Hyper-acceleration

and HW/SW
co-verification
as an essential
part of IBM
eServer z900
verification

by J. Kayser
S. Koerner
K.-D. Schubert

Hardware/software (HW/SW) co-verification
can considerably shorten the time required

for system integration and bring-up. But co-
verification is limited by the simulation speed
achievable whenever hardware models are
required to verify hardware and software
interactions. Although the use of a general-
purpose hardware accelerator as an extremely
fast simulator resolves performance aspects,
it generates a new set of handling, efficiency,
and serviceability demands. This paper
describes a means for addressing those
demands through the use of one of the largest
hyper-acceleration systems created thus far, and
describes many new associated features that
have been implemented in operating software.

Introduction

The development process of a high-end server system
typically consists of multiple phases, including design,
implementation, simulation, physical design, and finally,

as soon as the first functional chips are available, system
bring-up and testing. A very important milestone in this
sequence is power-on (PON), the state in which the first
chips have been manufactured and bring-up can begin. To
reduce the overall time to market, it is very important to
reduce the bring-up-and-test time after PON by increasing
overall system quality through extended simulation. The
system generally consists of a set of chips and associated
firmware, which is a software layer that is invisible to the
customer but is required in order to deliver the more
complex functions of the architecture on top of the
hardware. The overall quality of the system is generally

a combination of hardware quality, software quality,

and the success with which the parts interact.

Various methods such as model checking or directed
random test-case generation are used to ensure that the
hardware is functioning properly. By applying these
methods first to units, then to single chips, and finally
to multiple chips, almost all hardware problems can be
found prior to “tape-out” by using standard simulation
techniques. The majority of the code is typically verified
without the target hardware [1] by using behavioral

©Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor. 597

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. KAYSER ET AL.

598

models. This is sufficient as long as the code does not
access special-purpose hardware features, which are
usually not added to the behavioral models because of
their complexity.

While behavioral models are suitable for verifying most
of the firmware, there remains a relatively small code
layer that interacts closely with the target hardware. For
the IBM eServer z900, this is mainly the firmware code
used to initialize the machine (initial machine load code,
or IML code). Any improvement in the simulation of
these hardware/software (HW/SW) interactions before
receiving the first hardware can significantly reduce the
time to market. To simulate this interaction, we faced the
challenge of supplying a very large simulation model of
the system which can be run at a speed that allows
effective code debugging. This paper presents our solution
to the problem of verifying hardware-model-specific code
by implementing HW/SW co-verification using a simulation
system as a “hyper-accelerator” [2]. The term is used to
distinguish simulation at emulation speeds (100000 cycles
per second) from typical simulation acceleration, which
usually runs two to three orders of magnitude slower
(1000 cycles per second).

Reasons for hyper-acceleration
Traditional hardware and software verification processes
occur independently of one another; the major reason for
this is simulation performance. Whenever a very large
hardware simulation model comprising multiple chips is
executed on an event- or cycle-based software simulator,
the effective performance is usually in the range of a few
simulation cycles per second. This is insufficient by far to
do any meaningful firmware debugging. As an alternative,
verification of those functions requiring interaction with
the hardware is often done using behavioral models of
the hardware instead of actual simulation models of the
real design. Because these models are only an abstract
description of the hardware, they are smaller in size and
thus able to execute much faster than a real hardware
model. Using behavioral models, the software simulation
can achieve the reasonable performance level needed for
code verification. However, because only selected portions
of the design are modeled, behaviorals do not completely
mimic the way real hardware will react. Since z900 IML
code requires the models to respond exactly like real
hardware, behavioral models cannot be used to completely
verify the system initialization sequence. Thus, a
significant amount of unverified IML code will escape
through the software verification process and can be
debugged only when a real system is powered on for the
first time.

