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The IBM eServer z900 introduces new Parallel
Sysplex® coupling channels that satisfy
evolving requirements in a way that minimizes
product and development costs. Their design
also provides backward compatibility with
earlier S/390® models, spans all three coupling
channel design points, and anticipates future
end-of-life technology issues. The original
intersystem channel (ISC) design was
improved, and new features added, but
the core chips were retained. This paper
describes the efforts that led to the
improved design.

Introduction
From 1994, when the Parallel Sysplex* was first
introduced, until the introduction of the z900, a few
significant improvements were made to its coupling
channels, the communication mechanism for the Parallel
Sysplex. The first sections of this paper contain an
overview of the Parallel Sysplex and a description of the
prior design of the coupling channels. The next sections
describe how new requirements led to a rethinking of the
coupling channel design. The remainder of the paper
describes how these new requirements were fulfilled
for the z900 by using new techniques.

When the Parallel Sysplex was first introduced [1–3],
it had the standalone structure shown in Figure 1. The
primary goal of the Parallel Sysplex is to provide a highly
scalable computing platform while displaying a very high
degree of fault tolerance. Multiple servers running one or
more instances of an operating system (OS) are typically
connected to two coupling facility (CF) images. The
connections, designated as intersystem channels (ISCs),
are described in more detail later. Each of these links
has a sender channel (S) at the OS side in the server
connected to a receiver channel (R) at the CF side.
Primary messages are sent from an OS to a CF, and these
messages read or modify shared data structures in the
main memory of the CF. When the CF determines that
other OS images have interest in the data structure that
was changed or accessed, it sends alerts to these OS
images. These alerts are sent by secondary messages from
the CF to one or more of the OS images, but the alerts do
not interrupt the OS image. Instead, they are registered in
special areas of system memory to be queried by the OS
at some later time. With no interruptions to the OS
images for the alert function, the Parallel Sysplex
can scale to larger configurations more easily.

Buffer sets
Figure 2 depicts the structure of a buffer set. The sender
at the OS originates a primary message with a command
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designated as a message command block (MCB) and
places it in an MCB buffer in main memory. If there is
any data to be moved, the OS either places the data to be
sent into data buffers in main memory (the write case) or
allocates buffers in main memory for the receipt of data
(the read case). The OS also allocates a buffer in main
memory for the receipt of the response called the message
response block (MRB). The OS then initiates the message
exchange by executing a processor instruction called send
message. The instruction specifies, in essence, the buffer
set that contains the buffers for the MCB, data, and MRB.
Meanwhile, the receiver at the CF has prepared to receive
the MCB by allocating a buffer in its main memory. When
the CF receives an MCB, it examines its contents to
determine whether there is any data to be moved. For a
write operation, the CF prepares data buffers in its main

memory (a data structure) to receive the data. For a read
operation, the CF sends data buffers in its main memory
back to the OS. After data transfer (if any) is complete,
the CF sends the MRB from a buffer in its main memory
back to the OS. The CF executes special instructions to
find any pending messages (locate channel buffer), move
data (move channel buffer data multiple), and send the
MRB (signal channel buffer).

Similarly, buffer sets are used by the CF to send
secondary messages to the OSs. These secondary message
buffer sets have only MCB and MRB buffers; no data
areas are required.

Until the development of the z900, each ISC, ICB, and
IC connection had two buffer sets for the OSs to send
primary messages to the CF and two more buffer sets for
the CF to send secondary messages to the OSs. As we later
describe, one of the biggest changes for the z900 was a
considerable increase in the number of buffer sets.

Intersystem channel 1 (ISC-1)
The first coupling channel was the intersystem channel
(ISC-1), which was a bit-serial, optical interface capable of
operating at ten kilometers or more. Figure 3 is a diagram
of the ISC-1 and ISC-2 structure (discussed below). The
same channel controller and link adapter application-
specific integrated circuit (ASIC), or chip, part numbers
were used on all Parallel-Sysplex-capable servers, including
the bipolar product lines. Unique host adapters were
required in order to accommodate each of the various
product lines because each product line had differences
in its connections to main memory.

The channel controller chip included an 801
microprocessor and interface logic connecting the host
adapter with the link adapter. The 801 microprocessor was
the first IBM RISC design [4, 5] and was the foundation
of the later PowerPC* architectures. To minimize the
unique code tools required, the 801 architecture was
chosen, since it was also used in the I/O processor (IOP)
in the largest IBM bipolar servers. In these servers, the
IOP is used primarily for offloading I/O operations from
the normal central processors. In the IBM CMOS servers,
the 801-based IOP was replaced by a normal central
processor; from a machine-organizational viewpoint, the IOP
looks like any other central processor in the server, but it
does not execute code on behalf of any OS or CF image.
The function of the IOP is still to offload I/O and other
system functions from the normal central processors.

In ISC-1, the 801 microprocessor is a unique
implementation that has robust error detection while
meeting performance requirements. The Licensed Internal
Code is cached in outboard SRAM chips with main
memory containing a complete image of the code. The
channel controller takes commands from the host adapter,
queues them, and sends them to the link adapter. It
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receives events from the link adapter and queues them on
their way to the host adapter. The channel controller chip
also manages the data transfer between the host adapter
and the link adapter.

The link adapter contains the buffer set arrays
(embedded RAM) for the two primary and two secondary
buffer sets. It buffers data to and from the optical link on
its way from and to the host adapter. It also controls the
optical transceivers, while detecting errors and managing
low-level link activities such as word synchronism
acquisition.

