
by S. Koerner
M. Kuenzel
E. C. McCain

IBM eServer z900
system microcode
verification
by simulation:
The virtual power-
on process

In the development of a large, complex
computer system, the verification of its
microcode by simulation can significantly
decrease the time required for the integration,
“bring up,” and testing of the system.
However, creating a process that integrates
and aligns the smaller verification tasks
to form a coordinated, seamless, and
comprehensive system verification plan
requires considerable effort. In this paper
we present a brief summary of previous
verification processes and describe a process,
virtual power-on (VPO), which encompasses
both hardware and software verification. We
then compare the results achieved with that
process with those achieved using previous
processes. The VPO process was initially
applied to the IBM eServer z900, resulting in a
significant reduction in the time required for its
development.

Introduction
System microcode is licensed software that has direct
access to hardware facilities for control purposes. For

decades, system microcode verification has been an
appreciable challenge, and it continues to be so. The IBM
eServer z900 design represented the most extensive change
in server design since the Enterprise System/9000* (ES/9000*).
Consequently, use of the “business as usual” approach
would have required considerable “bring up” (or, simply,
bring-up) time. That approach involves unit-testing the
system microcode, then delivering it along with new
hardware to bring up the system. System microcode
is then executed on the hardware for the first time at
“power-on” (the initial turning on of a large computer
system). As a result, microcode bring-up and debugging
severely hamper hardware verification.

Hence, the approach to system microcode verification
required a radical change. The challenge was to verify the
system microcode of a complex computer system by means
of simulation so that the time and the amount of early
hardware needed for the integration, bring-up, and testing
of the system could be reduced, thus having a significant
impact on development cost and time-to-market.

The VPO process made this possible. It evolved by re-
engineering the system integration process to execute tasks
that would normally be executed during system bring-up
and executing them in a simulated environment. Code
and hardware models had to be delivered early, and
powerful verification engines had to be developed. These

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 S. KOERNER ET AL.

587

verification engines enabled this method to execute
many simulation cycles in a hardware and software co-
verification environment, thus accelerating the problem-
discovery rate.

To achieve virtual and actual power-on (respectively,
the initial turning on of a large computer system in
simulation or physically), the microcode required to control
the system must be present and at least verified on a unit
level. By generating a system “driver” (the term driver
is used to describe a package of all of the run-control
software needed to power on and initialize the system
to be ready to run the user’s control programs and
applications) prior to power-on and using a full system
model that is functionally equivalent to the real hardware,
VPO can be initiated.

In this paper, we first present a brief summary of
previous work on system microcode verification, and then
describe the VPO process and its application to the
development of the IBM eServer z900.

Evolution of system microcode verification
This section contains a summary of previous work on
the use of simulation for system microcode verification,
which, although brief, should indicate the essence of a
comprehensive system microcode verification approach.

IBM ES/9000 Models 820 and 900
The simulation approach used to verify the microcode
of the IBM ES/9000 Models 820 and 900 contained
several components which can now be identified as
VPO components. The components integrate a fully
functional system model which contains the individual
“pre-verified” unit models of all of the computer chips
that make up the central electronic complex (CEC), or
“system,” with an external controller containing all of the
unit-tested code necessary to power on and initialize the
hardware for customer use. The verification engine used
to drive this was a special-purpose parallel processor,
designated as an engineering verification engine (EVE)
[1]. The simulation approach used was to verify millions
of lines of system control code, designated as processor
controller Licensed Internal Code (PCLIC) by attaching
an IBM 3092 processor controller element (PCE) to
the EVE (containing the system hardware model) [2].
Attachment was achieved by means of a PCE-to-EVE
adapter card. The PCLIC had to drive the system model
and verify the resets (setting of initial states), recovery,
manual operations, self-tests (hardware diagnostic), and
finally power-on reset (POR). The latter is analogous to
initial microcode load (IML), which executes in multiple
steps to initialize the hardware and code used in the
zSeries 900.

Although hardware and code problems were found, the
approach used was the groundwork for using an initial

program load (IPL), an architected “mini-boot” which
allows an operating system load from external devices into
memory—a key milestone in mainframe bring-up of an
operating system such as System Assurance Kernel (SAK),
an IBM internal-use-only tool for architecture verification.
Thus, all of the initial bring-up operations could be
modeled on the “test floor” during the powering on
of the hardware.

