main
policy-adjustment algorithm to try to address another
bottleneck for the receiver or to help another receiver
service class.

Adjustment intervals

Because adjusting logical partition processor weights

can be a fairly dramatic reallocation of resources, WLM
adjusts less frequently than it reallocates other resources.
It changes processor weights only once per minute within
a single LPAR cluster. However, there is one exception
to the one-minute limitation on frequency, designed to
ensure that action to help high-importance work is not
delayed because of lower-importance work. Whenever a
processor weight change is done, WLM “remembers” the
importance and current performance index of the receiver.
These values are stored in the LPAR cluster coupling
facility structure so that they are visible to all members
of the LPAR cluster. When WLM considers helping

a new receiver by increasing the weight of its partition,
and the new receiver has a higher importance or

worse PI than the last receiver, WLM will make the
weight move even if a minute has not passed since the
last weight move.

Dynamic channel path management

Dynamic channel path management (DCM) allows z/OS to
dynamically change channel path definitions to ESCON
director-attached DASD control units in response to
changing workloads, moving channel resources to the
control units where they are required. When combined
with WLM running in goal mode, DCM moves the
channel resources to control units that are being

used by business-critical workloads to help them meet
their goals. When further combined with control unit
priority queueing in the Enterprise Storage Server

(ESS or “Shark”), channel subsystem priority queueing
(CSSPQ; see a later section), and parallel access volume
(PAV) alias tuning, the z/OS system becomes even
more self-tuning and self-defining to meet workload
goals.

Topology

During system initialization, DCM builds tables that
represent the physical I/O topology. These tables include
entries for each channel, ESCON or FICON director,
and DASD control unit that is physically attached to and
accessible by this system. The topology tables are used by
DCM to determine what potential paths exist that DCM
could add to a control unit in order to help it achieve its
bandwidth requirements.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Processor 1

[2ol[2122] 23] 24]2s][26][2728 [25][2]28 [oc [2p2E] 2F]

Processor 2

[2ol[2122]23] 24]2s][26][27] 28 [2s][2A]l28 [oc]lop]2E] 2r]

Switch A000 control

Cﬁ@@@@@@@@@@@@@@w S
o 2 20 e R

[T T L T T | L T T

CU 2000 | [CU2100 | | CU2200 | | CU 2300

(00

1/0 topology.

The topology tables also include attributes associated
with each entry. For example, a channel entry indicates
whether the channel has been defined as managed or
static,” while switch port entries indicate whether the port
has been configured in such a way as to prevent DCM
from using it to define a path. (The port may have been
defined as “blocked,” “prohibited,” or “dedicated.”)

DCM uses self-description commands, which are
required to be supported by the ESCON and FICON
architecture, to identify components of the I/O topology
which have already been seen. For example, in Figure 1,
DCM is able to determine that from Processor 1, channels
20 through 27 all connect to the same switch (A000),
while channels 28 through 2F all connect to a different
switch (B000). In addition, the devices attached to control
unit 2000 can be accessed by Processor 1 via ports 10 and
11 on switch A000, as well as ports 10 and 11 on switch
B000. With this configuration, DCM has 32 possible paths
to the devices attached to control unit 2000 to consider:
any of eight channels to port 10 on switch A000, eight

6 Static channels are channels that are defined to control units in the traditional
way and cannot be reassigned by DCM. Managed channels are channels that are
owned, and therefore may be reassigned, by DCM. Both are defined using the
z/OS hardware configuration definition (HCD) dialog. See Reference [5].

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Gﬂ@@@@@@@@@@@@@@&}wm
10 [tE][1F

control
unit

Switch BO00O

i B B I D

[T T I T T [T T [T T

CU 4000 | | CU4100 | | CU 4200 | | CU 4300

channels to port 11 on switch A000, plus the 16 possible
paths via switch B000. While the system is running, it is
possible that the configuration may change. For example,
someone may add a control unit to a switch by plugging
its cables into unused ports on the switch.

To manage this situation, DCM maintains the tables by
keeping the data current throughout the life of the system.
In the case of the table which represents the switches,
commands are sent to the switch control unit port every
two minutes to read its key counter. If the value of the
key counter is different from what it was on the previous
query, the configuration of the switch has changed, and
DCM updates its tables to reflect the current configuration.

Channel path cluster scoping

In order for DCM to dynamically move channel paths
sensibly, it must understand a complete picture of the
activity on the channel paths that it will move. The
channel paths that can be moved by DCM are called
managed channel paths. Traditionally, a customer defines
channel paths in an I/O configuration as being shared by
some or all of the logical partitions on a CPC. The scope
of availability for these traditional channel paths is defined
by the logical partition names themselves.