Multiple host adapter chips were developed, two for
the two bipolar product lines and one for the CMOS
product line. Every attempt was made to keep the 801
microprocessor code for all three product lines the same.
However, the host adapter and code for the CMOS
product line was not performance-optimized, and the
second CMOS host adapter chip with its supporting
code (described below) had an improved design.

Intersystem channel 2 (ISC-2; HyperLink)
In ISC-1, as the message processing progressed, either a
central processor or an IOP was interrupted multiple
times, depending on the quantity of data that was to
be transferred. In the bipolar product line, the IOP
interruptions were efficient, and the performance
was acceptable. On the other hand, the CMOS IOP
implementation was not as efficient, and performance
suffered. By moving most of these message-passing
processing steps out of the central processors and IOPs
and into hardware state machines, performance was
greatly improved while utilization of the central processor
and IOP was reduced. These new hardware state machines
were implemented in a new host adapter chip developed
for the IBM single-product line, the CMOS product line.
This new host adapter required significant code changes
in the central processors, IOP, and the channel controller
801 microprocessor. To control the new host adapter, the
central processors and IOPs used a new set of hardware
commands, which comprise command set 2. Command set 1
drives the ISC-1. HyperLink is another term used for ISC-2.

Integrated cluster bus 2 (ICB-2)
The next improvement in coupling links, ICB-2 [6], was
introduced in 1998. The ICB-2 designation is derived from
the fact that ICBs use command set 2, the same as the
one used for ISC-2. ICB-2 was developed after command
set 2 was adopted, and it never used command set 1.
ICB-2 uses very fast, limited-distance (10 meters) links
to improve the performance of small clusters of servers.

ICB links are built directly on the internal system area
link called the self-timed interface (STI). This link is
dual simplex, one byte wide, in copper cable, and runs
at 333 MB/s at a distance of 10 meters. By adding a

relatively small volume of very complex logic to the
system hub chips, ICB channels improve performance
while reducing product cost and improving reliability,
availability, and serviceability.

Figure 4 shows the structure of the hub chips. Such
chips connect input/output adapters to main memory and
provide six STI links. Behind each link is an ICB channel.
When enabled, this channel receives hardware commands
(command set 2) from the central processors and IOPs to
logically perform the same message passing as ISC and IC
links (see next section). The ICB link protocol is based on
STI and uses its low-level flow control. This simplifies the
ICB hardware implementation to the point where it is
practical to use hardware state machines, and, in this case,
avoids the added chip area and development expense of
an imbedded microprocessor. Further, because the link
protocol is based on STI (logical and physical), it is limited
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with respect to distance. Additional flow-control handshakes
between the command and optional data transfer eliminate
large link buffers, but because distance is limited, these
handshakes add very little latency to message exchanges.

Internal channel (IC)
It quickly became apparent that while a standalone CF
provides a certain level of error isolation between the CF
and the server, it is expensive. The CF could be used only
as a CF and could not run OS images. By dedicating some
of the processors in a server and using logical partitioning
(LPAR), CF image(s) are added to a server, as shown in
Figure 5. However, external ISC links are required to
connect an integrated CF to the OS images. These links
are the interconnected pairs of ISC links shown in the
upper portion of Figure 5. The same sender (S) and
receiver (R) concepts shown in Figure 1 still apply in
Figure 5. In particular, note that two links (one in each
direction) are required between the two servers in Figure 5.

Relief from the external looped-back links came in 1999
with the introduction of internal coupling (IC) links, also
shown in Figure 5. These logical links were implemented
in Licensed Internal Code (or simply “code”) and required
no ISC channel hardware. From a software and CF view,
IC links look like ISC links with senders and receivers. IC
links were also limited to two buffer sets for primary and
two buffer sets for secondary messages. To further make
the IC links look like real ISC links to the software (OS)
and code (CF), they consume the highly constrained
channel path ID (CHPID) space, currently limited to
256 paths.

IC links proved to have very good performance because
the code path lengths are no longer than those required
by ISC links, and the data movement is performed by
very fast memory-to-memory transfers.

ISCs, ICBs, and ICs are three different implementations
of coupling channels, and each is suited to a particular
environment. It should be understood that all three may
be present in any given Parallel Sysplex configuration.

New Parallel Sysplex requirements
In the early stages of the development of the z900, we
examined the Parallel Sysplex strategy and considered
how the ISC-2, ICB-2, and IC designs had to evolve in
order to meet the demands imposed by this strategy. We
designated the new channels as ISC-3, ICB-3, and IC-3,
with the “3” designation representing the third generation
of coupling links and a new set of commands, command
set 3.

Link bandwidth
The first and most obvious requirement was to increase
link bandwidth. The OS images use the option of
synchronous message passing when the total round-trip
time to process a message is less than the time it takes
the OS to switch to and from a different task. With
synchronous message passing, the processor (process
or thread) waits for the message to complete before
proceeding. As processors become faster, the links must
also become faster to allow efficient synchronous message
passing.

For ISC channels, we followed the Fibre Channel lead
and increased the link speed of 1.062 to 2.125 Gb/s. With
the 8B/10B transmission code, the bandwidth increased to
more than 200 MB/s. The resulting coupling efficiency
remained close to 80% [7, 8].