Removing these errors ahead of time considerably
reduced the time from power-on to SAK IPL. From
a process point of view, this integration of code and
hardware required tight system driver control. As a result
of all of the simulation done for the ES/9000 Models
820 and 900, SAK was running 31 days after power-on.
Thus, the above verification strategy could be regarded
as an “ancestor” of the VPO process.

Strategic technology shift
In the early 1990s IBM decided to take a different
direction in server technology. This caused a dramatic
change in teams and personnel. The server development
group became global and joined forces with the
Boeblingen, Germany, and Endicott, New York,
development groups to develop CMOS chip-based systems.
This forced a rethinking of the verification strategies and
processes—to an emphasis on establishing smaller
subsystem verification environments to support system
development.

IBM S/390* Enterprise Server Generations 3, 4,
and 5
System microcode simulation for the IBM S/390 Server
Generations 3, 4, and 5 (or simply G3, G4, and G5)
included some portions of the system initialization code
that resided on the service element (SE, analogous to
the PCE on ES/9000). The results of the G4 verifications
were ten hardware problems and 35 code problems found
in simulation. Power-on-to-SAK IPL required approximately
8 weeks on the G4 and 9 1⁄2 weeks on the follow-on G5.
The code needed to verify the initial microcode load
(IML) components was isolated and could be extracted to
run in the SE attached to the hardware system model
located in the EVE 1.5 hardware accelerator [3].

However, because of the different focus of the code
verification team and the hardware verification team, there
was no comprehensive system-driver integration plan to
line up with this verification schedule.

IBM S/390 Enterprise Server Generation 6
The system microcode simulation approach was essentially
unchanged for the next generation of CMOS systems.
However, there was a major change in tools. The SE
attachment testing for IML component verification [3]
was mainly executed with a ZFS (IBM internal software

S. KOERNER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

588

simulator) environment running on VM attached via
TCP/IP. In addition, a design verification system [4]
attached to an SE via TCP/IP was being developed under
a partnership with Quickturn.1 The system, designated
as the Concurrent Broadcast Array Logic Technology
(CoBALTTM)2 system, was designed to provide many more
simulation cycles to the IML verification effort. The intent
of the CoBALT environment (system and associated
software tools) was to take the SE-code driver as delivered
for a real server system power-on and initiate an IML with
the model of the server system running in the CoBALT
system. In theory, every problem found and fixed means
one less problem when the real hardware is powered on.
The goal for the CoBALT environment during the G6
verification phase was to execute IML step 3, which
included SIF (L2 serial interface), load of bootstrap code,
and execution of bootstrap code before real power-on.
Although we did not reach that goal, we found
approximately 20 code problems, and the power-on-to-
SAK IPL was two days. (The amount of change between
the S/390 G5 and G6 was relatively smaller; that explains
why bring-up was executed much more rapidly.)

On the basis of the experience gained in this effort,
the decision was made to perfect this environment and
develop a process to coordinate and bring together all of
the development code and hardware teams to deliver all
of the code needed to power on a system months prior to
its real power-on date, and to execute a virtual bring-up:
the VPO concept. We have learned from the experiences
with previous microcode verification strategies and refined
this “end-to-end” verification strategy.

A comparison of the time required to complete SAK
IPL for the various systems described is shown in Figure 1.
The figure demonstrates the positive impact of the
new microcode verification concept by reducing system
integration time despite an increase in system complexity.

We next describe what was done for the development
of the verification process for the IBM eServer z900.

Microcode development process and
verification
In applying the VPO approach to the IBM eServer z900,
the objective was to achieve long-term improvement in the
quality of the microcode delivered to system integration
and bring-up, by detecting and facilitating the solution of
the vast majority of code problems before the system is
first switched on in simulation and emulation.

The integration phase of a new server system is strongly
dependent on the quality of the system microcode. During
the first major simulation phase for the z900 server before
first power-on, more than 250 documented microcode

problems and three hardware problems were identified in
simulation and, even more significantly, solved. During the
entire simulation phase, more than 500 problems were
found and fixed. The following description covers the
entire simulation process. All of the components are in
regular use, and they all meet or exceed the expectations
defined for them. Two other papers in this issue go into
more detail on the components [4, 5].