W. J. ROONEY ET AL.

577

578

Table 2 Sample projected channel utilization.

Channel path Projected
ID (CHPID) utilization
(%)
20 37
37 41
48 29
73 33

Table 3 Sample average channel utilization.

CHPID Projected Average
utilization utilization
(%) (%)
48 29 29
73 33 31
20 37 33
37 41 35

Managed channel paths are defined to belong to a
specific LPAR cluster, not individual logical partitions.
When any operating system is loaded into a logical partition,
it does not immediately have access to any managed
channel paths. All managed channel paths are
automatically deconfigured from a partition when it is
IPLed. It is only after the software in the logical partition
declares that it is part of a specific LPAR cluster that it is
allowed to configure the managed channel paths for that
LPAR cluster online. With this process, only logical
partitions that are part of the LPAR cluster can use the
channel path, so the entire usage is understood by the
LPAR cluster members in aggregate.

Subsystem 1/0 velocity

Once every interval (currently defined to be ten seconds),
DCM goes through a process known as data gathering.
During this process, DCM collects several measurements
on DASD subsystems’ and uses that information to
calculate a new metric called the subsystem I/O velocity
(IOV). The I/O velocity is conceptually a wait-to-use ratio
on the channels serving a particular subsystem. It indicates
how long I/O requests must wait for a channel to a
subsystem, compared to how long I/O requests actually
use those channels.

For example, assume that we have a subsystem which has
accumulated eight seconds of connect time in the last ten
seconds, and one second of pending time. Also assume that
switch busy, control unit busy, and device busy are all zero.
Then we would have an I/O velocity of 8/(8 + 1) = 0.89.

7 A subsystem is equivalent to a logical control unit (LCU). A physical control unit
may contain several LCUs or subsystems. DCM operates on a subsystem basis;
however, the more familiar term control unit is used throughout the paper.

W. J. ROONEY ET AL.

If the pending time grew to three seconds and the connect
time stayed the same, the I/O velocity would drop to 0.72.
So the closer the I/O velocity gets to 1.00, the fewer

the I/O requests that are waiting for channels to a
subsystem. The closer it gets to 0.00, the more constrained
the subsystem is for channel bandwidth. DCM calculates
this I/O velocity for all DASD subsystems in the system.
It then calculates a default target 1/0 velocity, looks at

the I/O velocity actually being achieved for each of the
managed subsystems, and attempts to get all of the
subsystems close to the default target. A list of all
subsystems whose I/O velocity falls below the target range
is then passed to another phase of DCM called imbalance
correction. Imbalance correction processes subsystems one
by one, starting with the one furthest from target, and
looks for changes that would help the subsystem reach its
target by searching tables which represent the physical I/O
topology built by DCM during system initialization and
maintained since then. There are two types of changes that
DCM looks for: paths that can be added to this subsystem
and paths that can be removed from subsystems that
share the path with the subsystem that requires more
bandwidth.

Contention factor

In order to assess potential channel configuration changes,
a metric is needed to allow us to calculate and then
compare expected IOVs for each of the affected control
units. One attribute required of this metric is that it must
allow us to compare configurations with different channel
utilizations and different numbers of channels. For
example, is a configuration with four channels, each at
65% utilization, better than a configuration with three
channels, each at 60% utilization? To determine this,
DCM uses a contention factor, which is defined as the
single-channel equivalent utilization yielding an equal
probability that an I/O request to that control unit would
wait. The contention factor is determined using the
channel utilizations and resulting configuration of a
proposed change.

To calculate the contention factor, DCM sorts all of the
channels connected to each of the subsystems from lowest
to highest utilization. It then calculates the contention
factor based on the utilization of the first channel in the
list, then the average of the first two channels in the list,
and so on down the list. Subsequently, it uses the lowest
contention factor found; this is done to reduce the effect
of other subsystems which share one or more of the
channels on the contention factor. For example, assume
that subsystem 2200 is connected to four channels, and
each channel has the projected utilization shown in
Table 2. DCM then sorts them by increasing utilization
and calculating the average utilization on the basis
of the utilization of the first CHPID in the list, then

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Table 4 Channel contention factors.

CHPID Projected Average Contention
utilization utilization factor
(%) (%) (%)
48 29 29 29.0
73 33 31 14.7
20 37 33 8.8
37 41 35 6.3

the average of the first two channels in the list, and
so on down the list, as shown in Table 3.