For ICB links, we had to consider the “normal” STI
exploiters [9] (input/output adapters). To satisfy both
ICB and input/output adapters, the STI link speed was
increased from 333 to 1000 MB/s [10, 11]. With the
overhead of the STI packets and flow control, this
resulted in an increase in bandwidth to about 650 MB/s.
Because STI is a byte-wide interface, the signaling rate
on each conductor went from 333 MB/s on the previous
STI to 1 GB/s, close to the limit for noncoded (such as
the 8B/10B code) information over 10 meters of copper
cable.

Channel latency
The hardware path length of ISC and ICB channels had to
be improved. The operating frequency of ISC-1 and ISC-2
has remained the same for all previous servers. Any
new ISC design would have to increase the operating
frequency. With ICB, the improvements in the hub chip
operating frequency automatically reduced the path
length.

Buffer sets
Our experience with ISC-2, ICB-2, and IC-2 taught us that
some workloads required more than one link between CF
images and OS images to improve throughput. Also,
redundant links were added to improve availability. We
were not constrained by the raw bandwidth of the links,
but rather by the limited number of buffer sets. As
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described above, the number of buffer sets determines the
number of messages that can be handled concurrently.
With only two buffer sets in each direction, and
considering the time it takes to process a message, the
link utilization is well below 10%. Improving the link
bandwidth further decreases link utilization because even
less time is used to transmit the messages.

With a link utilization as low as 10% or less, more
buffer sets can be supported on each link without
increasing link utilization to the point at which link
queueing effects become noticeable. The number of buffer
sets was increased from two to seven, thus reducing the
number of links required by a factor of up to 31⁄2.

Peer mode
As Parallel Sysplex implementations move to internal CFs
and the CFs become more and more distributed among
multiple servers, many more ISC links are required, and
often multiple links are needed to connect the same two
servers. Redundant links are recommended for high
availability, doubling the number of links required. As
indicated in connection with Figure 5, two links are
required to interconnect the two servers. Figure 6 shows
how four servers, each containing multiple OS images and
an internal CF, must be interconnected. This figure
depicts the concept of peer links. Each end of a peer link
has the capabilities (in the form of buffer sets) to be both
a sender (owned by multiple OS images) and a receiver
(owned by a CF) at the same time. In the example of
Figure 6, peer mode further decreases the number of ISCs
and/or ICBs by a factor of 2.

CF duplexing connectivity
In Figure 1, the CF and OS images are in different
physical machines. If a CF fails, its structures can be
rebuilt from information in the multiple OS images. With
internal CF images distributed in multiple servers, it
becomes increasingly difficult for the OS images to avoid
putting CF data structures in the same server that is
running an OS that is required to rebuild the structures,
thus eliminating single points of failure. In order to
remove this complexity from the OS, CF duplexing
was introduced. CF duplexing allows pairs of CFs to
automatically synchronize two copies of CF data
structures, one in each CF. Each CF of a duplexed
pair is placed in a different physical server.

The two CF images of a duplexed pair exchange
messages to keep themselves synchronized, and a link is
required to exchange these messages. Before duplexing
was introduced, the coupling links were defined to
connect one or more OS images to a single CF image;
interconnecting two CF images required a new connection.
To avoid creating a unique coupling channel to allow
duplexed CF images to directly communicate with each

other, the definition of existing links was changed to
allow a single CF to share a sender with the OS images.
Secondary messages between the two CF images could be
sent in both directions with a pair of coupling links. As
shown in Figure 5, the CF in one server sends secondary
messages using its receiver channel to a CF in the other
server using its sender channel. A second link is required
to send messages in the opposite direction. The
introduction of peer links, with the capability of being
simultaneously both a sender and receiver, reduces the
additional number of links required, depending on the
Parallel Sysplex configuration.

Command set 3
Besides Parallel Sysplex requirements of adding more
buffer sets with peer mode, the z900 has new system
requirements that could not be met by the existing ISC-2
and ICB-2 command set.

Larger main-memory addressing and more LPAR
images
Main-store physical addressing supported by ISC-3 and
ICB-3 was increased from 36 bits to 48 bits. This increase
should protect the design for a few more generations of
processors. The number of LPAR images supported also
affects the command structure. Earlier command
structures could support only 15 images.

Elimination of ISC/ICB access to expanded memory
Before the z900, OS and CF images were constrained to
two gigabytes of main memory because of 31-bit memory
addressing. When the CF needed more memory, it had

Figure 6
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to use expanded memory, thus providing more physical
memory access through a separated address space. With
the z900 64-bit architecture [12], the CF no longer has to
use expanded memory. Zone relocation gives each image
its own view of a contiguous physical memory address
space, or zone, starting at address zero. The computation
used to determine the physical memory address of the
server adds a base address to the LPAR physical address.
Eliminating CF access to expanded memory worked well
with moving the LPAR zone-relocation function from

code to special hardware in the hub chip because zone
relocation for expanded memory requires a different
algorithm than main memory. Since ISCs and ICBs were
the only I/O with access to expanded memory, eliminating
this function simplified the hub chip design.

z900 coupling channels
Figure 7 is an overview of the way z900s are
interconnected and the way they are connected to the
previous generations of S/390 (G6, G5, etc.) servers. In
the figure, the two z900 servers are interconnected with
an ISC-3 link and an ICB-3 link operating in peer mode.
Connections to the servers of previous generations were
achieved by ISC-3 operating in ISC-2 compatibility mode
and by ICB-3 operating in ICB-2 compatibility mode
through multiplexor chips (MPXs) that convert the STI
links from 1 GB/s to 333 MB/s.