To alleviate this problem, a solution was needed to
model the real hardware, yet run fast enough to verify
code sequences. As mentioned above, no general-purpose

J. KAYSER ET AL.

software simulator for simulating hardware is fast enough
to allow a meaningful simulation of firmware on the whole
model. In the industry, a general way to solve this
problem is to emulate the chips under test using a
hardware emulator. High performance is achieved by
establishing a physical connection to the rest of the real
system, where the associated software can be executed

[3, 4]. For the z900, we decided to use an emulator also,
but without a target system. Because the majority of chips
are developed in parallel with each new system generation,
there simply was no physical representation of the system
available. So, in contrast to the industry, the z900
approach was to put a significant subset of our hardware
system model, including multiple processor chips, cache
chips, and memory, into a single hardware-emulation
system and use this system as a hyper-accelerator. We

do not call this emulation, because instead of physical
connections to any real hardware, we have to use software
to drive the model under test.

Accelerator (AWAN) and concurrent array logic
technology (CoBALT') hyper-accelerator

IBM has a long history of using simulation accelerators
[5]. Currently within the company, use is made of the
AWAN system, which is described in more detail in [6].

It is used to speed up the classical functional verification
of chips. Compared with an execution speed of a few
simulation cycles per second using a pure software
simulator on a large model, AWAN accelerates the
execution speed to several hundred simulation cycles per
second. While this is significantly faster than any software
simulator, the performance is still not sufficient to execute
the required amount of code, which is roughly 2 X 10’
cycles in less than four hours. Speed of this magnitude is
needed for efficient debugging of IML code. To address
this problem, the construction of one of the largest
hyper-acceleration systems ever created has been initiated;
this is the COBALT™ system,' which is installed at IBM
Boeblingen. The system was developed under a
partnership with the Quickturn Corporation.

The z900 system contains a total of 25 million two-way
NAND gate functions. The CoBALT system (Figure 1)
achieved an execution speed of more than 50000
simulation cycles per second while using a model which
reflects the actual hardware implementation. It achieves
this by utilizing parallel processing techniques, enabling
66560 processors to work simultaneously to calculate the
model state.

The CoBALT system improves performance by a factor
of 10000 over software simulation, enabling HW/SW
co-verification to occur and verify the initialization and

I'A product of the Quickturn Corporation, a Cadence® company, San Jose, CA
95134.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

loading phases of the new system even before actual
system integration starts.

Having this innovative new system is one part of the
solution. The second part, however, is to make efficient
use of it. Several problems had to be solved to exploit the
huge capacity and speed of the CoBALT system. The
problems fell into three major categories: how to build a
model of the required size, how to improve the model
access methods without limiting performance, and finally,
how to debug problems discovered by the system.

Model size and model build

The development of the emulation model deserves
particular attention. As for any hardware simulation, the
design, represented in VHDL (a hardware description
language) must be compiled into an executable object,
the model. The compilation process is also known as the
model build process. The CoBALT system has a parallel
processing capability of 66560 processors and can hold a
maximum of about 15 million three-way NAND gates.”
The quality of the scheduling software as part of the
model build determines how efficiently the available gates
can be used and therefore limits the maximum size of the
hardware design that can be fit into the model. Today’s
scheduling software can utilize between 70% and 80% of
the available resources for the z900 models. Besides the
size of the model, the other most important properties of
the model are what pieces of the system are contained in
the model, the time it takes to construct it, the time it
takes to load it into the emulator, and the speed of
execution once mapped into the emulator.

As described earlier, the z900 program develops not
just a single chip but a whole set of chips in parallel.
Therefore, in-circuit emulation in the traditional sense,
using target hardware to drive the machine, could not be
applied. This also implies that the process relies heavily
on the ability to build and schedule a large model made
up of various chips, with some chips having to be
duplicated multiple times in a single model. Since getting
the model into the emulator was not easy because of its
large size, our goal was to first optimize the process for
fast and dependable model builds, then work on improving
the system speed of the emulator. By adding the gate
counts of the individual chips, a quick calculation showed
that the largest model we could build would contain two
processor chips, half of our memory subsystem (including
cache chips and memory controllers), the clock controller,
and one of the I/O adapter chips. This configuration was
chosen because it corresponds to the minimum model
configuration that is required to run unmodified IML
code.’

