Hardware
configuration
framework
for the IBM

eServer z900

by A. Bieswanger
F. Hardt
A. Kreissig
H. Osterndorf
G. Stark
H. Weber

This paper describes the concept,
architecture, and implementation of the
hardware configuration module within the
support element of the IBM eServer z900. For
the z900 project, this base system firmware
component has been redesigned to obtain a
software structure with a clear, simple, and
scalable architecture that is suitable for future
extensions to the z900. To achieve the desired
flexibility, an object-oriented framework has
been developed which supports the auto-
sensing and configuration of hardware
components as well as their status
representation and management. The new
configuration concept is based on a rule
approach in which, for each sensed physical
part in the system, a configuration rule
specifies the object hierarchy to be
instantiated upon it, including attributes

and interconnections to other system parts.
Furthermore, the concept and architecture

of the framework are built upon a hardware
object model (HOM) that has been designed to
allow for further integration of key business
logic of the z900 service subsystem and
hardware support code.

1. Introduction and motivation

The z900 server is a strategic IBM product for the high-
end market, specifically for e-business solutions. Because
of the importance of the z900 project and the growth
expectations of this market, it was decided in the early
concept phase to redesign major parts of the pre-z900
service subsystem using modern software engineering
methods and open standards with special emphasis on the
use of object-oriented techniques in analysis, design, and
implementation.

The pre-z900 service subsystem had been implemented
primarily in a functional fashion, with multiple functions
typically accessing global data. In an object-oriented
approach, since only the appropriate methods of an object
are allowed to access its data, the design principle of
information hiding can be more readily achieved. In
addition, one of the key advantages of an object-oriented
design approach is typically an improved modularity of the
software structure, which results in better code reusability
and maintainability.

The zSeries z900 service subsystem contains the
following three major components (Figure 1): the
hardware management console (HMC), the support
element (SE), and the cage controllers (CCs) with the
service network. Besides introducing the cage-controller
and service network [1], it was planned as part of the z900

©Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

A. BIESWANGER ET AL.

537

538

Processor
module
Processor board ‘

===
CEC cage

rSTI
Memory
Memory
STI

Memory
Memory

H— | CC-1
CC-0

Power A Power B

cc
cc

Service network |

ICT 17 5
o[[= .
S 1/0 cage 0 [1
QO
/O board
[T T T T
s I/Oadapterz
;‘ cards ;‘
2 [T []=

2900 system control structure and physical hardware packaging.

project to establish a new architecture for the hardware
configuration service as one of the key base components
within the support element.

The pre-z900 implementations for these services had
become increasingly difficult to maintain during the years
when the S/390* CMOS systems were approaching high-
end functionality and larger capacity. In line with this
growth, more requirements were appearing that had not
been anticipated in the initial design ten years ago, and as
a result, more exceptions had to be supported. Finally it
was concluded that a redesign was necessary to eliminate
problem areas and to build a new base for supporting the
new zSeries product line beginning with the z900.

Furthermore, a new framework could be planned from
the beginning to serve as a nucleus for re-engineering of
larger portions of the service subsystem over time. The
concept for this framework had to be established such that
it could support much more than just pure configuration
functionality; it had to be designed so that its objects
which model the system hardware could receive more
functionality in later releases and become proxy objects
for the real hardware objects.

With this motivation in mind, in the next section we
examine the responsibilities of the service subsystem with
the SE at its center; we then explore its configuration
domain in Section 3. The main part of this paper then
focuses on the framework architecture, the hardware

A. BIESWANGER ET AL.

object model, and the rule concept in Sections 4, 5,

and 6. We then explain the framework infrastructure

with respect to object communication and event modeling
in Sections 7 and 8. The paper concludes with an overview
of application interfaces in Section 9 and a subsequent
future outlook.

2. Overview of z900 system control structure
and support element
The IBM eServer 2900, like its 9672 predecessors, has an
“out-of-band” service infrastructure, which is an approach
generally characterized by the provision of hardware
management and support functions outside the scope
of the host operating system(s). In addition to the cost
advantage of implementing a single service layer which
supports multiple (different) host operating systems,
additional rationales for this external functionality are
derived from the reliability, availability, and serviceability
(RAS) requirements for a large high-end server such as
the z900. Such servers, with mission-critical applications
and “24/7”-type workloads, typically have an “out-of-band”
service infrastructure which permits service/maintenance
operations to be performed concurrently with customer
operations at the operating system level.

All of these functions, including monitoring, control,
and error-handling functions for the system, are
performed by a standalone external service subsystem

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

with the support element (SE) as its central component.
The SE is physically implemented on a standard IBM
ThinkPad* with OS/2* as its operating system and is
packaged within the frame of the z900 server.

Figure 1 shows the main system packaging structure and
the components of the service subsystem, including its
communication paths, in red:

e A physical z900 system consists of multiple “cage
enclosures” with one system board each: a single cage
for the central electronic complex (CEC) with the main
processor board, the processor module, and up to three
I/O cages with I/O adapter cards. In addition, there
are two power supplies which provide redundancy
within the power distribution infrastructure and are
treated as a single cage from a control point of view.
The functional interfaces between the CEC cage and the
I/O cages (not shown in Figure 1) are provided via self-
timed interface (STI) link cables from STI connector
cards in the CEC to STI multiplexor (STI-M) cards in
the I/O cages.

e The interface between the service subsystem and the
system hardware in each cage is provided in a redundant
fashion by a cage controller (CC), which performs the
low-level monitoring tasks for all of the physical
hardware components and service interfaces within
the scope of its cage.

e The support element (SE) is the home base for all
initialization, configuration, control, and serviceability
tasks with the scope of a single z900 system. Figure 1
shows that a primary SE and an alternate SE [2] are
connected to the cage controllers via a redundant
service network (which is a 100Mb Ethernet) and to the
HMC via the customer network. Thus, the SEs are also
able to provide firewall functions between the two
networks.

e The hardware management console (HMC) provides a
multi-system point of control with the customer user
interface for all hardware management functions of
multiple z900 systems. There may also be multiple
HMCs connected to a single z900 via the customer’s
intranet; these HMCs then act as peers to one another
(i.e., they provide redundancy for backup purposes and
high availability without requiring a failover").