Common aspects of ISC-3, ICB-3, and IC-3
The part of the channel design that is common across
the three link types is the number of buffer sets. The
additional buffer sets and peer nature of ISC-3, ICB-3,
and IC-3 are depicted in Figure 8. The number of each of
the four types of buffer sets (originator primary, recipient
primary, originator secondary, and recipient secondary)
was increased from two to seven. ICB-3 actually contains
eight buffer sets of each type to help implement
compatibility mode, as described below.

ICB-3 implementation
With the given requirements, the ICB-3 design direction
was relatively clear: Add more buffer sets, provide peer
mode, and push the STI link speed to a gigabyte per
second. But there was an additional requirement—to
provide attachment to the previous generation of ICBs
(ICB-2). Recall that ICB-2 operates at 333 MB/s in
sender/receiver mode, with two buffer sets in each
direction.

To provide connections to ICB-2, we investigated
several approaches. One was to add a set of ICB-2 ports
on the hub chip; this approach was quickly abandoned
because it required too many chip pins dedicated to this
function. Another approach was to create a mode in which
the 1GB/s STI ports could also operate at 333 MB/s. This
second approach was also abandoned because it would
add considerable complexity in the line drivers and
receivers. For example, clock extraction at multiple
signaling speeds requires special circuits. An even more
difficult problem was related to the operating voltages.
The operating voltages of silicon circuitry continue to
decrease as device geometries shrink. As a consequence,
the signaling voltages are also becoming smaller. In fact,
the newer receiver circuits cannot tolerate the voltage
swings of the older driver circuits. In our case, these

Figure 7
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concerns make it impractical to have line driver and
receiver circuits that can operate in both 333MB/s and
1GB/s modes.

The approach we chose was to add a
converter/multiplexor chip that connects ICB-3 ports to
ICB-2 ports. This design point fits into the rest of the I/O
plan, since a converter is also required for normal I/O.
For normal I/O, the converter chip is a speed-matching
buffer and a multiplexor. It connects a new 1GB/s STI link
to four old 333MB/s STI links. The protocols on both the
old and new STI links are same; therefore, the complexity
of the converter chip is minimized. The converter simply
routes outbound STI packets to the appropriate STI port
and adds source port information to incoming packets.
The converter chip contains no state information as to
packet ordering or content.

The same converter chip can also create four ICB-2
links from one ICB-3 link. Since the converter has no
capability to implement any of the ICB protocols, all of
the state information for all four ICB-2 links is retained in
the ICB-3 hardware. When operating in ICB-3 peer mode,
all 32 buffer sets are used by the single link. When ICB-3
is operating in compatibility mode, the buffer sets are
distributed among the four ICB-2 links at the far end of
the converter chip. Figure 9 shows an example of how
the ICB-3 buffer sets are distributed. Since each ICB-2
requires only four buffer sets (two originator primary and
two recipient secondary for sender channels, or two
originator secondary and two recipient primary for
receiver channels), half of the ICB-3 buffer sets are
not used when it is in compatibility mode. In the figure,
systems B and E have a sender channel and systems C
and D have a receiver channel. With all of the state
information in the ICB-3 hardware, the converter chip
need only provide the speed-matching and multiplexing
functions.

ISC-3 implementation
All of the ISC-2 components were nearing their “end-
of-life” phase. Production of the ASIC and SRAM
technologies was soon to be discontinued. The gigabit link
module (GLM), which includes the optical transceivers,
was becoming expensive, and there was the threat that its
production would soon be discontinued. GLM uses open
fiber control (OFC), an obsolete method of providing
laser safety (described later). We also had many new
requirements, and using ISC-2 on the z900 was not an
option.

First, we needed to sweep all of the multiple chips in
ISC-2 into a single state-of-the-art ASIC. This in itself
reduces product cost while improving reliability. Using a
single ASIC also reduces the message-passing latency by
eliminating the communication between the multiple chips
in ISC-2.

Using denser chip technology also allowed us to
package more ISC-3s into the same space required by
ISC-2. The new package [13] has four ISC-3s in a single
card slot. However, with four channels on a card, the user
would need to purchase increments of four, which would
be costly. Hence, we divided the card into a mother card
containing a converter/multiplexor chip and two daughter
cards, each containing two ISC-3s.

After carefully looking at ISC-2 design, we found that
we could reuse much of the ISC link protocol engine and
optical transceiver interface logic from the link adapter,
but the general bus structure and data transfer engines
to main memory were inadequate. ISC-2 had internal
bottlenecks that could not keep up with the 2.125Gb/s
optical transceivers. The main-memory attachment had to
be changed from the existing “internal bus” to a direct
STI attachment. Implementing command set 3 caused
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many more changes that the underlying ISC-2 structure
could not handle without considerable redesign. With 28
buffer sets, the entire design direction of the rest of the
link adapter chip had become unworkable.

We decided to discard most of the ISC-2 design and
start with the ICB-3 core design, as shown in Figure 10.
This design already implements command set 3, so we
needed to add the ISC link protocol engine and optical
transceiver interface derived primarily from ISC-2. We
also had to add many more physical buffers to handle an
increase in the number of buffer sets. All of the existing
chip interfaces in ISC-2 would have to be eliminated.