Each of the average utilizations is then applied to the
graph shown in Figure 2, using the line representing the
number of servers to arrive at an equivalent single-server
utilization. Thus, in our example, we obtain the results
shown in Table 4. DCM then uses the lowest contention
factor, in this case 6.3, as the contention factor of the
subsystem.

Next, the contention factor is converted into an I/O
velocity. To do this, we use a table which is maintained
by WLM. The table contains the historical IOV and
contention factor samples acquired by WLM over time.
Data is updated during data gathering, and old data is
eventually aged out. There is one such table for each
subsystem. Figure 3 expresses graphically what the tables
are attempting to achieve.

Using the contention factor of 6.3, an I/O velocity of
0.60 is obtained for the subsystem. This is then placed in
a control block which represents a possible change as
the projected I/O velocity. If there are other subsystems
affected by this possible change, their projected IOVs are
also calculated and placed in the control block.

Selecting the best option (IOV projection/
availability/entropy)

Each of the possible changes may also affect the
availability characteristics of the I/O configuration. If a
path must be removed from a subsystem, DCM favors
choices which do not leave all of the remaining paths

with a single point of failure. When adding a path, DCM
attempts not to select one that will have a single point of
failure in common with all of the paths already defined for
the subsystem.

A measure of configuration complexity is calculated for
each of the possible changes. This measure of complexity
is referred to an I/O entropy index. For example, consider
a configuration in which subsystem 1 is connected to
CHPIDs 23 and 24, subsystem 2 is connected to CHPID
24, and subsystem 3 is connected to CHPIDs 25 and 26.
Assume that DCM has determined that subsystem 2 is
below target and that it could add bandwidth either by
adding CHPID 23 or 25. If it uses CHPID 23, the number

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

100
ool ~ 1 Server
o | = 2 Servers
% 5 38 |+ 3 Servers
E ‘g - 4 Servers
B« 60T = 5 Servers
? é 50T -« 6 Servers
22 40 [—+— 7 Servers
>3 30— 8 Servers
S 20f
10

0.
0 510152025 303540455055 60 657075 80859095100
Average server utilization

Equivalent contention factors for different numbers of servers.

/O velocity X 100
2 o o
S & & &
*
*
*
>
*
*
*

[
S
T
*
*
*

e &

0 10 20 30 40 50 60 70 80 90 100
Contention factor

(=}

Historical data for estimating 1/O velocities.

of interconnected subsystems and channels will not
change, but if it adds CHPID 25, subsystems 1, 2, and
3 will be interconnected with CHPIDs 23, 24, 25, and
26. This is more complicated, and all other elements
being equal, DCM would prefer the less complicated
configuration.

Next, DCM projects the I/O velocity achieved by each
of the possible changes. DCM also projects I/O velocities
for any subsystems that are affected by the change.

(An affected subsystem is any subsystem which shares a
channel, either directly or indirectly, with the subsystem
being helped.)

Finally, with each of the possible decisions evaluated,
DCM considers all of the attributes and selects one to
implement.

Balance mode vs. goal mode

DCM has two modes of operation, balance mode and
goal mode.

W. J. ROONEY ET AL.

579

580

C A

CU 1000 CU 1100 CU 1200 CU 1300 CU 1400 CU 1500 CU 1600 CU 1700 CU 1800

FICON:-bridge-attached channel illustrating a configuration in which the bridge-attached channel is the limiting factor.

When WLM is operating in compatibility mode, DCM
is said to be in balance mode. When WLM is operating
in goal mode, DCM is also in goal mode. WLM does not
have to be configured to use DCM. If managed channels
and managed control units have been defined in the I/O
configuration via HCD, and DCM is active, WLM will use
DCM to help it achieve workload goals.”

In balance mode, DCM will determine the I/O velocity
of all managed control units and calculate an average I/O
velocity across them. This is then used as the target I/O
velocity for all managed control units. DCM then scans
all of the managed control units to identify any that are
significantly below this target. If any are, DCM attempts
to find a change it can make to the configuration that will
move it closer to the target. DCM does this every interval,
until all of the control units are within a certain tolerance
of the target I/O velocity. When the system becomes
overcommitted, the average I/O velocity may start to fall;
when this happens, all of the control units are driven to
what becomes an ever-decreasing target. Although this
spreads out the available resource evenly, there may be
business-critical work in the system that is using certain
control units, while discretionary work is using other
control units. In this case, it may be better to drive the
control units being used by the business-critical work to a
higher IOV at the expense of the control units being used
by the discretionary work. This is where WLM goal mode
is valuable.