The support element supports the following system-level
requirements:

e Configuration: This is the task of determining the
physical installed hardware at start-up and power-on
time; it also includes the management of changes

! The term failover typically denotes the relocation of a function to a backup
system in a failure situation.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

concurrently with customer operations. Two types of
configuration data are maintained on a zSeries system:
the physical hardware configuration, which is based on
the sensing of the installed hardware with its vital
product data (VPD); and the logical configuration,

in which the customer assigns logical definitions to
installed hardware via the I/O configuration data set
(IOCDS) and in the system profiles.

e [nitialization: These tasks include the initiation and
monitoring of all start-up functions system-wide. The
support element provides the boot server and code load
support for all controllers and all system firmware.
Further initialization functions control and evaluate
the hardware self-test, with automatic isolation and
reconfiguration of failing hardware.

o System control operations and monitor functions: This is
the function set of all manual and automated operations
which may originate from the user interface on the SE
or may be issued remotely from an HMC. Also included
are all system-level event handlers and monitor
functions, such as system activity display.

e Lrror-handling functions: These require repositories for
first error data capture, traces, and dumps, as well
as automated problem analysis, error filtering, and
initiating of call-home to IBM support centers via the
HMC. The problem management and repair functions
must support the complete problem life cycle from
problem record creation until problem closure time,
when parts are replaced via guided repair functions.

o Change management and hardware upgrade functionality:
This includes control routines for concurrent code
update and the management of multiple independent
code streams. It also contains functions supporting
hardware change management, such as concurrent
installation of new hardware and concurrent upgrade
on demand for processors, memory, and I/O.

Most of this functionality on the SE is realized via
application programs which run in their own address space
and, in some cases, have also application counterparts
within the firmware running directly on z900 hardware.

3. Problem domain overview: z900 hardware
configuration requirements

Figure 2 shows the high-level hardware logic structure on
the main processor board and the outboard connections
via STI links to I/O domains within an I/O cage. In
contrast to Figure 1, Figure 2 presents a more detailed
functional view of the processor module and its internal
structure, together with some details on the I/O. All of the
illustrated physical components, including bus structures
and link interconnects, are important for the configuration
modeling. In the CEC domain, these are the processing

A. BIESWANGER ET AL.

539

540

‘ ‘ ‘ ‘ ‘ ‘ Cluster 0

STI

MBA

1 PUO0 | [PUOL | [PUO2 | |PUO3 | |[PUO4| [PUOS

1l 151 il 1Ll il IE]

PUO6 | |PUO7| | PUO8| | PUOY 0

el Il il Ll

L2 cache control chip and L2 cache data chips (16 MB shared)

R |

<

< . L2 cache control chip and L2 cache data chips (16 MB shared)

£ L1 il Ll Il L]

‘ ‘ ‘ ‘ Memory| | Memory
card card
0 2
L]
| |
Memory | | Memory
‘ ‘ ‘ ‘ card card
Lt | ||]| L 1 3

MBA | |PUOA| [PUOB| [PUOC| [PUOD| |PUOE| [PUOF| | PU10| | PU11| [PU12| [PU13 || MBA
2
‘ ‘ ‘ ‘ ‘ Cluster 1
STI 333MB STIs ESCON 16 ports
1GB STIs
Parallel 3/4 port Compatibility | | FICON 2 ports O O
OSA-E Gb Ethernet
OSA-2 TR I/O cage
) OSA-E Fast Ethernet /o

OSA-2 FDDI (optional) OSA-E ATM
ESCON 4 port

ISC-3 14 ports
PCICC 2 processors

2900 hardware logic structure.

units (PUs), the cache controller and data chips (SCCs
and SCDs), the main storage controllers (MSCs), the
memory bus adapters (MBAs), the cryptographic
coprocessor elements (CCEs), the clock chip, and the
external timer reference (ETR) units. In the I/O domains,
the corresponding entities are the STI multiplexors (STI-Ms)
with secondary STI links wired within the I/O boards to
I/O adapter cards such as ESCON*, FICON*, Open
Systems Adapter (OSA*) cards, intersystem channels
(ISCs), and PCI-based cryptographic coprocessor cards
(PCI-CCs) [3]. For connectivity within a Parallel Sysplex*
environment, integrated cluster bus (ICB) links are also
provided via cables external to the system. .
Apart from the general z900 hardware structure, there
are also more specific hardware configuration

requirements to be supported:

e Plug detection and configuration of the physical hardware
components: The information about hardware
components is gathered with the granularity of field-
replaceable units (FRUs) or packaging units. The
functional and operational characteristics of these
hardware parts must be modeled and maintained over

A. BIESWANGER ET AL.

ICB 333MB/s

ICB-3 1GB/s

time. In addition, an information base for the functional
entities (functional units) located on these FRUs must
also be established. This includes information about
addressing schemes, maintenance access paths, and the
relations between functional units and packaging units.
Evaluation of the operational characteristics of installed
hardware: After execution of hardware self-tests, failing
functional units must be electronically isolated
(“fenced”) and then the maximum fully operational
subset must be determined in order to generate valid
and consistent configuration data for system
initialization.