Data buffering
Increasing the number of buffer sets from four to 28
requires more link buffers to receive inbound messages.
Message information is transmitted over ISC links in
frames, and each frame consists of a link header, a
variable-size payload up to 4096 bytes, and checking fields.
The credit-based ISC link flow control requires inbound
link buffers of sufficient size to receive frames for all of
the advertised buffer sets. ISC-2 has sufficient inbound
frame buffers for two primary and two secondary buffer
sets. Each command and response has 256 bytes, and each
data area has 4096 bytes. With only 4096 bytes of data
area buffering for each primary buffer set, messages
transferring more than 4096 bytes require an intermediate
link acknowledgment protocol. Each time 4096 bytes are
received and sent to main memory, ISC-2 generates a link
acknowledgment allowing the other end of the link to
send the next 4096 bytes. Therefore, at a minimum, the
inbound buffering must be increased to handle 28 buffer
sets.

Further increases in the size of the inbound link buffers
were made to improve performance by eliminating the link
acknowledgments. The largest data transfer allowed in a

single message is 64 KB. Therefore, in ISC-3 peer mode,
increasing the inbound buffering for data areas from
4096 KB to 64 KB eliminated the link acknowledgments.
Consider, for example, a ten-kilometer link. At an optical
link propagation delay of 5 �s/km, the round-trip delay at
10 km is 100 �s. At 2.125 Gb/s (212.5 MB/s), the 64KB
data transfer takes about 300 �s. With only one link
turnaround (no link acknowledgments required), the link
time for the message is about 400 �s. Compare this to
the ISC-2 case, in which 15 link acknowledgments are
required, adding another 1500 �s to the link time, and
the slower transfer rate adds 300 �s more (the inbound
buffering is implemented by an off-chip SRAM).

ISC-2 did not have outbound link buffers large enough
to hold the last transmitted frame for each buffer set.
There are situations at the receiver where a request for
retransmission is received after the CF has changed the
contents of the data structure. In these cases, the receiver
cannot retransmit the data, and it simply ignores the
request, letting the sender time out. Once the sender
times out, the OS is informed, and it redrives the message.
Because this time-out processing requires OS overhead
and takes time, sufficient outbound buffering was added
so that all outbound frames could be retransmitted. This
buffering is the same size as the inbound buffering and
is implemented in another off-chip SRAM.

ISC-3 compatibility mode and optical transceivers
ISC-3 compatibility mode has two parts. First, it must
operate as a sender or receiver with two originator and
two recipient buffer sets. It must also exchange link
acknowledgments during long data transfers at 4096-byte
boundaries. As it turns out, with the exception of the
required link acknowledgments, compatibility mode is a
subset of ISC-3 peer mode. The additional hardware
complexity to support compatibility mode is limited
primarily to recognition and generation of link
acknowledgments.

Speed compatibility proved to be much more difficult
than just accommodating the speed difference, because
ISC-1/2 uses the GLM with OFC, and the OFC protocol
has to be implemented when connected to ISC-1/2.
OFC addresses lasers whose optical power output is not
controlled well enough to keep it below safe levels. With
these lasers, when the optical fiber connection is opened,
personnel could be exposed to harmful power levels.
When a receiver detects no light, it assumes that the fiber
connection has been opened at some point, and it turns
off its laser to prevent high levels of exposure. To ensure
that the transceivers at both ends of the link are “playing
by the rules” and to power up the lasers, an elaborate
handshake is required. Only the very early users of Gb/s
laser transceivers needed to use OFC, because the safety
standards changed. The newer lasers have a much tighter
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control of their optical power output, and an open fiber
is no longer a hazard. Introducing OFC for the higher
2.125Gb speeds is undesirable and is not required, but
OFC is still required when operating with ISC-1/2.

We wanted to use industry-standard optical transceivers
that do not provide the OFC function, so we ended up
developing the equivalent of the GLM with three discrete
parts: the optical transceiver, the serializer/deserializer,
and the OFC controller. We added a special circuit that
disables the OFC when operating at 2.125 Gb/s. This
circuit detects when the system disables OFC, and it shuts
down the laser driver long enough to engage the OFC
circuit at the other end of the link (if one exists). Using
the circuit, we could remain compliant with the OFC
safety standard, since any bug in the code controlling OFC
would be detected by the OFC at the other end of the
link. We finally decided to use a single ISC-3 card that
could be programmed to operate at both 1.0625 Gb/s with
OFC enabled and 2.125 Gb/s with OFC disabled.

Microprocessor elimination in ISC-3
Earlier ISC designs incorporated an 801 microprocessor
uniquely designed for ISC, and our biggest problem was
figuring out a new implementation. The flexibility of the
microprocessor was required in ISC-2 to keep the design
synchronized with an evolving link protocol. By 1998, the
link protocol was stable enough to consider putting all of
the mainline function into hardware state machines. Also,
our experience with ICB-2 taught us that a hardware-
intensive design was not too complex to attempt. The
ISC-2 801 microprocessor design was unique and included
good error checking, and the instruction set was the same
as that used in the IOP in the bipolar processors. Using
a common architecture allowed tools to be shared with
other code-development teams. As the ISC found its way
into the CMOS machines and the bipolar product lines
were discontinued, maintenance of the tools (compilers,
simulators, libraries, release processes) became
problematic. It became difficult to get other development
sites to maintain compilers, since the instruction set was
nearing obsolescence. It was clear that any microprocessor
implementing the 801 architecture was not an option. It
was also becoming a problem to retain the skills required
to maintain the 801-based code.