Several constraints must be addressed with the
introduction of this new simulation concept. It was not
only necessary to develop simulation and emulation
environments with improved coverage, speed, and
networking between the components, but also to consider
the impact on the entire microcode development process.
Previously, the first microcode driver was available at
power-on time, leaving little time for simulation activities.
Hence, the focus was on debugging the real system.
Putting more emphasis on simulation means an
improvement of several months in the availability dates
of specific microcode functionality. Beyond that, the
simulation process must deal with the fact that design and
coding are still ongoing, since not all microcode can be
ready at the start of simulation. Good regression capability
is therefore a requirement and an integral part of the
simulation process. Thus, in order to be successful, a very
detailed simulation and component delivery plan must be
established and executed. Using VPO, the first microcode
driver for the z900 server system was delivered five
months prior to real power-on (see Figure 2).

Virtual power-on simulation process for the
eServer z900
The system microcode simulation process for the z900
server was aimed at detecting microcode problems as early

1 The Quickturn� Corporation, a Cadence� Company, San Jose, CA 95134.
2 Now a product of Quickturn.

Figure 1

Actual time from power-on to SAK IPL.

ES/9000 S/390 G3 G4 G5 G6 z900
0

2

4

6

8

10

12

W
e
e
k
s

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 S. KOERNER ET AL.

589

as possible, starting with microcode components. In
the first phase, the components were verified to the
maximum extent possible in a standalone simulation. The
components included the office mode of the service
element code, the code emulator, and CECSIM [5].
After the first phase, the different unit test simulation
environments were combined in order to detect interface
problems.

The second phase of verification occurred exclusively in
a code simulation environment without reference to any

hardware model. Only that approach provided the
necessary simulation speed and decoupling of code
verification from the unstable and slow (even with
emulation) hardware model in that early time frame [5].

In the third phase, the interaction of microcode and the
processor hardware model was verified. The introduction
of new hardware designs resulted in changes in the
hardware access microcode layer, traditionally known to
generate many errors. The third phase was carried out
until the power-on date using the CoBALT system—
with a successful first-time result, for a CMOS-based
eServer system, of finding and removing a significant
number of problems [4] (see Figure 3).

Targeted problem areas
On the basis of experience from past efforts, the following
groups of microcode errors are targeted with the VPO
process:

1. Software logic problems that can already be found
in the unit-software simulation environments.

2. Interface problems among the different types of
microcode.

3. Problems in getting the code to work together with
the new hardware.

Microcode errors in categories 2 and 3 can be found
only if the different simulation environments are linked
together [5]. Those in category 3 can be found only with
powerful emulation systems because of the model size
and speed needed to drive this environment [4].

Although there was no overlap in the microcode errors
found in the different simulation environments, it was
obvious that some microcode components were missing,
and therefore certain bugs were not revealed by the
simulation process. Using the CoBALT system, more than
sixty code and three hardware errors were detected; the
errors were in the CEC initialization code (i.e., support
element code and hardware reset files).

IML simulation using the CoBALT system for system
initialization code verification ended at the point of
initiating service word communication during bootstrap
execution in IML Step 3. That step comprises six major
functions, all of which were tested in VPO on the
CoBALT system as well as subsystem simulation:

1. Run ABIST (array self-test) to initialize internal arrays.
2. Set all latches to their logic reset state.
3. Load bootstrap code.
4. Start clocks for the user chips.
5. Execute bootstrap code to finish hardware initialization

in preparation for code execution.
6. Initialize service word communication.

Figure 3

ESG microcode verification process (VPO concept).

Time axis

Real

power-on

Virtual

power-on

(VPO)

Verified RIT-level

hardware

Unit simulation

Network

link

Integrated

code simulation

environment

 I/390,

millicode, I/O

Service element

cage

controller

System-level code

simulation

Emulation,

hyper-acceleration

Figure 2

Microcode simulation in development process.

Time

axis

Real

power-on

Virtual

power-on

(VPO)

System

design

and

coding

System

integration
Microcode

simulation

1 year 6 months 1 year

General

availability

Ongoing !