The zSeries system design introduced the concept of
“logical-to-physical mapping” to shield an operating
system from recoverable errors at the physical level. The
best example of this is a function called “dynamic CP
sparing”: When a physical processor (functional unit)
encounters an error that leaves the last committed
architected state of the engine still intact, this state can
be extracted and implanted into a spare, “hot-standby”
processor so that instruction processing can resume
without requiring any notice to the operating system
on which it runs. This concept of logical-to-physical

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

AdA AAA A

SE applications

Application interfaces

Wrapper interfaces

System object A

Packaging
unit objects

Rules

VY
= Add
@ vl |
T w | 1
CPC Functional unit
resource ObjCCtS

subsystem

——
L

il

[T

Framework infrastructure:

’ Event model services

’ Persistency (ObjectLite) ’

’ Object communication services (OCS)

|
|

L L 1
‘@@@ Object databases

Y

Cage control service interface

To cage controller and
2900 hardware

—)

Framework architecture and building block structure.

mapping requires logical units independent of the
physical level, which carry their state and their own
logical identification independently of the underlying
functional unit (this is similar to a virtual machine,
except that there is always a one-to-one mapping).

4. Overview of framework structure

On the basis of a detailed analysis of the problem domain,
system requirements, and future conceptual goals, a
framework architecture was established. The architectural
concept of the framework is based upon the principles of
abstraction and information hiding, so that any component
has knowledge of only the interfaces with other
components and nothing more. A further design goal was
the use of well-known design patterns such as observer,
composite, and facade, in order to obtain an easily
understandable architecture. According to the different
abstraction levels of the hardware (i.e., the physical,
functional, and logical views), there exist three different
types of problem domain objects: packaging unit,

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

functional unit, and logical unit objects. The main
components of this architecture (Figure 3) are described
in the subsequent sections.

First, the hardware object model (HOM) is the
centerpiece of the framework, with class instantiations
representing the system components and abstractions
consisting of packaging units, functional units, and central
processor complex” (CPC) resources (logical units),
together with a system object as an anchor point. Second,
a rule subsystem is established on top of a rule database
which specifies the blueprint of the object model and the
system via rules. The foundations for the framework
infrastructure are object communication services (OCS),
which provide “controlled” object access (defined by an
interface architecture) and separate interfaces from class
implementations. In addition, event model services have
been designed on top of the object communication
services in order to support event propagation and

2 Central processor complex is a term defined by the z/Architecture® to denote a
“system” (see [4]).

541

A. BIESWANGER ET AL.

542

registration mechanisms, not only inside the framework
but also as service to applications accessing it. The object
model is provided with hardware events and status
information by the cage control service interface,

which provides a path to the physical hardware via cage
controllers.” Finally, application interfaces and wrapper
services have been established to provide access to the
framework for application programs and also to hide the
new functionality behind compatibility interfaces for
applications that were not intended to be modified to
access the framework directly. The framework persistency
via object database files has been designed with the help
of an object-streaming utility (ObjectLite) which supports
object mapping into virtual memory.

5. The hardware object model

The hardware object model is the object-oriented
representation of all parts of the system configuration:
packaging units, functional units, and logical units. It
creates individual components and maintains relationships
among them. It also provides addressability to them and
keeps track of their internal states.

The packaging unit objects reflect the physical hardware
based on plug detection. A packaging unit object is
instantiated for every sensed or defaulted (a unit not
sensed) hardware field-replaceable unit (FRU). The
packaging hierarchy of the z900 is reflected in the object
model and follows the composite design pattern. A cage
may consist of nodes or cards, and a card may contain
daughter cards.

The functional unit objects reflect functional entities,
which are active elements residing on packaging units.
Examples of functional units are processing units (PUs),
memory, clock, and channels. A functional unit keeps
track of clock states and function states [e.g., running and
isolated (fenced)] and propagates state changes to other
related functional units.

The CPC resources are a logical representation of the
system resources as defined by the z/Architecture [4]:
central processor complex (CPC), CPs, CHPIDs, and
LPAR images. The CPC object instantiates all of the
other CPC resource objects on the basis of the reported
functional units and also maintains the mapping between
the functional units and the CPC resources.

Object model initialization

The anchor point for the complete object model is the
system class, which follows the “singleton” design pattern
[5]. It begins the configuration process for the cages and
performs some overall system configuration tasks. This
cage configuration process is event-driven; as soon as a
cage controller enters the service network, the system

3 The cage-controller and service network subsystem are described in [1].

A. BIESWANGER ET AL.

object receives a “cage detected” event from the cage
control service interface which listens to the service network.
It uses the configuration rule component of the framework
(described in the next section) to instantiate the required
cage object and then tells it to configure itself by
determining its contained units and re-applying rules.

Since events like this may occur at any time, even after
the z900 system is up and running, there is a need for a
certain synchronization point at which the system object
can assume that all operational cages have registered so
that it can begin the global configuration validation.

To this end, the system object must establish global

I/O configuration information across all cages; this is
gathered by a hardware topology sensing for the STT link
connections. Any further detected changes beyond this
synchronization point trigger a new configuration and
validation sequence based on the last validated and saved
results, and add incremental changes to the previous
baseline.

Within the initialization process, the individual steps are
performed recursively along the containment hierarchy of
the packaging units. Each packaging unit container object
is responsible for the instantiation and attribute settings
of its contained objects, for validation across multiple
objects, and for establishing relationships among multiples
of its contained objects. This modularity allows for
parallelism during the configuration step and also eases
the support for hardware hot-plugging.