2 Equivalent to 25 million two-way NAND gates.
3 A simplified model, i.e., not comprising all of the components listed above,
requires that changes in the IML code be simulated.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

CoBALT system.

Packaging
design

\/

VHDL compiler
Flattener

Scheduler

\d
Synthesis
for emulator

Model build process.

The biggest hurdle for the model build process, as
shown in Figure 2, was dealing with the large number
of read and write ports in some arrays. The scheduler,
in particular, had difficulty with arrays containing many
ports, even though the data width of each entry may have
been only a few bits. Luckily, most of the ports were
artifacts of using simulation versions of these array
models, which had extra ports inserted to quickly reset all
locations in just a few simulation cycles. To resolve this
issue, the array models were reimplemented as latches

J. KAYSER ET AL.

599

600

Table 1

Comparison of model build parameters.

Software AWAN CoBALT CoBALT Ultra™

simulator (16 boards) (3 boards)
Latches 2.8M 2.8M 2.8M 2.8M
Three-way gates n/a 12.4M 12.0M 14.1M
Four-way gates n/a 7.8M n/a 9.8M
Utilization* (%) n/a 81 91
Model build success rate (%) 100 100 30 100
Model size (MB) 313 333 376 352
Raw speed (cps) 3-25 650 55,000 606,000
Model load time (s) ~30 ~500 160 111

*Board utilization includes gate and wiring utilization.

rather than multiport arrays in the VHDL source. Using
these new macros, the first model was successfully built,
even though it required almost 80% utilization of the
COBALT system resources. This was a reason for concern,
because there were still more design changes outstanding.
In addition, the model build software was implemented
in a 32-bit architecture, which limited the amount of
addressable memory to 2 GB, and the first model
build attempt came very close to the limit of memory
consumption. To resolve the memory issue, the process
was split into multiple steps to free up the memory as
often as possible. While this extended the overall model
build time because intermediate steps had to be saved and
then loaded again, it allowed us to stay within the 32-bit
memory limits.

As time progressed, the designs grew in size because
of fixes and late change requests. This resulted in larger
models and increased utilization, but at a certain point the
model build process began to fail in the scheduling phase.
Scheduling is a central step and is responsible for mapping
model gates into emulator hardware resources. The
scheduling algorithm chooses a start condition randomly
each time it runs, because the optimal solution cannot
deterministically be predicted because of the nature of the
algorithm. Repeating model build runs therefore yields
different partitioning solutions for the exact same source
model if different random seeds are used. Assuming that
a model is successfully scheduled, however, a quality
measurement that can be used to compare one run to
another is the number of model steps required for
the execution of a single cycle of that model, which
corresponds directly to the raw emulation speed. Our
measurements indicated that up to about 78% utilization,
the probability of obtaining a successful model build
was 100%. Above that utilization limit, however, the
probability of obtaining a model that successfully
completes the build process at all drops to zero very
rapidly. While this is to some extent model-content-
dependent, we were never successful in building a z900
model with a utilization higher than 83%. The final

J. KAYSER ET AL.

utilization for the model ultimately used in the verification
of the z900 was 81%, which had a probability of success of
around 30% (meaning that seven out of ten model build
attempts could not successfully partition the design into
the emulator at all). For the successful attempts, the raw
emulation speed varied over a wide range. The fastest
result produced a run-time speed of 55000 cycles per
second.

To summarize this section, the model build results from
Table 1 indicate that for the z900 HW/SW co-verification,
the tools were stressed to the limit. The CoBALT Ultra
system entries pertain to the next-generation COBALT
system. An increase of even 1% in the design size would
have caused the process to exceed the limits of the
scheduler, as well as the addressable memory capability.
Future projects will therefore require not only an
emulation system with a larger capacity, but also that the
model build tools be rewritten as 64-bit applications.

