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In recent years the capacity of mainframe-
class servers has grown, and the quantity of
data they are required to handle has grown
with them. As a result, the existing S/390®

I/O architecture required modifications to
support an order of magnitude increase in
the bandwidth. In addition, new Internet
applications increased the demand for
improved latency. Adapters were needed
to support more users and a larger number
of connections to consolidate the external
network interfaces. The combination of all of
the above requirements presented a unique
challenge to server I/O subsystems. With
the introduction of the zSeriesTM comes an
enhanced version of a new I/O architecture for
the mainframe called queued direct I/O (QDIO).
The architecture was initially exploited for
Gigabit and Fast Ethernet adapters. More
recently the architecture was exploited
by the OSA-Express network adapter for
Asynchronous Transfer Mode (ATM) and high-
speed Token Ring connections, and it was
exploited by HiperSockets for internal LPAR-
to-LPAR connections. In each of these

features, the TCP/IP stack is changed to
tightly integrate the new I/O interface and
to offload key TCP/IP functions to hardware
facilities. For external communications, the
offloaded functions are performed by the OSA-
Express hardware microcode; for internal
communications, the offloaded functions are
performed in the zSeries Licensed Internal
Code (LIC). The result is a significant
improvement in both latency and bandwidth
for sockets-based messaging which is
transparent to the exploiting applications.

1. Introduction
The IBM G5 processor family introduced a new
networking I/O adapter, the Open Systems Adapter, or
OSA-Express, which provides direct connectivity between
the transmission control protocol/Internet protocol
(TCP/IP) stack running in the S/390* operating system
and an Ethernet (network) adapter card. This connection
bypasses most areas of the two key components in the path,
the I/O supervisor (IOS) component of the operating system
and the channel subsystem component of the system
assist processor (SAP). It represents a new approach for
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mainframe I/O architecture, providing a significant
performance improvement for sockets-based applications
running on the mainframe. It required a major
architectural extension to the ESA/390 architecture
called queued direct I/O (QDIO).

The zSeries* processor family extends the functionality
of the OSA with the next generation of the OSA-Express
product, including improved hardware and optimized
microcode. An excellent description of the OSA-Express
feature is provided in an IBM eServer zSeries 900 OSA-
Express overview [1].

The zSeries also introduces a second major
enhancement for sockets-based applications that run on
separate logical partitions (LPARs) residing in a single
zSeries mainframe called HiperSockets. Like OSA-
Express, HiperSockets is based on the QDIO architectural
facility, but with key enhancements which include CPU-
based data movements and adapter interruptions. The
main idea behind HiperSockets is to take advantage of the
close proximity of logical partitions that share the same
memory system in order to minimize latencies and to
exploit the fast data transfer capabilities of the zSeries
memory subsystem. HiperSockets is complementary to
OSA-Express: HiperSockets optimizes communications
among distributed applications on a single mainframe,
while OSA-Express is targeted to multisystem
communications. As with OSA-Express, an excellent
overview of HiperSockets is available [2].

References [1, 2] provide a basic overview of the
performance characteristics of the OSA-Express and
HiperSockets features and give a detailed view of the
externals and configuration options associated with each
feature. Taken separately, each feature has inherent
strengths and weaknesses; taken together, they
complement each other and provide a very robust set of
configuration options for the customer. These options are
demonstrated in the concluding section of the paper, in
which the advantage of combining these two features is
shown for a typical two-tiered server configuration.

The purpose of this paper is to describe in greater
detail than in [1, 2] how these two features are
implemented in the zSeries and, in particular, how they
are based on a common architectural framework. Their
strengths and weaknesses are then discussed from this
point of view.

Section 2 provides an overview of the QDIO data
queues and describes the key extensions to the
architecture for HiperSockets. The queue state machine,
adapter interruptions, and polling bytes are included in
the QDIO data queue description.