When WLM is operating in goal mode, it uses the goals
and relative importance of the different workloads running
to set target I/O velocities for control units. If all work is
meeting its goals, the I/O velocity is determined by DCM
the way it is in balance mode. However, if WLM determines
that work is not achieving its goals, and the reason is due

8 Although not required, it is reccommended that the I/O priority management
option in the WLM service policy be turned on.

W. J. ROONEY ET AL.

to channel bandwidth, WLM can set an explicit IOV
target for one or more of the workload control units.
DCM then drives the control unit to the new target.

If there are several control units in the system with
explicit IOV targets, and DCM is unable to achieve an
explicit IOV target for one subsystem without adversely
affecting another control unit with an explicit IOV target,
DCM calls WLM so that it can decide which change, if
any, to make on the basis of the relative importance of
the work and the projected impact of the change to the
affected workloads.

This is all done using the existing WLM policy
definitions that current WLM goal mode users already
have. DCM is just one more tool that it can use to achieve
those goals.

Frequency of change
DCM considers changes to control unit definitions once
every ten seconds. If there are multiple partitions which
are members of the same sysplex, each partition considers
changes every ten seconds. However, if one partition finds
that another partition is already implementing changes, it
skips this processing for this interval. During the interval,
DCM attempts to help subsystems which are below their
target velocity. Subsystems which have had channels added
or removed from them are not eligible to have additional
changes for another three intervals. This means that
changes occur to a single subsystem at most once
every 40 seconds.

The I/O velocity that is used to determine whether a
subsystem is below target is actually a moving average
of up to eleven intervals. This is done to dampen the
subsystem I/O velocity and prevent frequent and
unnecessary changes. In addition to the subsystem that is
being helped, any subsystem that is affected by the change
is also ineligible for changes for three intervals. An affected

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

subsystem is any subsystem which directly or indirectly
shares a channel with the subsystem being helped.

FICON bridge channel support

In 1999 a new channel called the FICON converter (FCV)
channel was introduced. The FICON converter (also
known as the FICON bridge) channel can be attached

via a FICON cable to an ESCON director which has the
FICON converter feature. The FICON converter feature
is a card placed in the ESCON director to handle the
speed matching and buffering of I/O operations between
a single FICON channel and one or more ESCON ports
attached to control units. The FICON converter card
contains eight internal processors that can support eight
concurrent I/O requests. Since the capacity of the FICON
link (shown in red in Figure 4) is several times that of
the ESCON links on the attached control units (shown in
green), several of the ESCON links can be active at the
same time.

What this means to DCM is that, in contrast to a pure
ESCON environment, several control units can be added
to a FICON bridge channel before there is any significant
degradation to control units already defined to the
channel. For example, in Figure 4, if CU 1000 is the only
control unit defined to FICON bridge channel 21, then if
DCM were to dynamically add CU 1100, there would be
virtually no impact on CU 1000, even if both control
units were driving the ESCON port to its full capacity.
Eventually, adding a control unit to the FCV channel will
affect the other control units, and DCM will project this
on the basis of the number of control units defined, the
load on those control units, the other channels the
control units are using, and the current FCV channel
utilization.

Most modern control units allow themselves to be
defined as multiple subsystems or logical subsystems, as
shown in Figure 5. In cases such as this, if an additional
subsystem were to be defined to the FCV channel, using
the same port as an existing subsystem, there would be
an effect to adding the new subsystem, even if the FCV
channel were not nearing its capacity. This is because
the control unit port would be the limiting factor.

Again referring to Figure 5, if control unit 2300 were
defined to FCV channel 21 via port 01 (dotted line),
control units 2200 and 2400 would be affected.

Channel subsystem priority queueing

Prioritizing I/O requests is not new for z/OS. When

the system was known as MVS, I/O requests could be
prioritized on device queues within the operating system.
With the introduction of the Enterprise Storage Server*
(ESS), WLM can also set priorities on I/O requests, which

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

CU 2200 CU 4200

~1CU 2300 CU 4300

— CU 2400 CU 4400

CU 2500 CU 4500

FICON-bridge-attached channel illustrating a configuration in
which the control unit port is the limiting factor.

are then honored by the control unit. Channel subsystem
priority queueing (CSSPQ) extends the ability to prioritize
I/O requests by addressing one more place where queues
can form, the channel subsystem.