Model access
At the beginning of initial machine load (IML) for a z900
machine, all of the code resides on a laptop computer
called the service element (SE), which is connected to the
machine via a network and communicates finally with the
clock-control chip that is part of the system model [7].
The goal of the simulation effort using the CoBALT
system is to ensure that the microcode, which is one
portion of the IML code, can be loaded into a simulated
version of the machine. Once loaded, it must also be
verified that the microcode can be executed after the SE
starts the clocks. As soon as the point is reached at which
hardware interaction with the microcode is negligible, a
pure software-code simulator can be used to verify the
remaining code, and the task of the simulation system
is completed.

A general problem in the construction of the
environment surrounding a simulator is the connection
of real hardware devices to the model inside. Typically,
speed-matching techniques [3] have to be applied, often
resulting in time-out scenarios in the software and

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

hardware due to the 1000X-to-10000X speed difference
between the real target system and the simulated model.
Also, limitations in the number of available input and
output pins of the simulation system may lead to situations
in which pins must be multiplexed and traffic must be
serialized. While attaching actual target hardware may
model the real hardware behavior as closely as possible,
this requires a real target system, and often special
adapter hardware has to be designed and built. Because of
this and the fact that target hardware for our model was
not readily available, rather than using a target system to
drive the z900 simulation environment, we developed a
more flexible solution, which is shown in Figure 3. The
hypervisor program, developed for earlier projects [8], was
extended to communicate directly with the service element
code via sockets, and with the clock chip in the simulated
model via the hardware simulator application program
interface (API). Using a pure software environment such
as the hypervisor program to control the simulator instead
of a real target system distinguishes hyper-acceleration
from a simulation, which by our definition is using
software connections rather than physical connections to a
real target system to control the simulation environment,
yet still achieve maximum simulation speed.

Further analysis of the communication protocol between
the service element and the model identified some
bottlenecks in our hypervisor-based environment. Any
kind of interaction between the simulated model and the
software that requires the stoppage of clocks can cause
significant performance degradation. For our IML
simulation, the first bottleneck discovered was a sequence
that was executed by the service element whenever the
internal state of the chip had to be changed or observed.
This lengthy sequence consisted of using long scan chains
to shift data into and out of a selected chip. While the
need to communicate with the chip is application-
dependent, the manner in which communication with the
model took place warranted further study, since several
options existed as to how to do it. For the CoBALT system
used, arbitrary accesses to the content of the model were
not possible in parallel with model execution. Each access
required a hardware stop and a restart of the simulation
afterward. Unfortunately, the time required to stop and
restart added significant overhead to the access time.

To control the overall initialization sequence, the IML
code on the service element performed reads and writes of
certain values to the clock control chip. Because the IML
code could only access a serial interface to the hardware
and the amount of support logic in the design was kept to
a bare minimum, a complete shift of the scan chain was
required to obtain even a few bits of data. This is because
inside each chip, all of the latches in the design were
connected in the scan. Depending on the number of
latches, this required many clock cycles—of the order

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

RS/6000 ET system
~—= Sockets
Service
element

Hypervisor <»

Hardware
model

Simulator API

Block diagram of verification setup.

of 100000 registers or more per chain. To make things
worse, the shifting itself was not controlled directly by
the software but from a control chip that was part of the
model in the CoBALT system. This resulted in many read or
write operations from the code to the simulated control
chip, interleaved with the execution of a small number
of cycles to incrementally perform the shift. The first
measurements showed that the complete process of
sending or receiving the data for a typical chain of about
100000 latches took longer than 15 minutes. This time
included the execution of clock cycles between read/write
operations, as well as the time required to start and stop
the simulator to get access to the control chip.