Section 3 discusses OSA-Express and focuses on the
offloading of functions from the Internet protocol (IP)
stack to the OSA adapter. This set of functions is defined
by the IP assist architecture. These enhancements provide

a significantly improved network attachment interface.
OSA-Express more completely exploits the capabilities of
the QDIO architecture to meet its requirements for a
high-bandwidth, low-overhead attachment to remote
systems. However, OSA-Express was not designed to
provide optimal communication between logical partitions.

Section 4 provides a description of the HiperSockets
hardware implementation, which was designed specifically
for the cross-LPAR environment. Careful consideration
was given to the placement of function within the various
Licensed Internal Code (millicode/microcode) components
in the hardware, and to the tradeoff among message
latency, throughput, and effects on the memory subsystem.
The development of the architecture was closely tied to
the implementation issues depicted in this section. In
particular, it will become clear that the objective of
exploiting the close proximity of LPARs is achieved
with the implementation of HiperSockets, but with
some obvious limitations on connectivity and scale.

The paper concludes with an application of OSA-
Express and HiperSockets to a two-tiered server
configuration. This provides an excellent example of how
the strengths of the two features complement each other,
resulting in advantages for the customer that exceed the
capabilities of each feature taken separately.

2. Queued direct I/O data queues
This section provides an overview of the basic concepts of
the QDIO data queues which form the interface between
the IP stack and both the OSA-Express physical adapter
and HiperSockets logical adapter. These two adapters rely
on the same basic architecture for the data queue formats
and queue state machines, but they differ in the design
of the interruption mechanism. OSA-Express relies on a
combination of queue state polling and intelligent-stack-
controlled program-controlled interruptions (PCIs).
Program-controlled interruptions are described in [3].
The HiperSockets implementation had restrictions that
made PCI interruptions difficult to support, so a new
function known as adapter interruptions was defined.
It is described below. In the following, the IP stack
is referred to as the program and the QDIO adapter
as the adapter.

The central component of the QDIO interface is a
collection of data queue structures located in main
storage. Each collection of data queues is associated with
a particular adapter and consists of one QDIO input
queue and four QDIO output queues. The input queue
is used to receive data from the adapter, and the output
queues are used to send data to the adapter. Typically,
the data placed into such input queues originates from an
I/O device or network of devices to which the adapter is
connected. Correspondingly, when QDIO output queues
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are provided, the program can transmit data directly to
the adapter by placing data into the appropriate output
queues. Depending on the adapter, the data placed into
such output queues may be used internally by the adapter
or may be transmitted to one or more I/O devices to
which the adapter is connected.

For both QDIO input and output queues, main storage
is used as the medium by which data is exchanged
between the program and the adapter. Additionally,
these queues provide the ability for the program and the
adapter to communicate directly with each other in an
asynchronous manner which is both predictable and
efficient. This communication does not require the
services of a centralized controlling mechanism, such as an
operating system input/output supervisor, and the resulting
overhead such a control mechanism implies. Both input
and output queues are constructed in main storage by the
program and are initialized and activated at the QDIO
adapter as described below. Each queue consists
of multiple separate data structures, called queue
components, which collectively define the characteristics of
the queue and provide the necessary controls to allow the
exchange of data between the program and the adapter.
The associated data structures, once allocated, are fixed
in memory for the life of the queue. These locations are
communicated to the associated adapter and allow the
adapter to pre-build the direct memory access (DMA)
structures necessary to extract the queue data structures
from main storage.

Queue state machine and exchanging data
The IP stack and the QDIO adapter use a state-change-
signaling protocol in order to facilitate the exchange of
data. This protocol is applied to each of the 128 input
and output data buffers1 associated with each of the active
input and output queues. This section describes the logic
associated with the queue state machine.

Both input and output buffers are managed and
exchanged between the program and the adapter by
placing the buffer into one of the following buffer states.
Additionally, each data buffer also has an ownership state
which identifies either the program or the adapter as the
controlling element of the buffer for the period of time
that element is responsible for managing and processing
the buffer. The initial ownership state of all input and
output buffers is assigned to the program. Once the
ownership state is changed from the program to the
adapter, the program can no longer make modifications to
any of the queue structures associated with the specific
buffer. The same holds true for the adapter once it
transfers ownership back to the program.