WLM can set priorities on I/O requests, which are
then used by the eServer z900 to schedule the work to
resources within the channel subsystem. In this way
customers may identify workloads that are the most
critical, and z/OS will work with an eServer zSeries
processor to allow the critical work greater access to
channel subsystem resources. For an overview of the
different kinds of I/O priority queueing, and how they
differ from channel subsystem priority queueing, see
Reference [6].

How it functions

The z/Architecture™ specifies that I/O requests are passed
from CPUs to the channel subsystem (CSS) by means of
start subchannel (SSCH) instructions. These instructions
are issued by the z/OS I/O supervisor (I0S) on behalf of
applications or other system functions. These requests are
copied into subchannel control blocks (SCBs), which are
added to the tail of a particular work queue (WQ). Each
SCB enqueued at the bottom of a work queue contains

a field designating the I/O priority associated with

this request. Since the CSS in zSeries 900 systems is
implemented by one or more so-called system assist
processors (SAPs), one WQ is associated with each SAP.
The SAP is responsible for initiating I/O requests by
dequeueing SCBs from the WQ and passing the request

W. J. ROONEY ET AL.

581

582

Table 5 Overview of old and new algorithms.

AO.

Al.

A2.

Old (base) algorithm without I/O priority queueing:
each tinme take any

New 1/O priority queueing algorithm—QOption 1:
each fourth tine take any
each fourth tine take first highest
each fourth time take first highest
each fourth tinme take first any

New 1/O priority queueing algorithm— QOption 2:
each second tine take any
each second tine take first highest

priority top-of-Q elenent/request

priority top-of-Q elenent/request

priority initial el enent/ request
priority redrive elenment/request
priority initial el ement / request

priority top-of-Q elenent/request
priority any el ement / request

on to one or more channel paths designated to handle
this request. If all of the channel paths controlled by a
particular SAP are busy, the request is requeued at the
bottom of the same or another WQ. Therefore, work
queues contain not only requests (SCBs) just appended
by any of the CPUs by means of SSCH instruction, but in
addition SCBs which have been appended to the WQ due
to an “all channel paths busy” condition. All other busy
conditions (control unit busy, device busy, and switch
busy) are not handled via WQs. It should be noted here
that I/O priorities are observed only when an SCB is
dequeued from a WQ.

I/0 priority algorithm

Basic algorithm

The I/O priority mechanism is active when the
corresponding global I/O priority switch is enabled via the
system console. Otherwise, a strict first-in/first-out rule is
observed which ignores the I/O priority value(s) specified
by the program. The I/O priority mechanism must
guarantee a reasonable fairness algorithm, so that on one
hand I/O requests are handled according to their priority
values, but on the other hand no I/O request will “starve”
because of low(er) priority values assigned to it.
Furthermore, the algorithm should be fairly simple in
order not to impose too much latency during priority
evaluation.

The algorithm works by first taking any (either initial

or redrive) I/O request off the top of the work queue,
then taking the oldest highest-priority initial request off
the work queue, then the oldest highest-priority redrive
request off the work queue, and finally the oldest initial
request off the work queue, regardless of its priority.
In doing so, this algorithm makes sure that I/O priority
values as specified by software are well observed by the
channel subsystem, but that starvation is totally avoided.
The algorithm makes sure that

W. J. ROONEY ET AL.

e High-frequency, high-priority requests do not
monopolize the channels at the expense of others with
lower priorities.

e High-frequency busy/redrive conditions do not block out
initial requests (and vice versa). The alternate handling
of initial or redrive requests is independent of any
priority values.

While looking into design and implementation options, the
basic idea was to change only one place, which deals with
different I/O priority values. This is the channel subsystem
interrupt handler (CSSIH), which runs in the SAP/IOP
and selects all requests to be handled by the CSS on the
basis of a given priority scheme. One of these requests is
a signal work request (SIGW6) which asks the CSSIH to
dequeue a subchannel (SCB) from the work queue header
(WQH) for a start operation. The present implementation
for start requests (without I/O priority queueing) dequeues
the “top-of-queue” SCB and calls the appropriate service
routine (start, halt, clear). This is the only place where a
dequeue is done. Since the work queue is a FIFO queue,
all other routines enqueueing SCBs do so by adding

SCBs to the bottom of the queue. With the anticipated
change, halt and clear requests (SIGW2) are not

subject to I/O priority queueing, which means that

they will continue to be handled in FIFO manner.

It was assumed that there was little room for highly
sophisticated selection algorithms. If multiple queues or
even sorted queues are not allowed, it is inevitable that
the work queue must be searched—not necessarily every
time—for SCBs with the currently highest priority on the
work queue. Table 5 presents the old and new algorithms
for use whenever a subchannel control block (SCB) must
be selected (dequeued) from the work queue.