Because the code required many accesses to hardware
facilities in the chips, each of which required the complete
scan chain to be shifted, a penalty of more than 15
minutes per shift was not acceptable when looking at
overall environment performance. Changing the software
under test on the laptop was never an option, since one of
the goals was to test as much of the real code sequence as
possible. Therefore, another solution, called broadside load,
was implemented within the hypervisor, entirely hidden
from the SE code. Instead of setting a single bit at a time
and then shifting the whole scan chain, the shift chains
were described to the hypervisor program as lists, as
shown in Figure 4. Each list consisted of an ordered list of
the individual latches in a ring. Combined with the shift
data for each ring (from the service element), the list
could be used to access the individual latches through the
emulator API (while the model was stopped) as individual
bit “get value” or “set value” operations. The shift-chain
lists were obtained through an extension of the model
build process and were updated along with the model
every time the design changed. By applying the list to the
hypervisor and combining the information from it with the
data received by the service element, the new values for
each latch were easily determined. The advantage of this

J. KAYSER ET AL.

601

602

TCP/IP
Broadside load

Xyz = 0b0
abc(0:1) = 0b01

OlOOlO...H

Wait and ___ Return status
listen + data
Build _ Get/set

action list action list

Pos Name
1 xyz

abe(1)
abc(0)

Hardware
model in
simulator

Hypervisor

Hypervisor program, with broadside load functionality.

method is that the time spent in changing the simulator
from stopped to run mode and the time required for the
simulator to execute the chain shift was avoided. Table 2
shows measurements performed using this new shortcut
solution. In the best-case scenarios, the file of latch names
was previously loaded and processed by the hypervisor
program, so the difference between best and worst cases
shows the overhead for the first access to a particular chain.

We found that the improvement achieved using the
broadside load technique was a factor of 100 or more.
Because the shift mechanism via the control chip had been
verified earlier in a smaller and simpler environment, the
shortcut did not reduce test coverage in any way.
However, with the time savings achieved, it has been
a key contributor to the overall success of the project.

Beyond the scan-chain access operations, all other
commands were register accesses to the control chip,
which required a state machine within the model to be
synchronized with the hypervisor program while loading or
unloading information. Because prediction of the final
model state is not possible in these cases, broadside
loading was not used for these types of accesses. Instead,
the hypervisor program directly stimulated the bus that
went to the control chip. In the CoBALT system, this
could have been done in two different ways.

The traditional way was to simulate the interface with
the system stopped, start the system to advance a few
clock cycles, allowing the model to read and respond
to the interface, then stop the model again to allow the
hypervisor program to react to the result from the model.
This process would be repeated until the entire operation
was satisfied. The advantage of this method is that control
of the bus timing is very precise, so no more cycles are
executed than are really needed; this is very helpful in
low-level debugging. However, the disadvantage is that it

J. KAYSER ET AL.

would have taken additional time to start and stop the
CoBALT system.

The other approach utilized a feature provided by the
CoBALT system, which is the ability to use a direct-attach
stimulus (DAS) card to access the model without stopping
the model execution. The DAS card is a peripheral
component interconnect (PCI)-based card which plugs into
the CoBALT system’s host workstation and allows fast
interaction with the model while it is executing. To use
the DAS method, the emulated model had an extra
memory buffer on a different clock domain, which was
connected via an asynchronous interface to the real model
under test. Thus, the reading and writing of data were
only loosely coupled to the model in terms of clocking.
Because the hypervisor program could communicate with
the model over the DAS card while the emulated model
was running, bus stimulus and clock/model advancement
were done in parallel, and the overhead of starting and
stopping the CoBALT system was eliminated. This resulted
in a much faster execution of control-chip accesses. (The
measurements are shown in Table 3.) While this behavior
was closer to “real” hardware behavior, because of the
continuous execution of the model, it had the side effect of
filling up internal trace arrays faster, with the disadvantage of
making tracing more difficult.

Debugging aspects
Beyond constructing the hyper-acceleration environment
and making it efficient, it was also important to
understand the trace and debug capabilities of the model.
Such a high-speed simulation very rapidly generated
a very large quantity of data, which had to be filtered
appropriately in order to supply data that could be
sensibly used to draw conclusions about any problems
encountered.