QDIO input queue data exchange
The input queue is used by the program to receive data
from the adapter or from devices controlled by the
adapter. The state machine for the input queue is shown
in Figure 1.

The program initially allocates data buffers in main
storage and places their addresses in the buffer address
list associated with each buffer. Each buffer address list
normally contains 16 4KB buffer addresses. The program
then transfers ownership of the buffers assigned to the
address lists by changing the ownership state to the
adapter-owned state of input buffer empty. As the QDIO
adapter receives data packets from the associated I/O
device, it “blocks” these packets into the main storage
locations extracted from the input buffers that are in the
input buffer empty state. Once all of the buffer space
associated with a specific buffer has been used or a
specific event occurs (i.e., the I/O device goes idle or the
timer expires), the adapter transfers ownership back to the
program by changing the state from input buffer empty to
input buffer primed.

At this point, the adapter may also generate a program-
controlled interruption (PCI) or an adapter interruption
to prompt the program to interrogate the input queues.

The program examines the state of the input buffer lists
associated with the QDIO input queue and processes the
data in each input buffer list that is in the input buffer
primed state. Upon completion of input buffer processing,
the program may change the state of the buffer to input
buffer empty in order to make the buffer available for
reuse by the adapter for subsequent input data from the
attached I/O device.1 Buffer: A portion of storage used to hold input or output data temporarily.

Figure 1

Input buffer state diagram.
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If the adapter is receiving data from the I/O device and
no input buffers are in the input buffer empty state, the
adapter queues the packet. The adapter periodically
interrogates the program input queue to check for
available buffers. These steps are repeated as necessary
for subsequent exchanges of input data.

QDIO output queues data exchange
The output queues are used by the program to send data
to the adapter or to devices controlled by the adapter.
The state machine for output queues is shown in Figure 2.

The program places output data in one or more output
buffers, which are located in main storage. The placing of
the data in the output queue does not require that the
data be copied; instead, the address list associated with a
buffer that is in either the output buffer empty state or
output buffer not initialized state is updated to point to
the data location. Once the address lists are updated, the
associated buffer is placed in the output buffer primed
state. To reduce processing, the program uses a signal
adapter (SIGA) reduction algorithm to determine whether
a SIGA instruction should be issued in order to signal
the adapter that one or more output queues now have
data to be transmitted to the I/O device attached to
the adapter.

The adapter transmits to the attached I/O device the
data in all of the buffers that are in the output buffer
primed state. The program and the adapter each cycle
sequentially through the complete set of buffer address
lists in round-robin fashion. The program maintains a
pointer to its current buffer being filled or to be filled
with data to be transmitted, and the adapter maintains a

pointer to its current buffer with data being received or
to be transmitted.

After processing all of the output buffer-primed entries
in the queue that were in the outbound queue at the time
the SIGA instruction was issued, the adapter interrogates
the program output queue again to check for any new
buffers in the output buffer primed state. This action
allows the program to continue adding entries to the
output queue without having to execute the SIGA
instruction for each entry placed in the output buffer
primed state.

Upon completion of transmission, the adapter changes
the state of each processed buffer to the output buffer
empty state in order to make the buffer available for
reuse by the program. These steps are repeated as
necessary for subsequent exchanges of output data.

Special considerations for OSA-Express and HiperSockets
adapters
Both OSA-Express and HiperSockets adapters use the
QDIO queues for both IP unicast and IP multicast
queues. (See Reference [4] for a definition of IP unicast
and IP multicast queues.)

For queues associated with the OSA-Express adapter
or for HiperSockets IP multicast queues, the adapter
asynchronously transmits the data in each output buffer
that is in the output buffer primed state, from the
adapter’s current buffer to the first buffer that is not
in the output buffer primed state. Initiative is generally
maintained for OSA-Express adapters by the adapter
itself, and the SIGA instruction is needed only if errors
occur that cause the associated subchannel to leave the
subchannel active state. However, for HiperSockets IP
multicast queues, a SIGA instruction must be issued after
each output buffer or group of output buffers is placed
in the output buffer primed state. This is because the
processing for IP multicast queues for HiperSockets is
performed by the system assist processor (SAP), which
is also used for standard I/O processing and is not
continuously monitoring the QDIO data queues.