The configuration of the functional unit objects is more
complex than that of the packaging units, since they must
be connected according to their dependencies. This
results in a “functional path” (a directed graph with the
functional units as nodes), which is used to propagate
state information. In general, a functional path depends
on the static physical layout of cards and boards and the
sensable interconnect topology, which together describe
how functional units from multiple FRUs are connected
to one another.

At the cage hierarchy level, the CEC cage instantiates a
CPC object as the logical representation of a single z900
system. The CPC object then configures its dependent
resource objects on the basis of the functional unit
mapping information acquired during system activation.
This processing is performed at the logical unit level and
is completely based on the z/Architecture, which is directly
modeled by the logical unit class hierarchy; therefore,
additional rules are not required here.

Run-time functions

During steady state, the object model keeps track of status
and state change information for the functional units
within the associated objects. This is the responsibility of
functional unit objects and so-called clock domain objects,
which represent union sets of functional units driven

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

by the same physical clock. Such state changes are
propagated along the functional path; thus, if a functional
unit is disabled, all units “behind” it within its functional
path have to be disabled as well.

All of the state change processing is event-driven; it is
based on a registration mechanism which notifies the clock
domain objects when certain clock events are reported
from the cage controller service interface.

Figure 4 shows the main class relationships [5] for
packaging and functional units.

Design rationales and alternatives

Given the structure of the z900 service subsystem as
shown in Figure 1, one of the key design strategies was to
avoid precluding a later function redeployment of object
model components to different locations. For example, the
packaging unit objects and even some of the functional
unit objects could reside on the cage controllers, and

the CPC resource objects could be established on the
hardware management console. This, together with the
multi-process application nature of the support element,
was the principal reason for establishing specific object
communication services, which support a transparent
cross-process method invocation suitable also for
extension across platforms. However, in the current
implementation it was decided to establish the complete
object model on the support element and to connect to
the hardware access services on the cage controllers

via a cage control service interface layer.

The modeling of packaging units had to take into
account hardware design changes at the physical packaging
level as well as model dependencies, since processor cards
and boards vary from one model to another and will
probably change their structure from one generation to
the next. Given such hardware dependencies and the need
to link the classes to hardware identifications in the vital
product data information, the packaging units might be
implemented on the basis of class inheritance, i.e., by
using a subclass for each processor card version. However,
such an approach has some disadvantages:

e During hardware bring-up, there is a requirement to
support “partially good” cards and to create only
functional units for the defect-free components on them.
Doing this by means of subclassing would result in
maintaining additional classes and complexity, since
adding case statements to a class would either produce a
considerable amount of “dead” code after the hardware
bring-up phase or require code changes for code already
tested.

e In addition, also typically during the hardware bring-up
phase, a substantial number of schedule-critical
workarounds are sometimes required. A subclassing
approach would tend to be more inflexible here, since it

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

| Functional unit group | FRU Sonad

(? LF. data

u 1

| Functional unit li<>| Packaging unit |<>J
A\ n

Clock domain

%

Processor Memo
- module .
’ System }(}—n{ Container packaging unit ‘

JA

’i—‘ < Legend:

| CPC }LO| CEC cage| | I/O cage | <<; fg;gg;?sn

Class relationships for packaging and functional units.

would require more frequent recompiles and software
driver builds during the critical bring-up time.

A better alternative to this is a rule-based approach,
since many of the classes do not differ in their key
functionality but primarily in different attribute values
(e.g., one processor card has two processors and another
one may have four, although both cards support the same
methods). With a rule-based approach, the values of the
attributes derived from the sensed hardware information
are defined by rules; and during the initialization of the
object model, the system, the cages, and the card objects
use rules to determine the type and number of packaging
units or functional unit objects that are to be created. The
object creation is not accomplished by a direct call to
the new operator, but instead by dynamic loading. This
enables a cage object to create card objects that were
unknown at the time the cage class was implemented.

The chosen approach has advantages with respect to
minimization of dependencies, and it also results in a
larger flexibility, which is certainly justified over multiple
machine generations. In particular, the rule concept was
chosen so that the class implementations do not depend
on the implementation of the rules by using a facade-
based concept [5] for the rule access.

6. Concept of configuration rules

It is advisable to concentrate configuration knowledge in
one place instead of distributing such data over multiple
areas. With a rule-based approach, it seems possible to
establish a concept that limits most of the required changes
which occur over time to local changes of configuration
rules and avoids changing the code that uses the rules.

A. BIESWANGER ET AL.

543

544

Hardware | Rule Rule
object subsystem database for
model System B
Database facades
Rule
System Query System database for D%%EE]
rule facade S A T
Query Cage Access
Cage rule facade database D%%ED «— Rule
creation
- Packaging l
Packaging ~Query ..
unit nle fcade %
Rule
database for
System C

Hardware object model and rule database.

The new configuration functions were implemented on
the basis of a rule database concept that describes for
each potential FRU the object hierarchy that must be
built upon it and how these objects interconnect with
others.

The main idea of the configuration rule concept is to
model configuration rules as C++ classes. For example, a
configuration rule is used to create certain configuration
objects such as packaging units or functional units, to
describe a relationship between two or more of these
configuration objects, or to set the values for attributes
of such objects. Each C++ class then represents one
particular type of rule, and instances of a class represent
specific rules of the same type.

Configuration rule objects are used to create the
configuration objects of the object model, which represent
cages, cards, and chips, packaging units, and functional
units. They are also used to set up the functional units
within sensed packaging units, and they define the names
of these units. They describe which cards are allowed to
be plugged and specify attribute values of cards (e.g., the
memory size on the memory cards). In addition, they
describe how cards are internally structured and also
express certain relationships between different cards
(e.g., one card may require the presence of another).
The rule subsystem can be considered to be a factory
for configuration objects intended to make the hardware
object model design more stable against design changes
to the z900 hardware component structure.