S. KOERNER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

590

Results
Overall, a total of 82 microcode bugs escaped until IPL
completion. It was estimated that the entire simulation
process saved more than 12 weeks in integration time. The
microcode simulation coverage for the system was greater
than 80% through IPL completion, and is expected to
be greater than 95% for the next generation of zSeries
servers.

Escape analysis
By analyzing the escapes, it was discovered that each
simulation environment offered benefits. It was known
that the emulation effort did not come as far as planned,
impacting the distribution of the escapes and the length of
the integration phase. It took 51⁄2 weeks on the test floor
to accomplish IML steps 2–5 and 31⁄2 weeks to finish IML
and then IPL the first operating system (SAK). The higher
number of escapes at the beginning of IML testing was
also induced by missing microcode in the simulation setup.
Microcode that was verified successfully in the hyper-
accelerated emulation environment (IML steps 2 and 3)
executed very well after real power-on. The same applied
for microcode that was verified in the CECSIM bringup
vehicle [5] (see Figure 4).

Problem distribution
As expected, the problem distribution among the different
system components showed that those that were totally
new compared to those of previous systems tended to be
more problematic, for example, as indicated in Figure 5
for the component “Eng data/se,” which contained new
elements in the system control structure. Although new
components tend to appear late in the development cycle,
and only a few (if any) relevant simulations can be carried
out before power-on, it is evident that they should receive
closer attention in the future. Additionally, the simulation
environments should be as close as possible to the real
execution environment to minimize code changes for
simulation-only purposes. Only the bare minimum of
changes in time-out values and shortcuts because of
missing interfaces should be allowed.

Network connection of the simulation
environments
One key element of the simulation process was the ability
to tie the different types of microcode together and
connect them to the hardware and microcode simulation.
Since the entire microcode of the z900 resides on the SE
[6, 7], it plays a major role in the simulation strategy. It
must connect to all simulators being used. The following
describes how this was achieved.

Support element
The support element (SE) is the control and maintenance
unit for eServer components. It is able to perform a wide
variety of tasks; it controls the system configuration
and checks the configuration for plausibility, initiates
the loading of microcode into the PUs, and provides
functionality to modify the hardware configuration or to
replace defective parts while the system is operating.
(For more detailed information on the SE, see [6, 7].)

Physically, the SE consists of an IBM ThinkPad*
notebook PC that is mounted inside the frame of the host.
It is connected to the host via one of the private Ethernet
networks that exist within the cage controller structure [2],
and it uses the cage controllers to obtain information
on hardware, system status, and power status, and to

Figure 4

IML gates vs. time (SAK IPL complete after eight weeks).

Weeks

0

20

40

60

80

P
ro

b
le

m
s

Week 1.5 IML Step 3 complete

Week 4.5 IML Step 4 complete

Week 5.5 IML Step 5 complete

1 2 3 4 5 6 7 8

Figure 5

IML through SAK IPL: Number of problems found for various

components.

C
lo

c
k
 c

h
ip

E
n
g
 d

a
ta

/s
e

C
h
a
n
n
e
l

c
o
d

C
a
g
e
 c

o
n
tr

o
l

N
e
tw

o
rk

 p
ro

t

B
o
o
ts

tr
a
p
 c

o

M
e
m

o
ry

 k
e
y

M
il

li
c
o
d
e

M
B

A
/N

e
p
tu

n
e

I3
9
0
 c

o
d
e

Problem distribution

0

5

10

15

20

25

30

35

N
o
.
o
f

p
ro

b
le

m
s

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 S. KOERNER ET AL.

591

communicate with the microcode running on the zSeries
PUs.

Since the scope of the cage controllers is limited to the
cages in which they are physically housed, and the cage
controllers do not have the ability to store persistent
system information, the SE is the first element in the
control hierarchy that has a complete system overview
and can perform tasks requiring persistent configuration
information.

SE standalone verification (“office mode”)
The SE developers are faced with the situation that the
basic functionality of the SE must be available prior to the
existence of the hardware that the SE will have to control.
Even after the first availability of prototype hardware and
during the following bring-up and test phases, the amount
of hardware available is far from sufficient to allow testing
of all code changes on real hardware.

The standard solution for this problem is to create a
version of the code that runs on a standalone personal
computer. The functional code remains as unchanged as
possible, and only the actual hardware access routines
are replaced by “office” simulation access routines with
artificial responses.