We next considered using a newer microprocessor such
as a PowerPC. However, neither the single-chip Power
microprocessors nor the embedded cores provided the
robust level of error checking that is a hallmark of
zSeries* servers. To achieve this level of checking,
we would either have to duplicate and cross-check the
microprocessors, or develop our own. But even though a
new microprocessor architecture would allow us to use the
newer, better-supported tools, in the long run, the tools
would again become a problem. Unlike the Intel x86

architecture, which is backward compatible, the Power
architecture evolves over time, and the tools used to
support earlier processors become obsolete and lose
support. We knew that whatever Power processor we
chose, the tools would eventually become a problem.

We finally considered eliminating the ISC
microprocessor altogether and shifting the ISC-2
microprocessor functions to hardware state machines or
the IOP. Our experience with ICB-2 and ICB-3 taught us
that the level of hardware complexity required in ISC-3
was attainable, and we knew that eliminating the ISC
microprocessor had many advantages. First, the product
cost is much lower. Second, the development of the
microprocessor interface to the rest of the hardware is
about the same as moving the mainline functions from
code to hardware state machines. Third, the development
cost is reduced (unique tools not required). Fourth, the
performance is better, since we are thus forced to put all
of the performance-critical functions into hardware state
machines, and there is no microprocessor code path
length. Finally, the tools’ end-of-life problems are avoided.

Eliminating the ISC microprocessor required more than
simply putting all of the mainline functions into hardware
state machines. We also had to dramatically reduce the
dependence on a microprocessor for initialization and
exception handling. We still had a processor that could
control ISC-3, but it was the IOP. As shown in Figure 7,
IOPs are the same as normal processors and are physically
and logically much further from the ISC than a local
microprocessor would be, so the interaction with them
must be minimized. Figure 7 shows that the connection
between an IOP and an ISC-3 includes a hub chip and
two levels of multiplexors. Also, the IOP is shared by
many different ISCs and other system functions, so their
utilization to support ISC-3 must also be minimized. This
led us to develop many new hardware state machines and
structures to more efficiently handle the initialization
and exceptions.

Link frame handling in hardware
In ISC-1 and ISC-2, limited frame handling was performed
by hardware state machines. Improvements in ISC-2
further reduced the main processor and IOP path length,
but the link acknowledgment reception and generation
for long data transfers is still handled by the ISC-2
microprocessor.

In ISC-3, all mainline frame handling is moved to a new
hardware state machine. This hardware provides state
information for each area of each buffer set. Within a
single buffer set, the hardware coordinates the states
of all buffer areas to recognize all possible error
sequences. When multiple frames with intervening link
acknowledgments are required for long data transfer, the
hardware detects the inbound link acknowledgment frame
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and automatically begins transmission of the next data
area. Similarly, when received data has been properly
received, the hardware automatically generates an
outbound link acknowledgment instructing the other
end of the link to proceed.

To completely define the operation of the hardware
state machines, detailed state tables describe the actions
during both valid and error sequences of frames. For
example, if a frame is received when it is not expected
(in the wrong sequence), the hardware interrupts the
IOP and gives it precise information about the error.

Priority scheduling
With only two originator and two recipient buffer sets
in ISC-2 and ICB-2, queueing frames and packets
is a relatively simple process; a first-come-first-served
algorithm is sufficient. In ISC-3 and ICB-3, the number
of message buffer sets is increased from four to 28. With
this much larger number of message buffer sets, the first-
come-first-served algorithm becomes much more “unfair,”
causing some message buffer sets to be starved for service.

We developed a hardware priority scheduling
mechanism to recognize the priorities of different kinds
of messages presented to the scheduling mechanism, to
process the different kinds of messages presented with
fairness within a priority, and to guarantee the forward
progress of all message buffer sets. Rather than simply
creating a very large combinatorial logic tree, a very
small sequential state machine was used in order to
take advantage of the nature of the traffic to calculate
priorities in parallel with frame transmission. Because
frame transmission requires multiple cycles, the state
machine has multiple cycles to perform the calculations
required to determine the next user to transmit on the
link or store into memory.

Disable inbound link function
Serial optical communication links experience many
different kinds of errors and failure behaviors. At one
extreme are the occasional single-bit errors. These errors
cause a single bit in the bit stream to be flipped or
complemented and are caused by random noise. When
these errors occur during an idle sequence, no recovery
action is required. When they occur within an information
frame, various recovery actions are taken depending on
what part of the frame is corrupted. At the other
extreme are link failures, which lead to a total loss of
communication. These can be caused by anything from a
critical component failure to losing power at one end of
the link, or to a physical disconnection of the optical fiber
transmission medium. Very often, especially when an
optical connector somewhere in the operating link is
physically disconnected, the link failure condition is
preceded by an increasing bit-error rate. In some cases,

a link failure condition is detected followed by a re-
establishment of the link followed by a link failure
condition multiple times, as the optical connector is
being slowly disconnected.

In ISC-2, the local processor is interrupted as each
link error and failure event is recognized by the inbound
decoder state machines. Even when the link error rates
are very high, as when an optical connector is being
disconnected, the local processor can keep up with the
error events, since it is relatively idle during these high-
error-rate periods.

With no microprocessor in ISC-3, hardware is provided
that interrupts an IOP only when specific error conditions
are detected. This hardware also responds on the
outbound link with a special continuous sequence
signaling the type of failure. The link events for an
inbound link are atomically filtered by detecting link
failures or the receipt of a continuous sequence and
subsequently disabling the inbound link by ignoring all
events until re-enabled by the IOP.