The rule instances are made persistent and stored in an
object-oriented rule database that is machine-dependent.
All details of the database setup are hidden behind so-

A. BIESWANGER ET AL.

called database facades, and the hardware object model
code performs its processing by making calls to the
appropriate rule facade. This approach allows for a
database implementation which is independent and
decoupled from the rest of the framework so that the
database design itself can also be easily replaced.
Figure 5 shows the relationships among the object
model, the database facades, and the rule database.

The rule design distinguishes among the specification of
a rule (i.e., the design of a class as a representation of an
abstract rule), the instantiation of a rule object (i.e., the
instantiation of a concrete rule object in a database), and
the execution of a rule (which may result in the creation
of a configuration object or the setting of an object
attribute). There is also an explicit separation between
rule creation and run-time rule access: The creation of
rules and databases is part of the compile and build
process and is not performed in a customer environment.

The process of updating and deleting rules in the
database is mostly transparent for the object model
classes. In most cases, it is sufficient to create a new
instance of an appropriate, already existing rule class
when a new rule is required. In this case, only the rule
database must be updated; no code change for the facades
and for the callers of the facades is necessary. If, for
example, a new processor module is to be supported which
differs from a previous one in the number and types of
functional units and the values of some attributes, this
can be achieved by changing the rule database only.

The rule facades encapsulate database details (such as
opening and closing the database, transaction handling,
retrieving data from the database) and specific database
implementations.

Each facade class supports several rule types for queries
to the database. A rule type is a set of related methods
(e.g., for validation of the cage layout) and is offered by
a rule facade but may internally lead to several calls to
different rule objects from different classes. The database
and the rule classes are encapsulated. The facades are
the only rule interface for the framework code.

Unlike the rules, the facade objects are not persistent.
Instead, they are created dynamically for certain objects
(e.g., a specific facade object is created for each cage
object) and retrieve all rules from the database that apply
to this object by introducing rule dependency objects.
This avoids any additional searches for rules that may be
applicable, and the calling object does not have to know
how to retrieve the applicable rules from the database.
The facade provides an interface tailored for this object
and ensures that only valid rules are called.

7. Object communication services (OCS)

During the analysis and design phase for the framework
in 1997, several publicly available object broker services

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

were evaluated regarding their capability to serve as a
conceptual base for the object communication of the
framework. Among these were several implementations
of CORBA** [6], an application framework for real-time
applications, and also the Component Object Model
(COM**) [7] from Microsoft. We also looked at Sun
Microsystems Java** with its remote method invocation
capability, but concluded that it was not feasible at that
time because of our underlying performance requirements.
Building on the native OS/2 system object model (SOM)
was also rejected because of considerations of portability
to the cage controller environment. Directly reusing
CORBA implementations or COM was not possible on
the OS/2 platform because of license costs for CORBA
object request broker packages and the availability of
COM on only the Microsoft Windows™* platform. Also,
relying on an external vendor or supplier for a code
package which typically would largely have exceeded our
requirements and which would have created unnecessary
project dependencies was rejected.

Influenced by some of the publicly available concepts
and ideas from CORBA and from COM, these evaluations
finally resulted in the decision to build the functionally
required minimal set of object broker services ourselves.

Interfaces and components
The first key concept we chose to adapt and implement
was the interface concept as proposed by COM and other
broker services. Objects are given logically separate
interfaces that can be also aggregated into multiple
compositions separated from the object interfaces. The
main rationale for this was to have a means to separate
client and server class definitions and to avoid the
typically heavy code interdependencies which can
sometimes be found in object-oriented software projects.
The chosen interface approach avoids the propagation
of implementation-specific knowledge by separating the
class definition from the interface definition and using an
interface definition language (IDL) which connects client
and server and, at the same time, separates their code to
avoid creating dependencies between them. The original
class interface is typically subdivided into multiple subset
interfaces which have the form of abstract interface classes
and which define public methods and their signatures as
pure virtual functions, but do not define attributes and
nonpublic methods. The implementation for these
methods is provided by an implementation class, which
inherits from the abstract base class. A client is given
access only to the definition of the abstract base class;
thus, it has knowledge of the methods only, and is not
given any information about implementation details such
as attributes or physical structure of objects.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Address space A (client) Address space B (server)

IAM o IAM
egistry O
a4 /‘

* o
Interface k| [] Interface
H

proxy
[

Client
object

Server
Cross-
— [Stub] object
process

channel %
Component — Amponent
proxy ‘ O
7777777 >
Local client

object

OCS interface mechanism.

Furthermore, individual interfaces can be reused
in different class contexts or composed to interface
aggregations; this is what is usually described as an object
component concept. By using this approach, client
complexity can be reduced significantly, since a client
dealing with one particular interface to an object has no
need to know about the object’s other interfaces. Thus,
the client can handle totally different types of objects
with only the knowledge of how to ask the objects for the
specific subset of interfaces that are required and how to
use them.

Remote interface invocation

In distributed applications, objects typically exist in
multiple address spaces within a single system and
sometimes even on multiple remote systems. The selected
remote interface access for OCS assists objects to access
objects in other address spaces in a manner that is almost
totally transparent to the calling object. This means that
for a client object, the method invoked on the interface
of another object, which happens to exist in a different
address space, appears to be identical to a local method
invoked within the same address space.