This method is implemented and widely used to test
and debug SE applications. In fact, every code change is
required to be tested in office mode prior to integration
into the code libraries. Therefore, every developer must
have access to an office-mode simulator to test and debug
his or her code.

This way of testing is not very different from any
standard test procedure that should be done in each
software project; i.e., internal interfaces, internal
functionality, appearance and consistency, usability, and
other factors can all be evaluated.

Even after bring-up hardware is available, every code
change has to be pretested in office mode to reduce the
amount of test time required on the bring-up hardware.
While this method provides sufficient test coverage
for a wide range of SE functionality, it definitely has
shortcomings in areas where the actual response from
the hardware is not predictable via simple algorithms. In
addition, the actual communication between the SE and
the code running on the zSeries PUs cannot be tested.

SE-to-CECSIM connection
The code running on the zSeries PUs below the operating
system level (millicode, microcode, i390 code) is tested
on the CECSIM simulator [5]. In order to test the actual
communication between this code and the SE code, these
two components are connected via a TCP/IP connection.
Since this setup is different from the structure that is
present in a real system, this requires extensions and
modifications on both sides. A TCP/IP stub is required for

the CECSIM simulator; it sends and receives the data that
is transferred on real systems via a state machine located
in the CEC clock chip. On the SE side, the standalone
simulation has to be altered to allow the communication
stream to and from the PUs to be passed via the TCP/IP
network, while all other communication requests have
to be treated in the same way as in the standalone
simulation.

The simulation environments are started separately,
and the TCP/IP connection is established during the SE
initialization phase (often referred to as “SE warmstart”).
The actual communication, however, does not begin
until a certain point in the initial microcode load (IML)
sequence (also known as power-on reset) has been
reached. At this point (on a real system), the SE issues
a command to the hardware which starts the clocks
and causes the previously loaded code to start the
communication [8]. Since these kinds of hardware accesses
are not possible in CECSIM mode, this command is
modified to send a “shoulder tap” to the CECSIM,
which synchronizes both simulation environments. In this
setup, the shoulder tap synchronizes the two simulation
environments with respect to the current flow of events.
Both simulation environments from that point on
continue with their respective simulations while the actual
communication between the SE and the code running on
the zSeries MCM is executed in the same way as it would
be on a real system.

This method allows verification of the communication
between the support element and the zSeries millicode
and microcode, as well as the routing of commands to
the zSeries operating system. In particular, the complete
IML sequence can be verified in advance. Given that the
amount of data that is exchanged during a single IML of a
typical system is of the order of magnitude of several MB,
and that multiple communication partners are involved on
either side, the value of this type of simulation can hardly
be overestimated, especially if the fact is considered that a
successful IML is one of the first major milestones in real
hardware bring-up once the first bring-up hardware is
available. With the SE-to-CECSIM connection, often
referred to as “CECSIM-BUV” [5], both the code running
on the SE and the millicode and microcode running on
the zSeries CPUs can be verified to work together prior
to the availability of any bring-up hardware.

Since the CECSIM environment is based on a previous
generation of IBM mainframe hardware, the execution
time for the communication commands is at least of the
same order of magnitude as on the actual hardware.
However, there exist natural limitations to this sort of
simulation, since the communication path is different.
That is, the cage controller hardware and software are not
part of the setup, and the connection is routed over the
existing network hardware and may be affected by other

S. KOERNER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

592

network traffic. Thus, some classes of problems, such as
timing problems, are not detectable in the CECSIM-BUV
environment. However, all problems that are related to
the content of the communication are detectable in the
CECSIM-BUV environment (see Figure 6).

Connecting the SE to the CoBALT system
One of the tasks of the SE is to access certain hardware
registers of the mainframe directly by reading and
writing so-called “scan rings” in certain chips on various
components of the hardware. Therefore, the SE must have
explicit knowledge about the hardware characteristics of a
system [Engineering Data Interface (EDI), initial patterns
(INPA), etc.] This knowledge is first required during the
early phases of the initialization, but even during normal
operation of a z900 there are many different kinds of
hardware-related information that are accessible only via
these hardware registers. Among the most critical and
time-consuming tasks in the early bring-up phases has
always been the verification of the layout and functionality
of these registers in relation to the documented hardware
design. With the availability of a hardware emulation as
provided by the CoBALT system [4], there now exists the
opportunity to create a model of the actual hardware from
the VHDL design data prior to the availability of the
first prototype hardware. By connecting this model with
another modified version of the SE standalone simulator,
these hardware access methods can be verified and tested
in the time frame between the stabilization of the VHDL
design and the availability of the first hardware. By
connecting an SE to the CoBALT system, several areas
can be verified prior to the availability of the first
hardware: the actual accessibility of the hardware
registers, the size of the scan rings as defined in the
engineering data, the meaning and function of each latch,
and the correct initialization pattern, to name only a few.