Typically a designer looks at trace data to find
interesting signals and their values over a given period
of time. Because our system simulation model contained
a large number of signals, and the number of cycles
executed in the hyper-acceleration model was also large,
the resulting data volume for a complete all-events trace
(AET) would have been impossible to manage. It was
therefore required to find ways to reduce the amount
of data to a reasonable size, yet be able to extract the
necessary debug information within a short period of time.

There were two different approaches to tracing. For
static probing, a number of probe points were defined
when building the model. These points were traced during
simulation and used after the simulation to determine
which probe points to add on future runs. Because the
probe selection was done during model build, it was not a
very flexible method, since a large amount of time was
needed to change probe points and recompile the model.
A feature added to the CoBALT system called “dynamic

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Table 2 Comparison of latch access methods (all numbers show best-case/worst-case conditions).

CoBALT CoBALT Ultra
Broadside load (API) 5,056 latches 4.78/27.9 s 1.1¢/13s
Broadside load (API) 108,943 latches 4.3s/73.7 s 4.6 5/40.3 s
Broadside load (API) 210,282 latches 7.3/78.7 s 5.55/333 s
Real shift (DAS) 108,943 latches 813 /892 s To be measured

Table 3 Comparison of DAS and API access (all numbers show best-case/worst-case conditions).

API DAS
CoBALT CoBALT Ultra CoBALT CoBALT Ultra
Access 1 register 1.95s/58 s 0.7 s/1.8 s 1.45/4.1s 0.5s/08s
Access 45 register 74.3 5/222.9 s 20.3 s/50 s 4.15/219 s 5.55/22.2s
Table 4 Comparison of tracing capabilities.
CoBALT CoBALT Ultra
Actual Upper boundary Upper boundary
Probes 2,600 16brd X 2048 = 32K 16brd x 8192 = 128K
Cycles 6,656,000 No limits No limits
Trace size >2GB Disk space limited Disk space limited
only only
Data rate 3.6 MB/s 12 MB/s (SCSI) 30 MB/s (fiber)

probe support” made it possible to define the probe points
during simulation. This extension was a huge improvement,
since it was no longer necessary to rebuild models just to
change probe points.

While AETs were easy to use, it was not practical to
turn on tracing for a large number of cycles, even with
a limited number of probe points, because continuous
communication with the emulator’s control workstation
would have been needed to save all the data. Since trace
data could not have been saved at the same rate at which
it was generated, this would have reduced the overall test
speed significantly. A new feature called trace dump was
therefore added. Trace dump is a fast dump procedure
that uses the internal memory of the CoBALT system as a
buffer for the trace data, which is then transferred to the
workstation hard disk after the test is over, causing only
minor, if any, performance degradation to the test itself.
Because it was difficult to define the interesting cycle
window in the beginning, and the cost of the acceleration
system was such that it had a high hourly use rate, we
decided that the accelerator should not be used to rerun
the same sequence over and over again, but only to hit an
interesting cycle window for further debugging. Rather, we
found that the accelerator was best utilized to simply

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

uncover problems which could then be debugged further
in a separate simulation environment. However, to

be effective in recreating a problem in a simulation
environment, some level of internal debug information was
needed, which is the purpose of using trace dump on the
emulator. The output of trace dump was observed as a
postprocessing step using an AET viewer. Trace dumps
tended to be very large (see Table 4), which made file
handling cumbersome. Therefore, only a subset of the
signals and cycles were selected and transformed into an
AET during postprocessing. This way, both the data
volume requiring analysis and the trace dump
postprocessing time were reduced.

Results

Preparation for IML code simulation on the simulated
model of real hardware began about a year before the
chip data was sent to manufacturing. For the first eight
months, the main focus was on improving the model build
and run time environments. This was achieved by using
the design from the previous generation of IBM S/390*
machines. Four months before tape-out of the last chip,
which was also about six months before the power-on

of the system, we constructed our first simulated model

J. KAYSER ET AL.

603

604

containing the control chip, two processor chips, one
I/O adapter chip, and a minimum cache and memory
subsystem.