The only visible implication of cross-process and cross-
system method invocation is within the initial creation of
interfaces and their registration. An object must have some
knowledge about where it might find its communication
partner: within its own address space via a library call, in
another process on the same processor, or even remotely
in another process on another machine.

Figure 6 shows the use of interfaces with OCS. Objects
are always accessed using a set of interfaces which are
aggregated to components. This is independent of whether

A. BIESWANGER ET AL.

545

546

Sender application CS Receiver application
Event \ 4. Marshal 6. Create Event
Data ,Svent event Data

5. Send data

"

2. Register

1

14

3. Send event

7. Execute
callback

1. Register callback,
specify event source

Event model control flow.

the access is in-process or across process boundaries. If

a process boundary is to be crossed, client proxies and
server stubs are transparently introduced. The proxy server
in the client’s address space behaves to its client exactly
like the real server, while a client stub propagates the
client’s request to its server in exactly the same way as

a local client. This also includes a synchronous server
behavior from the client’s point of view. The interfaces
between client and in-process object are exactly the same
as between client and proxy and between stub and target
object on the server side. OCS does not expose the way in
which messages are to be transported from one module to
another; this is performed via an underlying cross-process
channel implementation which is hidden from its users.

All OCS services are provided via a separate run-time
library called interface access methods (IAMs), which is
used on both sides of the address space boundary for
synchronization and transport services (Figure 6) and
which generates the interface proxies and stubs with the
help of appropriate object factory mechanisms.

In summary, with OCS a powerful object broker has been
designed which has proved to be a flexible base for the
overall framework. It has served as the glue between the
framework components, as shown in Figure 3. All of the
key object interfaces which required external access have
been built with OCS; to some extent this has also been
done for “internal” interfaces for reasons of architectural
separation (e.g., between CPC resources and the other
object categories).

The next two sections provide more details on the
use of OCS: the event-propagation mechanism for the
framework, internally as well as externally, and the
application interfaces, which were both built with OCS.

A. BIESWANGER ET AL.

8. Event model services

An important task of the support element is to monitor
the system’s hardware and software status and initiate
appropriate actions when a failure is detected. This
requires a mechanism for registration and distribution of
the status changes, which are reported via interrupts from
system hardware and firmware to the framework entities
and other support element applications. The framework
component providing this service is denoted as the event
model in the further context of this section. The design of
this component is based on the publisher/subscriber design
pattern, which is also known as the observer pattern [8].
It defines a one-to-many dependency among objects

and provides a mechanism which notifies and updates all
dependents automatically when a registered object state
changes. The roles of events, sources, and routers, which
are the key elements of the event model, are described in
the following and illustrated in Figure 7.

User-defined event class

Status information is represented as event objects. During
the processing of a state change of an object, these event
objects are automatically sent to every object which
previously showed its interest in this particular change
by issuing a registration request. The event object
contains all necessary information. A key problem in

any type of interprocess communication via a generic
transport mechanism is the marshaling of data to be
transported on the sender side and the reconstituting

of the object on the receiver side. The event model

thus requires the designer of an event to put this
knowledge into the implementation of a corresponding
event class that converts the data inside the event class
into a generic byte stream (marshaling) and converts it
back into the event object (de-marshaling).

Event source and router classes

With a generic transport mechanism in place, there is still
a twofold problem: how to distribute the event from the
source to any registered receiver, and what to do when
an event has been received.

For this purpose, the event source class was designed so
that each event is distributed to every registered receiver.
The event source object then uses the event-marshaling
method to extract the data before sending it to the
registered receivers via a generic transport mechanism.

The event router class allows each user to associate his
own function/class method with an event to be executed
when the corresponding event has been received.

Also, the event model allows for an m-to-n relationship
between event sources and routers. Since the registered
call-back methods are executed in the context of the event
source by default, an event queue class has been designed
to allow receiving applications to queue up incoming

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

events and dispatch the method call-back within the
receiver context. However, the use of an event queue
has been made optional for flexibility purposes.

9. Application interface and wrapper service
for legacy code

Application interface

The main task of the framework is to provide abstracted
information and functionality to other application
programs running within the support element
environment, as described in the Introduction. Therefore,
an application interface has been established which
provides access to the HOM objects.

The primary service required by applications is a query
function for the zSeries hardware configuration and
topology. It enables them to determine which hardware
components (packaging units and functional units) are
available, how these parts are connected, and how these
resources are configured to provide logical computing
resources (CPC resources). This type of information can
be gathered by traversing the object relationships, since
these were created to model the system structure.

In order to achieve this, the application interface of the
framework has not been implemented as an additional
software layer on top of the objects, but instead has been
designed to allow direct external access to individual
objects (as indicated in Figure 3). However, with
applications running in separate address spaces, remote
method invocation is required for this purpose and could
be achieved by externalizing functionality via the OCS
mechanisms. Since OCS also provides a powerful
component model, the visibility and accessibility of
methods could be provided in a controlled manner,
which is important for hiding implementation details
and internal functions.

Besides static configuration information, some
applications also require dynamic or transient status
information. Examples of this are the power status of a
hardware component, the functional status of a processing
unit (running/stopped), or the defect information of a
certain part. This category of information is queried
system-wide during each SE start-up, and all further
status changes are reported to the SE as interrupts and
distributed to the required objects using the event model
services.