The detection of the link failure or continuous sequence
event is reported to an IOP with information describing
the nature of the report. ISC-3 handles the receipt of
special continuous sequences on the inbound link with
the proper special continuous sequence response on the
outbound link. In both cases, ISC-3 is inhibited from
causing subsequent interruptions to the IOP before the
IOP performs the appropriate recovery actions. Also, the
IOP can arm ISC-3 to cause an interrupt when the link
starts to receive a valid sequence.

Link error statistics
In ISC-2, link errors are monitored using interrupts to the
local microprocessor, and keeping this approach in ISC-3
would over-utilize the IOP. To address this problem, we
developed hardware state machines that do not interrupt
the IOP each time a bit error is detected and automatically
gather link error statistics with minimal processor (IOP)
involvement.

In ISC-2, the first indication of a bit error is a code
violation (CV). If the bit error is in a frame, either it may
be recognized immediately (CRC error in the information
field) or a message timeout condition may be detected. In
either case, error-recovery mechanisms are invoked, and
the damaged frame (or operation) is retried. Bit errors
in either the idle sequence or a continuous sequence
(another type of idle sequence) do not damage frames,
but they still must be detected and tracked to determine
the overall link error performance (bit-error rate). In
many lightly utilized links such as ISC, most of the bit
errors occur in idle sequences. Previously in ISC-2,
these harmless bit errors caused interrupts of the local
microprocessor, and this microprocessor collected the
bit-error statistics.
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In ISC-3, there are two types of bit-error events. The
first type is the isolated bit error caused by noise events.
The second type is a burst of bit errors, which may
indicate that the receiver has lost bit/byte/word
synchronism. If synchronism is reestablished within
100 ms, a temporary loss of sync event is recognized.
If the loss of sync condition persists for more than
100 ms, a link failure condition is recognized, and the
IOP is immediately interrupted to handle the error. In this
failure case, there is sufficient time to change the physical
connection, and the IOP must bring up the link from
scratch, verifying what server is at the other end.

In ISC-3, both of these kinds of errors are counted in a
register and start a timer. All subsequent errors increment
the counter. The counter does not wrap back to zero when
it reaches its maximum value, but stays at the maximum
value (saturates). When the timer expires, a single
interrupt to the IOP is generated. The IOP can then read
the error counter, reset the counter, and re-enable the
interrupt. The IOP can program the interrupt time-out.

Time-stamp coordination
Event tracing and logging are important in the debugging
of designs, and one of the most useful pieces of
information in each entry is a time stamp. Time stamps
obviously point out time delays in the system, but they are
also very valuable in coordinating multiple trace entries
generated by multiple processes in the system.

In ISC-3, trace entries are generated that include a
local time stamp; however, the time stamps provided in
these trace entries have only a loose relationship to the
IOP time-of-day (TOD) register. We needed a way to
synchronize this local time stamp with the TOD. In
particular, our method for synchronizing the time stamps
has a master TOD register in the IOP driven by an
oscillator, and same oscillator drives the ISC-3 time
register through a timing pulse over the STI link. But this
timing pulse has any arbitrary phase with respect to the
TOD register. Timing facilities in ISC-3 measure this
phase relationship, and the IOP code can access this phase
information to coordinate the time-stamp information.

Inbound event buffering
Because the IOP is so far from ISC-3, we needed to
develop a very efficient way for the IOP to gather
exception information. The frequency of these events is
sometimes too high for a remotely located processor such
as the IOP to process each one in real time, so a small
memory element in the form of a first-in-first-out (FIFO)
buffer was added in ISC-3 to queue these events.

To make FIFO access efficient, ISC-3 provides the
maximum information to the IOP each time it reads
the FIFO buffer. ISC-3 presents different information
depending on the state of the FIFO (its fullness), and the

state of ISC-3 itself. ISC-3 writes discrete events into the
FIFO at a location determined by a write pointer, and the
IOP reads the FIFO from a location determined by a read
pointer. Reading FIFO entries conditionally returns event
and status information and conditionally increments the
FIFO read pointer. A fullness indication of the FIFO is
returned in the read information as the value of the FIFO
read pointer and write pointer. Also, ISC-3 substitutes
status when the FIFO is completely empty, and the event
description when the FIFO has one or more valid entries.

The ISC-3 FIFO has a mode in which the IOP can read
multiple entries of the FIFO using a single command.
Once again, the format of the returned data is different
from the variable information returned by a single FIFO
access.

The ISC-3 FIFO also reduces the number of interrupts
presented to the IOP by sharing information on the
fullness of the FIFO, as observed by the IOP and known
to the FIFO.

Link initialization
After the functions described above have been transferred
to the hardware, the remaining code support for the
coupling channels is left to adapt the z/Architecture*
programming interface to the hardware control interface,
as shown in Figure 11. The most interesting function of
these is the link initialization part of the configuration
function. The primary remaining requirement for code
support is in the initialization of the connection. The design
of the third-generation links, particularly the introduction
of the peer mode, placed some interesting requirements
upon the supporting code.

ICB initialization
The initialization of an ICB link consists of determining
the identity of the attachment at the remote end of the
link. The protocol for the initialization of the ICB link
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was fairly well established in the design for the ICB-2 link.
However, this protocol was based upon a design in which
the code at either end of the link supported different
functions— one end was a sender and the other was a
receiver. We used this asymmetry to simplify the design
by using the sender to drive the protocol. Peer mode has
changed this. The link is now symmetric, so both ends
drive the protocol, and the link is fully operational only
after both ends have driven the sequence to completion.