In order to initialize the hardware using broadside
loading, the state of each latch and the right ordering of
the scan-chain data were required. Obtaining the proper
latch files was a problem that was underestimated from
the beginning. While the file is just an extraction from the
design data generated during model build, it was difficult
to reach a stable base, since the design was still changing
quite often during this time. Thus, keeping track of all of
the changes to guarantee the correct files for each chip
was more difficult than anticipated.

To overcome these problems, to obtain the right focus
from the hardware and the software teams for this activity,
and to make sure that all of the individuals required were
involved, we introduced the concept of a “virtual power-
on” date [9]. This date essentially was a checkpoint in
time at which the hardware and the software were in a
state that would allow us to run the IML sequence, but
with a simulated model rather than the actual hardware.
In this project, with a strong requirement for the software
development team to complete their work earlier than in
the past, this point was defined to be about four months
before the real power-on. At this point, both a pre-verified
code load and a stable hardware design were available
after each of them had been individually verified.

During the 17 weeks between virtual power-on and
“real” power-on, as many problems as possible were
removed in order to reduce the “real” power-on bring-up
time. The criterion of success was clearly defined as the
number of days and weeks that could be saved from the
IML debug time after real power-on. This time period was
extremely important, because the IML sequence had to be
completed before any further system debugging could be
started, and therefore any savings in IML bring-up would
be reflected directly in time to market.

Of the 17 weeks, about two weeks were lost due to
availability delays for the simulation system. Another four
weeks were spent developing the correct initialization
sequence. During the remaining 11 weeks we made
excellent progress, for two reasons. First, the tremendous
effort that went into the development of the debug
features enabled the group to deal with multiple problems
each day. Second, the simulation system could be exploited
nearly 24 hours a day for at least six days each week by
having a cross-Atlantic team taking full advantage of the
time difference of six hours.

During IML simulation of the z900 system, 61 problems
were found during the 11 weeks of actual application
debug. (Most of the environment problems had been
solved by that time.) Of these 61 problems, 58 were
software problems and three were hardware problems.
Because all hardware problems could be circumvented by

J. KAYSER ET AL.

code, an additional tape-out was avoided. However, if that
had not been the case, a critical problem would still have
been found many weeks before it would normally have
been discovered in another environment, and thus several
weeks would still have been saved in the overall product
schedule. Furthermore, the circumventions of the
hardware problems had been verified before real power-
on, ensuring a more reliable bring-up of the real
hardware.

During real power-on, not a single problem in hardware
or software was found up to the point that had been
reached with the IML simulation. This was a considerable
improvement over what was found during the bring-up of
similar products, which indicated that an average of 1.5
problems per day would normally be expected. With 61
problems found before real power-on, development time
was thus shortened by about 40 days.

Concluding remarks
The results achieved with the CoBALT system have
greatly influenced the development of the follow-on
CoBALT Ultra system. To deal with increasing model
sizes and more complex future designs, the capacity of
the emulation system has had to keep pace as well. The
CoBALT Ultra system offers the improved functionality,
capacity, and performance needed for current designs.
While a significant milestone has been achieved by
simulating the critical portion of the IML sequence, a full
exploitation of this methodology implies the integration
of more code layers, or additional applications, into the
simulation. Escape analysis indicates that at least 30 more
problems could have been found by including code that
had been replaced by the simulation-only code in the
hypervisor program. Exploiting the possibilities of building
larger models should allow future hyper-acceleration
projects to incorporate more I/O chips in the model,
extending the simulation capabilities into new areas.
Additional efforts are expected that should result in
improvements in the development process and a further
reduction in the time required for system integration and
bring-up.

Acknowledgments
We would like to thank Jeff Ruedinger and Ed McCain
for their very helpful editing comments.

*Trademark or registered trademark of International Business
Machines, Inc.

References

1. J. von Buttlar, H. Bohm, R. Ernst, A. Horsch, A. Kohler,
H. Schein, M. Stetter, and K. Theurich, “z/CECSIM: An
Efficient and Comprehensive Microcode Simulator for the
IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5, 607-
615 (2002, this issue).