From the application side, there are two ways to access
this information. The first one is analogous to the way
configuration information is provided. Since the status
information is stored as part of an object, it could be
made available through method invocations and
externalized via OCS. This mechanism is sufficient for
many simple applications that must check the hardware
status before triggering an action. For more complex

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Applications Applications Applications

3 5} 5}
= 3 3
2] < 2] < 2] <
Q H Q = Q H
el B o B ol B
Legacy Legacy
HOM HW HOM HW HOM
Cage access Cage access Cage
control interface control interface control
service IF I service IF service IF
Legacy system System System
control control control
structure structure structure
2900 predecessor 7900 Future releases
G6

The evolutionary approach.

applications with monitor-like tasks, however, this is
not appropriate. In order to avoid polling, this class of
applications requires status distribution following the
publisher/subscriber pattern. The event model services,
also used to distribute information inside HOM, offer this
capability to the applications: By registering for status
change events at the corresponding objects, the event
distribution flows seamlessly from HOM objects to
application objects, since the event model services are
based on (transparent cross-process) OCS technology.
The third important aspect covered by the application
interface is providing functionality of the z900 hardware
and firmware to application programs for method
invocation (e.g., powering off a slot for hot-plugging
or stopping a processor). Since HOM objects have
to represent their real-world counterparts, they are
responsible for providing such functionality as methods.
The object itself must have detailed internal knowledge
about its service as a representative so that it can provide
the necessary implementation to trigger the appropriate
functionality. This provides a means of offering abstract
interfaces to applications and concealing hardware-related
implementation details within the framework.

Wrapper service for legacy code

For reasons of risk mitigation and workload constraints,
the hardware object model was not delivered in a single
code release. Figure 8 indicates that a basic object model,
limited in size and functionality, was released with the
predecessor system to the z900 and deployed by a small
set of applications in order to establish the infrastructure
elements and to gain experience with the technology.

A. BIESWANGER ET AL.

547

548

Even with this preparation, it was not possible to adapt
the complete application set during the development cycle
of the zSeries 900. Thus, the focus for the z900 release
was to provide a fully functional object model with a
complete infrastructure including an application interface
and a limited set of adapted applications. A complete
transition with a wholly restructured or redesigned set
of applications utilizing the enhanced capabilities of the
object-oriented approach was set as a mid-term goal, and
a phase-in strategy was also established to release adapted
applications along that path.

To make progress with this evolutionary approach,
it was essential to enable the execution of applications
already using the new interfaces while still supporting
the majority of unchanged applications. A large set
of applications that had been created, expanded, and
maintained over the last ten years required support
with all system-specific information and function calls as
they had been provided in the predecessor systems. The
services and information now covered by the HOM were
provided by a variety of different interfaces in previous
systems. Each one was focused primarily on a single
specific aspect, such as providing static configuration
information or offering query support for specific dynamic
status informations. Generally, these functions were
implemented independently of one another; thus, several
data repositories with contents that sometimes overlapped
were created and maintained. A key benefit and strength
of the HOM design point was the centralizing of all this
information to a single source; keeping the legacy services
in parallel to serve unchanged legacy applications would
have been counterproductive. These legacy interfaces were
provided on top of the object model by using wrapping
mechanisms to map syntax and semantics of data and
functionality between the old “function-oriented”
interfaces and the object-oriented HOM approach.

Most of the creation of these mapping layers was rather
straightforward. One reason for this was that an important
step during the analysis phase of the HOM project was to
collect, understand, categorize, and abstract the existing
functions and interfaces.

The effort put into wrapping was a significant
percentage of the overall project work, but compared to
the effort of adapting all applications in a single step, it
was only marginal. However, it is important to note that
the need for wrappers will be eliminated over time, since
all new functions can be designed into HOM objects and
applications which use the objects directly. Along this
path, new or adapted applications will then take full
advantage of the capabilities of the object model; they
will be able to obtain access to information and functions
beyond the limited scope of the wrappers and accomplish
their tasks more easily.

A. BIESWANGER ET AL.

10. Conclusions and outlook

As a primary result of the hardware object model concept,
a framework has been built for the z900 that is clearly
much more than just a configuration framework. From a
functional perspective, a framework has been developed
that provides an excellent base for further integration of
the key “business logic” of the zSeries support element.
By building on the z900 version of the framework, the
configuration and status representation functionality of the
SE can easily be extended to include further functional
aspects, such as hardware and firmware initialization
support logic, as well as the back-end error handling

and service/repair control logic.

From a software engineering perspective, the
introduction of the hardware object model has become
a success story with the general availability of the z900.
The introduced methodologies have clearly improved the
design flexibility and have also resulted in a better overall
code quality that is already evident from the reduced
numbers of field problems. The evolutionary approach of
introducing the new design with a staged delivery of the
functions beginning with the preceding server has already
paid off by diminishing the risk of delaying the scheduled
availability of the z900 system.

From a software technology perspective, the framework
design has been a major undertaking which has used and
extended state-of-the-art methodologies. Altogether, it has
been a balanced mix of development unique to itself where
necessary, and the reuse of concepts and components
where possible. Since most “open standards” were in
their early stages and in flux at this time, their reuse has
not been an easy task during the concept phase of the
project. In the meantime, Java has clearly emerged as the
predominant object technology, and it is considered to be
the base for future developments in this area. Also, the use
of technology such as the Common Information Model
(CIM**),* and interfacing with an industry-standard CIM
object manager is under investigation for future projects.

Acknowledgments

Without the support of the Boeblingen and Endicott
development teams during the analysis, design, and
implementation of the framework, this project would

not have been successful. Special thanks and recognition
belong to Michael Johanssen for his contributions to the
OCS design, and to Jeff Conklin, Jill Lavin, and Nancy
Pellicciotti for the design of the CPC resource part of the
framework and their help to debug the overall object
model and make it work. We also thank Prof. Dr. Joachim
Goll, Andreas Maier, and Stephen Nichols for their
valuable comments.