The first step in the sequence is simply to send a signal,
called a ready signal, which indicates that this end of the
link is operative. When an ICB-3 channel receives this
signal, it knows that the other end of the link is ready to
step through the initialization protocol. Generally, only
one side of the link detects this signal, since the first side
that becomes operative sends it to an inoperative partner,
which cannot detect it.

After it has received the ready signal, the ICB-3 support
code responds with a signal called a trigger signal. This
signal indicates that the ICB is ready to exchange
identification information with the remote partner.

When the ICB receives the trigger signal, it sends an
MCB that starts a message containing the node identifier
for the ICB channel. This comprises the type and model
of the server, the serial number of the server, and the
channel identifier of the ICB that is initiating the
message.

The proper response to any MCB is to send an MRB in
order to complete the message. This response contains the
node identifier for the channel that is sending the MRB.

This is the end of the sequence. At this point, one end
of the link has determined that it can initiate a message
to the other end. However, only one end of the link has
driven through the sequence, and both ends must do this
to make the link ready for communication. Therefore,

after it receives the MRB, the ICB sends a trigger signal.
This allows the other end of the link to drive an MCB
with a node descriptor, so that the sequence can be
completed from both ends. (So that this does not continue
forever, the trigger signal is ignored if the ICB has already
completed the initialization sequence.)

ISC initialization
In addition to identifying the partner at the remote end
of the link, ISC link initialization also exchanges some
capability information (e.g., the number of buffer sets
available for communication) between the ends of the
link. In the past, the sender side has driven the messages
that exchange that information. This obviously had to be
changed for peer mode. When the link is in peer mode,
ISC link initialization begins with the same sequences
that have been used in ISC-1 and ISC-2. After the node
identifiers have been exchanged with an “operational
transceiver request/operational transceiver response”
frame sequence, the ISC with the higher serial number
assumes the role of the dominant ISC and drives the
remainder of the link-initialization sequence.

Extensibility
ISC-3 is also designed for longevity. We felt that the
number of buffer sets was sufficient to handle the Parallel
Sysplex requirements for many years to come. Enough
space was allocated in the commands to handle the
expected increases in main-memory size and the number
of logical partitions. Thus, when the components reach
their end-of-life phase, a straightforward technology
remap is all that should be required. This expected
remap(s) should have only the slightest changes to the
code, primarily to handle the new part numbers and
expected improvement in packaging density.

Table 1 Parallel Sysplex channel comparison.

ISC-1 ISC-2 ISC-3 ICB-2 ICB-3 IC-2 IC-3

Type Sender
/receiver

Sender
/receiver

Peer Sender
/receiver

Peer Sender
/receiver

Peer

Hardware commands Command
set 1

Command
set 2

Command
set 3

Command
set 2

Command
set 3

NA NA

Buffer sets 2�2 2�2 7�7�7�7 2�2 7�7�7�7 2�2 7�7�7�7

Speed 531/1062 Gb 531/1062 Gb 1062/2125 Gb 250 MB 650 MB 700 MB 850 MB

Latency (lock) 100 �s 45 �s 28 �s 18 �s 15 �s 18 �s 15 �s

Distance 10 km @ 1 G 10 km @ 1 G 10 km @ 2 G 10 m 10 m NA NA

Code path SAP/PU
intensive

Command
set 2

Command
set 3

Command
set 2

Command
set 3

Processor
moves data

Processor
moves data

Flow Link ACK
on 4K

Link ACK
on 4K

Link ACK
on 64K

STI flow
control

STI flow
control

NA NA

Microprocessor Yes Yes No No No No No
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In the future, the ISC-3 link speed may also be
increased. The ISC-3 design allows remaps to increase
the speed of the ASIC to accommodate faster optical
transceivers. We believe that we may have to use the next
optical transceiver standard (5, 10 Gb/s) to meet future
Parallel Sysplex performance requirements.

We also added a few more features we expect to be
useful in the future, and these are described below.

Larger command buffers (MCBs)
Many Parallel Sysplex exploiters are running out of space
in the 256-byte MCB. ISC-3 (and ICB-3) provide space for
a larger MCB. As with ISC-2 data frames, transmission of
the new MCB can be suspended on 256-byte boundaries.
The start bit protocol used in ISC-2 data frames and the
logic required to control it have been added to MCB and
MRB transmission.

Interrupts for new features
We added the hardware capability in both ISC-3 and ICB-3
to generate hardware interrupts to the IOP at key points
in the message-passing sequences, and we are envisioning
several applications. First, the present CF code polls
for work. We believe that an interrupt-driven CF
implementation could improve performance. Second,
interrupts could enable multiple CF images to share
receiver facilities. Third, we may want to share the
coupling links with new traffic. We are currently
evaluating these applications.

Concluding remarks
Table 1 contains a summary of all of the Parallel Sysplex
coupling links. For each type of link, several key attributes
are shown, all of which have been described in this paper.
The latency numbers for lock commands indicate how
improvements in the code and hardware path lengths and
link speeds yield better performance. As we evolved from
ISC-1 to ISC-2 and ICB-2, many important improvements
were made to both the functionality and the performance.
The development of ISC-3, ICB-3, and IC-3 proved to be
more revolutionary. As developers, we try to reuse as
much of the previous design as possible, but in this case
we had to make a much bigger break with the past. We
believe that our resulting coupling-channel design is
optimized for both the current and at least several
more zSeries generations.
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