Modeling the different algorithms

All three algorithms were modeled in a REXX program
which could be executed on z/VM* as well as on OS/2*.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

A minimum number of 5K to 10K start requests per
simulation run were processed. With these numbers,
multiple runs were executed which yielded acceptable
mean values and standard deviations to make thorough
decisions between the two algorithms and among various
modifications of these two algorithms. The base algorithm,
A0, did not require much attention because it does not
attack the problem by nature.

The REXX model is a nondeterministic one. It
generates and handles I/O requests on the basis of
preselected probability values which are specified as
parameters prior to the simulation run. Its main
characteristics are the following:

¢ A preselected number of I/O requests (SSCHs) were
generated—a typical number for short test runs was
1000, but more meaningful statistical results required
5000 or 10000. These requests were added to the work
queue initially and either when the WQ ran empty or, in
case of a non-empty WQ, with a preselected probability.
The number of I/O requests added was a preselected
parameter as well, allowing a significantly busy WQ to
be generated to test the effectiveness of the different
algorithms.

e Each I/O request being generated was given a priority
between 0 and 7. The actual value chosen had an equal
distribution between 0 and 7.

e At the point where the I/O request was being dequeued,

the three different algorithms came into play. After

selection of a particular I/O request, two preselected
probability values determined whether or not this
request could be successfully started (this simulated

all channels busy on this SAP/IOP). The two different

probability values were associated with initial or redrive

requests, reflecting a possibly different behavior for

initial/redrive requests for a given workload and I/O

configuration.

If the I/O request could not be successfully started,

it was requeued again at the bottom of the WQ.

After having the I/O request either started or requeued

due to channel busy, a check was made to see whether

or not the WQ had become empty, and if not, whether
or not new I/O requests had to be generated.

e The process ended when the predefined number of I/O

requests had been processed and the WQ had become

empty.

During the total simulation run, statistical information

was gathered which was evaluated and printed at the

end of the simulation run. This included information
such as the number of simulation cycles, minimum/
average/maximum number of cycles for I/O requests
with a given I/O priority value being enqueued on the

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

WQ, average WQ length being searched, and average
WQ length total.

e All three algorithms were implemented in the REXX
model. The one to be used in a particular simulation
run could be selected by a specific parameter.

As indicated above, the simulation results of various runs
using the same parameter settings differed considerably.
Therefore, multiple runs were done for the most
interesting parameter settings, and information such as
mean values and standard deviation was calculated

for the most interesting resulting figures in a separate
spreadsheet. The REXX program, in particular the
algorithm finally chosen, served as the base of the design
for the actual changes to the CSSIH for the eServer z900
system.

Modeling results
The results of the modeling were as follows:

1. Both new I/O priority algorithms Al and A2 showed
significant improvement over the current FIFO
algorithm AQ. On average, high-priority requests
were handled approximately three to four times
faster than low-priority requests.’

2. Algorithm A2 showed slightly better results
than Algorithm Al; however, we decided to select
Al for two reasons:

e It is more robust in pathological cases (e.g.,
frequent redrives of high-priority requests while
initial requests could probably be handled
successfully on less-utilized channels).

e If the SAP/IOP channel subsystem interrupt
handler were to be replaced by an industry-
standard real-time kernel on future systems, we
would likely provide two separate work queues:
one for initial requests (from CPUs) being
handled on interrupt level and one for redrive
requests (from the same or other SAPs/IOPs)
being handled on task level.

3. Both I/O priority algorithms Al and A2 provide
a meaningful fairness algorithm, ensuring that
low-priority requests do not starve.

How are the priorities set?

The I/O priority that is passed on the I/O request to the
channel subsystem is set by WLM. There are no externals
that a user can use to specify the priorities on I/O
requests. Instead, WLM sets the priorities for I/O requests
issued by a workload using this basic approach:
me easy to increase this factor by taking more high-priority

requests than taking “any first” requests (as assumed in the “base” algorithm
outlined above). 583

W. J. ROONEY ET AL.

584

e System-related work is given the highest priority.

e High-importance work missing goals is given a higher
priority than other work.

e Work meeting goals is managed so that lightweight I/O
users have a higher priority than heavyweight I/O users.

e Discretionary work is given the lowest priority in the
system.

In this way, CSSPQ can be regarded as another tool that
WLM can use to help it achieve the goals for service
classes as specified by the user.