The connection to the CoBALT system is established
in the same way as the connection to the CECSIM
environment, during the “SE warmstart.” Unlike that for
CECSIM, however, the communication is started as soon
as the SE attempts to access the hardware via scan rings.
Since the speed of the emulator is necessarily several
orders of magnitude slower than the speed of the actual
hardware it is emulating, several aspects have to be
considered when connecting an SE to the CoBALT
system. First, all relevant explicit time-out values in the
SE must be adapted or completely disabled. Next, the
code must be checked for implicit timing dependencies,
which must also be eliminated. Finally, the scope of the
simulation must be adapted to focus first on the most
relevant parts of the hardware access.

Nevertheless, with the SE-attached CoBALT system,
we have been able to simulate not only the complete
hardware initialization but also the hardware-related parts

of the IML up to the point where the first code is loaded
into the PUs and the clocks are started. Since this kind
of information is relevant even before any code can be
loaded into the MCM, the scope of this environment is
slightly different than at the CECSIM-BUV. In addition,
since the clock chip is part of the CoBALT environment,
it is also possible to actually load and exercise millicode,
microcode, and i390 code in this environment and verify
the actual communication path.

While the CECSIM-BUV focuses primarily on the
simulation and verification of communication and code
flow during the later phases of an IML, the SE-to-
CoBALT connection focuses on hardware-status-related
information.

In combination, these three simulation environments
(SE standalone office-mode simulation, SE-to-CECSIM
connection, and SE-to-CoBALT emulation connection)
cover almost all aspects of hardware and microcode
verification without the need for availability of actual
hardware.

Setup
The setup of these simulation environments on the SE
simulator is controlled by a set of run-time switches in the
code and a parameter file that contains the IP addresses
or domain names of the desired CECSIM or CoBALT
counterparts, the IP port to use, the type of simulation,
and other relevant information. The layer that directly

Figure 6

Code simulation environment.

Millicode

emulator

(MCE)

CECSIM

SE code

Office

mode

TCP/IP

connection

I/390 office-

mode

connection

C-based

hardware model

(MBA, ISC-3

Himo)

When all environments

are connected,

this is called the

“CECSIM

bring-up vehicle (BUV).”

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 S. KOERNER ET AL.

593

controls the actual PC hardware access is replaced by
a special simulation version that checks the run-time
switch settings, parses the parameter file, and sets up the
connections to the simulation/emulation environments.
Normally the CoBALT system or the CECSIM application
is started first and waits at an early phase for the SE to be
started. With the correct settings, the SE then establishes
the connections and the simulation continues.

Concluding remarks
In this paper, we have summarized previous system
microcode verification efforts—for the IBM Enterprise
System/9000 Models 820 and 900, IBM S/390 Enterprise
Server Generations 3, 4, 5, and 6 —and current verification
efforts on the IBM eServer z900. Efforts on the latter
resulted in a significant (approximately three months)
reduction in its development time. Furthermore, we have
described the process changes and common network
connections needed to support the appreciable advance
in system microcode verification achieved for the latter
system. Our objective was the removal of as many
problems as possible to reduce development time.
However, code and hardware problems were found during
real system bring-up. An escape analysis was done, and it
became evident that problems arose where simulation
shortcuts were introduced to simplify the environment
and expedite the testing.

In that regard, strategic enhancements must be made
to the processes and simulation environments. Further
efforts will be required on the integration of all microcode
components into the virtual power-on process, with the
aim of reducing and if possible eliminating all simulation
shortcuts. Also, emulator capacity must grow at the same
rate as system hardware design. Hence, it will be important
to integrate the latest emulator technology into microcode
simulation concurrently with ongoing verification efforts.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. D. K. Beece, G. Deibert, G. Papp, and F. Villante, “The

IBM Engineering Verification Engine,” Proceedings of the
25th Design Automation Conference, IEEE, June 1988,
pp. 214 –218.