4 The Common Information Model (CIM) is a standard for management of
computer systems developed by the Distributed Management Task Force (DMTF)
(see [8]).

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Management
Group, Sun Microsystems, Inc., Microsoft Corporation, or
Distributed Management Task Force.

References

1. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J.
Saalmueller, and F. Scholz, “System Control Structure of
the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
523-535 (2002, this issue).

2. B. D. Valentine, H. Weber, and J. D. Eggleston, “The
Alternate Support Element, a High-Availability Service
Console for the IBM eServer z900,” IBM J. Res. & Dev. 46,
No. 4/5, 559-566 (2002, this issue).

3. D.J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin,

S. G. Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick,
and C. H. Whitehead, “IBM eServer z900 I/O Subsystem,”
IBM J. Res. & Dev. 46, No. 4/5, 421-445 (2002, this issue).

4. IBM Corporation, z/Architecture Principles of Operation,
Order No. SA22-7832-00, December 2000; see http://www-
1.ibm.com/servers/eserver/zseries/zos/bkserv/r1pdf/zsys.html.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Publishing Co.,
Reading, MA, 1994.

6. The Common Object Request Broker: Architecture and
Specification, Revision 2.0, Object Management Group,
July 1995, updated July 1996; see http://www.omg.org/
technology/documents/vault. htm#CORBA_IIOP.

7. The Component Object Model Specification, Version 0.9,
Microsoft Corporation and Digital Equipment Corporation;
see http://www.microsoft.com/com/resources/comdocs.asp.

8. Distributed Management Task Force, Common Information
Model (CIM) Specification, Version 2.2, June 1999; see
http:/lwww.dmtf.org/standards/standard_cim.php.

Received August 27, 2001; accepted for publication
March 19, 2002

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

Andreas Bieswanger IBM Server Group,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(anbie@de.ibm.com). Mr. Bieswanger is an Advisory Engineer
working on zSeries service subsystem design. He studied
computer science at the Georg-Simon-Ohm-Fachhochschule
Nuernberg and graduated in 1994, receiving his Diplom-
Informatiker (F.H.) degree. He joined the IBM Development
Laboratory in Boeblingen that same year and began work

on the design and implementation in different areas of the
support element. His work currently focuses on design and
evaluation of advanced server concepts.

Franz Hardt IBM Server Group, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (hardt@de.ibm.com). Mr. Hardt is
an Advisory Engineer currently working on the IBM eServer
hardware management console. He graduated in 1988 from
the University of Mainz, Germany with an M.S. degree in
mathematics, joining IBM at the Boeblingen Development
Laboratory that same year. He worked on several projects in
the z/OS area and also on an object-oriented framework for
embedded controllers in manufacturing systems. Since 1997,
he has focused on design and implementation in the hardware
configuration of the support element. Mr. Hardt has been on
international assignment in the IBM Endicott, New York,
laboratory since 2001.

Astrid Kreissig IBM Server Group, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (kloss@us.ibm.com). Mrs. Kreissig
is an Advisory Engineer currently working on IBM eServer
service subsystem architecture. She graduated in 1987 from
the University of Aachen, Germany, with an M.S. degree

in computer science and joined IBM at the Boeblingen
Development Laboratory in 1988. She worked on a variety
of projects ranging from z/OS administration software to

an object-oriented framework for embedded controllers in
manufacturing stations. From 1993 to 1997, Mrs. Kreissig
coached several object-oriented projects, working closely with
the IBM OOTC. Between 1997 and 2000, she contributed

to the zSeries development as a software designer and a
tools team leader. Since 2000, Mrs. Kreissig has been on

international assignment in the IBM Austin, Texas, laboratory.

Harm Osterndorf IBM Server Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (osterndo@de.ibm.com). Mr.
Osterndorf is a Staff Engineer currently working on zSeries
service subsystem design. He studied computer science at the
Berufsakademie Stuttgart and graduated in 1990, receiving

a Diplom-Ingenieur (B.A.) degree. He joined IBM at the
Boeblingen Development Laboratory that same year and
worked on design and implementation of AIX software in the
area of banking applications and hardware until he joined the
S/390 service subsystem in 1994. Currently, Mr. Osterndorf
focuses on the transition of the service element code into an
object-oriented design in the area of base infrastructure and
components.

Gerhard Stark IBM Application Development and Services
Division, Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(gstark@de.ibm.com). Mr. Stark is a Software Development
Engineer currently working on development of the PvC
WebSphere portal server. In 1977 he joined IBM at the plant

A. BIESWANGER ET AL.

549

550

in Sindelfingen, Germany. From 1983 to 1985, Mr. Stark was
on international assignment in East Fishkill, New York. He
joined the Boeblingen Development Laboratory in 1986; from
1997 to 2000, he contributed to S/390 development.

Helmut Weber IBM Server Group, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (weberh@de.ibm.com). Dr. Weber
is a Senior Technical Staff Member currently working on IBM
eServer system design concepts. He graduated in 1979 from
the University of Marburg, Germany, with an M.S. degree

in mathematics and physics; he received a Ph.D. degree

in mathematics from the University of Marburg in 1982.

He joined IBM in 1984 at the Boeblingen Development
Laboratory, where he worked on operating system concepts
in the Advanced Technology Group. Between 1988 and 1999,
Dr. Weber worked on most support processor development
projects in the IBM Boeblingen and Endicott laboratories:
$/390 systems 9370 and 9371, S/390 CMOS G1 to G6, and
the zSeries z900 server. Since 1999, Dr. Weber has been on
international assignment, working in the IBM Poughkeepsie
laboratory.

A. BIESWANGER ET AL.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