Multiple logical partitions

By activating CSSPQ and then specifying an allowable
range, the user can control how different partitions
interact with it. If the user is running other operating
systems on the same CPC that do not support CSSPQ
(e.g., VM/ESA*, TPF, Linux, VSE/ESA*, and 0S/390%),
a default priority may be specified for these partitions.

For example, if the user has a VM partition that has
work which is as important as the discretionary work in
the z/OS partition, the user might set the VM partition
to a priority range of (7-7), and on the z/OS partition
set the priority range to (7-14). In this way, I/O requests
from the VM partition are treated as equal to those of the
discretionary work from the z/OS partition (as opposed to
even lower if the priority is permitted to default to zero).
Alternatively, the user can set the priority range for
an OS/390 partition, running business-critical OLTP
applications to (15-15), while the z/OS partition is set to
(7-14). In this way, the OLTP work always has preference
over the z/OS partition, but the z/OS partition can still
make tradeoffs across the workloads it is managing.

The user does not even have to be running z/OS with
WLM in goal mode to get some benefit from CSSPQ. If the
user has three workloads, one of high importance, one of
medium importance, and another of low importance, the
priority ranges may be set, for example, to (8-8), (7-7), and
(6-06) respectively, and they will be managed accordingly.
However, they will not get the benefit of WLM monitoring
service classes to their goals and adjusting the CSSPQ
dynamically to help achieve those goals.

It should be noted, though, that partitions which are
members of the same z/OS LPAR cluster should have all
their ranges the same. In this way WLM is able to manage
service classes across the cluster in a consistent way.

Dynamic channel path management

CSSPQ complements the other I/O portion of IRD,
dynamic channel path management (DCM). DCM allows
the system to dynamically redefine channel paths to
control units in order to more efficiently use the channel
resources that are available to the processor. The
assignment of channels to control units by DCM is

W. J. ROONEY ET AL.

done with the cooperation of WLM, when it is running in
goal mode. This allows DCM to give additional channel
paths to control units which are being used by service
classes that require such additional bandwidth to achieve
their goals. However, these additional channel paths are
available to all work in the LPAR cluster (even the low-
priority work), so adding channel paths may not produce
the desired results if low-priority work just consumes

the added bandwidth. This is where CSSPQ helps. By
assigning the more important work a higher priority, we
are assured that it will receive greater access to the
available channels.

FICON channel algorithms

CSSPQ is implemented completely differently for FICON
channels. Unlike an ESCON channel, which rejects an 1/O
request if it is busy processing earlier requests, FICON
channels have the ability to multiplex several I/O
operations at one time. In fact, up to 32 channel programs
may execute concurrently. As a result, queues are rarely
created within the channel subsystem, so prioritizing them
has little value.

Instead, the microcode within the FICON channel itself
has been modified to honor the I/O priority. As more and
more I/O requests arrive at the channel, they are sorted
for execution in priority order. The channel achieves this
by creating several queues and creating a circular queue
of these queues, with a cursor that points to the queue
currently being serviced. As requests are being serviced
from the queue indicated by the cursor, the highest-
priority information units (IUs) are entered into the next
queue, the second-highest-priority IUs are entered into
the queue after that, and so on down, with the lowest-
priority work being entered into the furthest queue. When
all of the entries in the current queue are satisfied, the
cursor is changed to point to the next queue, effectively
rotating the circular queue and making the queue with the
highest-priority IUs the current queue. In this way, higher-
priority I/O requests receive greater access to channel
resources, but without starving the lower-priority requests.

Activating channel subsystem priority queueing
For a description of how channel subsystem priority
queueing is activated, see Reference [6].

Concluding remarks

MVS" has always been an industry leader in managing
multiple heterogeneous workloads, with various business
priorities, in a single server. With the introduction of
PR/SM, S/390 permitted a user to logically split physical
resources such as processors, memory, and I/O channels

10 MVS evolved into 0S/390, which in turn evolved into what is now known as
z/OS.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

across multiple images. Each image could provide a
complete, self-contained, computing environment, sharing,
yet still isolated from, other images in the same processor.

When WLM was introduced in MVS 5.1, this management
was taken to another level by permitting users to specify
their performance goals in business terms. Instead of
indicating to the system how much of each resource a
workload should receive, with the hope that the user will
obtain the desired responsiveness, goals are identified for the
workload, such as those associated with response time,
and the system adjusts the resource levels to achieve those
goals. WLM also permits the user to specify the relative
importance of workloads. In situations where the system is
overcommitted, WLM uses this information in order to
ensure that the user’s most important work continues to
achieve its goals, even at the expense of less important or
discretionary work.