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

2. R. Turner, “System-Level Verification—A Comparison of
Approaches,” Proceedings of the International Workshop on
Rapid System Prototyping, 1999, pp. 154-159.

3. R. Turner, “Qualification for and Selection of Emulation
Technology,” EE Eval. Eng. 40, No. 4, 88-94 (April 2001).

4. C. Flynn, “Developing an Emulation Environment,” Integr.
Syst. Des. (USA) 13, No. 142, 46-52 (April 2001).

5. D. K. Beece, G. Deibert, G. Papp, and F. Villante, “The
IBM Engineering Verification Engine,” Proceedings of
the 25th Design Automation Conference, June 1988, pp.
214-218.

6. John Darringer, Evan Davidson, David J. Hathaway, Bernd
Koenemann, Mark Lavin, Joseph K. Morell, Khalid
Rahmat, Wolfgang Roesner, Erich Schanzenbach, Gustavo
Tellez, and Louise Trevillyan, “EDA in IBM: Past, Present,
and Future,” IEEE Trans. Computer-Aided Design of
Integrated Circuits & Syst. 19, No. 12, 1476-1497 (2000).

7. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J.
Saalmueller, and F. Scholz, “System Control Structure of
the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
523-535 (2002, this issue).

8. S. Koerner and S. M. Licker, “Run-Control and Service
Element Code Simulation for the S/390 Microprocessor,”
IBM J. Res. & Dev. 41, No. 4/5, 577-580 (1997).

9. S. Koerner, M. Kuenzel, and E. McCain, “IBM eServer
z900 System Microcode Simulation: The Virtual Power-On
Process—An Innovative Approach for Microcode
Verification,” IBM J. Res. & Dev. 46, No. 4/5, 587-595
(2002, this issue).

Received September 24, 2001; accepted for publication
February 5, 2002

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Jorg Kayser [BM Server Group, IBM Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen (jkayser@de.ibm.com).
Mr. Kayser is an Advisory Engineer in the IBM eServer z900
Hardware Development Group in the IBM Boeblingen
laboratories. After receiving a B.S. degree in computer
engineering from the Fachhochschule Esslingen in 1987, he
joined IBM in Boeblingen that same year and has held
positions in test data generation and manufacturing test and
hardware bringup for the IBM S/390 processor line. Since
1998, Mr. Kayser has been the team leader for hardware—software
co-verification using emulation systems. He holds two patents
in this area and received an IBM Outstanding Technical
Achievement Award in 2001 for that work.

Stefan Koerner IBM Server Group, IBM Entwicklung
GmbH, Schoenaicherstrasse 220, 71032 Boeblingen
(koerners@de.ibm.com). Mr. Koerner is a Senior Engineer

in the IBM eServer z900 Hardware Development Group in
the Boeblingen laboratories. He joined IBM in Boeblingen in
1981 after receiving an M.S. degree in electrical engineering
from the Technical University of Furtwangen, and has held a
number of positions in logic design, microcode development,
and hardware verification. He was the technical leader for the
microcode verification and emulation of the IBM S/390 G7
system. Mr. Koerner holds three patents, is the author of 12
technical papers, and received an IBM Outstanding Innovation
Award in 2001. He is currently the technical leader for microcode
verification in the IBM Enterprise Systems Group.

Klaus-Dieter Schubert IBM Server Group, IBM
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen
(kdschube@de.ibm.com). Mr. Schubert is a Senior Technical
Staff Member in the IBM eServer z900 Hardware Development
Group in the IBM Boeblingen laboratories. He received his
M.S. degree in electrical engineering in 1990 from Stuttgart
University, Germany. He subsequently joined IBM in
Boeblingen and has been responsible for hardware verification
of multiple S/390 systems. He has been the technical leader
for the hardware verification efforts on the z900 2064 system.
Mr. Schubert is an author of two patents and received his
second IBM Outstanding Technical Achievement Award for
his work in 2001.

J. KAYSER ET AL.

605