2. D. F. Ackerman, M. H. Decker, J. J. Gosselin, K. M.
Lasko, M. P. Mullen, R. E. Rosa, E. V. Valera, and B.
Wile, “Simulation of IBM Enterprise System/9000 Models
820 and 900,” IBM J. Res. & Dev. 36, No. 4, 751–763
(1992).

3. S. Koerner and S. M. Licker, “Run-Control and Service
Element Code Simulation for the S/390 Microprocessor,”
IBM J. Res. & Dev. 41, No. 4/5, 577–580 (1997).

4. J. Kayser, S. Koerner, and K.-D. Schubert, “Hyper-
Acceleration and HW/SW Co-Verification as an Essential
Part of IBM eServer z900 Verification,” IBM J. Res. & Dev.
46, No. 4/5, 597– 605 (2002, this issue).

5. J. Von Buttlar, H. Böhm, R. Ernst, A. Horsch, A. Kohler,
H. Schein, M. Stetter, and K. Theurich, “z/CECSIM: An
Efficient and Comprehensive Microcode Simulator for the
IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5, 607–
615 (2002, this issue).

6. B. D. Valentine, H. Weber, and J. D. Eggleston, “The
Alternate Support Element, a High-Availability Service
Console for the IBM eServer z900,” IBM J. Res. & Dev. 46,
No. 4/5, 559 –566 (2002, this issue).

7. A. Bieswanger, F. Hardt, A. Kreissig, H. Osterndorf, G.
Stark, and H. Weber, “Hardware Configuration Framework
for the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
537–550 (2002, this issue).

8. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J.
Saalmueller, and F. Scholz, “System Control Structure of
the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
523–535 (2002, this issue).

Received September 24, 2001; accepted for publication
April 12, 2002

S. KOERNER ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

594

Stefan Koerner IBM Server Group, IBM Entwicklung
GmbH, Schoenaicherstrasse 220, 71032 Boeblingen
(koerners@de.ibm.com). Mr. Koerner is a Senior Engineer
in the IBM eServer z900 Hardware Development Group in
the Boeblingen laboratories. He joined IBM in Boeblingen in
1981 after receiving an M.S. degree in electrical engineering
from the Technical University of Furtwangen, and has held a
number of positions in logic design, microcode development
and hardware verification. He was the technical leader for the
microcode verification and emulation of the IBM S/390 G7
system. Mr. Koerner holds three patents, is the author of 12
technical papers, and received an IBM Outstanding Innovation
Award in 2001. He is currently the technical leader for microcode
verification in the IBM Enterprise Systems Group.

Martin Kuenzel IBM Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen (kuenzel@de.ibm.com). Dr. Kuenzel
joined the IBM Boeblingen laboratories in 1996 after
completing his Ph.D. thesis in solid-state physics at the
RWTH Aachen. Since then, he has worked in various areas in
the zSeries Support Element Development Department of the
IBM Server Group. He is currently the team leader of the
Cage Communication Support Layer Development team. Dr.
Kuenzel received an IBM Outstanding Technical Achievement
Award for his efforts on Multiprise 3000 SE hardware access
and an IBM Outstanding Technical Achievement Award
for his efforts on the design and development of the IBM
eServer z900.

Edward C. McCain IBM Enterprise Server Group, 2455
South Road, Poughkeepsie, New York 12601 (mccain@us.ibm.com).
Mr. McCain is currently an Advisory Verification Engineer
and Team Leader for the S/390 emulation program. He joined
IBM in 1982 and has worked on engineering systems testing
for the IBM 308X, 3090, ES/9000, and the S/390 G3, G4, G5,
and G6. He has received a Leadership Award for his work
on PR/SM & MPG, a Division Award for his work on the
ES/9000, Excellence Awards for his work on S/390 Parallel
Sysplex EDVT testing, S/390 G4 functional test leadership,
S/390 G6 EST project leadership, and an IBM Outstanding
Technical Achievement Award for his work on zSeries
verification.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 S. KOERNER ET AL.

595