While other platforms attempt to duplicate this
approach, z/OS again takes workload management to a
new level. By establishing a more synergistic relationship
between z/OS and the zSeries hardware with respect to
the allocation of resources among logical partitions, WLM
can now not only make changes or adjustments on the
local sysplex member level and redistribute work across
members of a sysplex, but it can also redistribute hardware
resources among partitions. What this means to customers
is that z/OS will continue to achieve the business goals of
the workload in even more adverse situations than was
possible in the past, and to achieve this while expending
less systems management skill.

Acknowledgment

The authors would like to thank the reviewers of this
paper for the insightful comments they provided. They
would also like to thank Steve Hamilton for his
constructive editing comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group or
Linus Torvalds.

References

1. IBM Corporation, z/OS Intelligent Resource Director, Order
No. SG24-5952-00; see http://www.redbooks.ibm.com/pubs/
pdfs/redbooks/sg245952.pdf.

2. IBM Corporation, z/OS VIR2.0 MV'S Planning: Workload
Management, Order No. SA22-7602-02; see http://publibfi.
boulder.ibm.com/epubs/pdffiea2w110.pdyf.

3. J. Aman, C. K. Eilert, D. Emmes, P. Yocom and D.
Dillenberger, “Adaptive Algorithms for Managing a
Distributed Data Processing Workload,” IBM Syst. J. 36,
No. 2, 242-283 (1997); see http://www.research.ibm.com/
Journal/sj/362/aman.html.

4. IBM Corporation, eServer zSeries 900 Processor Resource/
Systems Manager Planning Guide, Order No. SB10-7033-00;
see http://publibfi.boulder.ibm.com/epubs/pdf/b1070330.pdf.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

5. IBM Corporation, z/OS VIRI.0 Hardware Configuration
Definition User’s Guide, Order No. SC33-7988-00; see http://
publibfi.boulder.ibm.com/epubs/pdf/cbdzug00.pdf.

6. IBM Corporation, Hot Topics—A z/OS Newsletter, Issue 4,
February 2001, Order No. GA22-7501-00; see http://
www.s390.ibm.com/os390/bkserv/hot_topics.html.

Received September 21, 2001; accepted for publication
February 8, 2002

W. J. ROONEY ET AL.

585

586

William J. Rooney IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (wrooney@us.ibm.com). Mr.
Rooney is a Senior Technical Staff Member in the zSeries
Software System Design Department. He received a B.S.
degree in computer science from the New York Institute of
Technology in 1978 and an M.S. degree in computer science
from Syracuse University in 1984. During his 24 years of
service for IBM, he has worked on device allocation, software
litigation, Parallel Sysplex prototyping, and porting of UNIX
applications to OS/390 UNIX System Services. He is currently
responsible for design of I/O functions, and is the lead
designer for dynamic channel path management.

Jeffrey P. Kubala IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (kubes@us.ibm.com). Mr.
Kubala is a Senior Technical Staff Member in the LPAR
Design and Development Department and is currently the
technical team leader for the zSeries LPAR hypervisor. He
received a B.S.E. degree in computer engineering from the
University of Connecticut and joined IBM in 1981. Since then,
he has worked on compiler design and development, OS/390
Hiperbatch, and S/390 and zSeries logical partitioning. In
addition to his role as the zSeries LPAR hypervisor technical
team leader, he is actively engaged with the iSeries and
pSeries hypervisor teams as a technical consultant.

Juergen Maergner IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(jmaergner@de.ibm.com). Mr. Maergner is a Senior Engineer,
working on future I/O attachments for zSeries systems. He
received a master’s degree in electrical engineering from the
Technical University of Berlin, Germany, and joined IBM in
1970. Since then, he has worked primarily in the area of
channel subsystem design and I/O attachments for S/370,
S/390, and z/900 systems. He is currently active in the
standards community as chairman of both national and
international standards committees in the fields of
interconnection of computer systems and attached equipment.

Peter B. Yocom [BM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (yocom@us.ibm.com). Mr.
Yocom is a Senior Technical Staff Member in the WLM/SRM
Design and Development Department. He received B.S. and
M.S. degrees in computer science from Rensselaer Polytechnic
Institute in 1985 and 1986, respectively. He subsequently
joined IBM, where he has worked on the real storage manager,
the I/O supervisor, and workload manager components of
z/OS. He is currently the lead designer for the z/OS

workload manager component.

W. J. ROONEY ET AL.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