For HiperSockets IP unicast queues, the QDIO adapter
synchronously transmits the data in the adapter’s current
buffer, which is in the output buffer primed state. As
with HiperSockets IP multicast queues, the initiative
to the HiperSockets adapter is generated by the SIGA
instruction, which must be issued for each output buffer.
In this case, the adapter is logically embedded in the CPU
millicode that performs the data movement as part of
the instruction execution. When the SIGA instruction is
completed, the entire contents of the output buffer have
been moved to the target input buffers, and the data
transmission is complete.

For both IP unicast and IP multicast queues, the
HiperSockets data movements are performed using the

Figure 2

Output buffer state diagram.
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data-move hardware in the zSeries memory subsystem.
This is the same hardware that is used for move character
long or move page instructions executed within a single
logical partition. Therefore, with HiperSockets the data-
move performance that exists within a logical partition
has been extended for data moves between partitions.

Virtualization
QDIO also supports virtualization, in which the virtual
machine (VM) hypervisor provides translation between
guest memory and the actual host memory for
communicating with the adapter. Through use of the signal
adapter synchronization (SIGA SYNC) option, the state
information that is shadowed by VM is reflected back
to the guest to ensure consistent operation with total
synchronization between the guest and the adapter. There
is some performance degradation as the number of guests
increases, but the value is the ability to share the adapter
across a number of guest systems. These could be Linux**
guests or z/OS* guests, or a combination of the two.

Adapter interruptions and polling bytes
The original architecture for QDIO data queues provided
for standard PCI interruptions to be generated by the
adapter after data was placed into input queues. The PCI
interruptions were generated for the QDIO subchannel
that it associated with the data queues and were processed
by the operating system as standard I/O interruptions. To
lower the number of PCIs which had to be issued by
the adapter, the input buffer processing state was added to
the architecture. When an input buffer primed state was
detected by the program, the state was changed to the
input buffer processing state. The program then processed
the inbound data. Once the program had completed
processing the inbound data, the program changed the
state to either input buffer not initialized or input buffer
empty. The program then made one more check for any
new entries in the input primed state. The adapter relied
on the input processing state to determine whether the
program was going to interrogate the input queues at
least one more time, so that a PCI was not needed.

With the introduction of HiperSockets, a new class of
I/O interruptions has been defined that is not associated
with any subchannel. Instead, the interruption is associated
with the collection of configured adapters of a particular
type containing polling bytes that identify a particular
QDIO data queue. Thus, the information previously
provided by the interruption parameter is now located
in a main storage location that can be periodically tested,
or polled, by the operating system.

A separate device state change (DSC) indicator located
in program storage identifies the specific combination
of adapter and device with which the interruption is
associated. The cause of the interruption and the intended

program action when a DSC indicator is made active are
dependent on the adapter type.

The adapter interruption mechanism is a combination of
polling by the OS and interruption operations generated
by the machine Licensed Internal Code (LIC). Associated
with the adapter interruption facility is an adapter global
summary (GS) indicator that can be tested by means of a
test vector summary (TVS) instruction. The adapter GS
indicator is set whenever a DSC indicator is set for any
device. The adapter GS indicator is located in the
hardware system area (HSA), with one indicator defined
per logical partition.

A second summary indicator, the adapter local summary
(LS) indicator, is also associated with each device. The
adapter LS indicator is located in program storage and
is set whenever a DSC indicator is set for an associated
device. The OS may define multiple adapter LS indicators,
but a device is associated with at most one adapter LS
indicator.

Setting a DSC indicator initiates the adapter
interruption facility to set the adapter LS indicator,
to set the adapter GS indicator, and to raise an adapter
interruption, in that order. However, the actual generation
of an adapter interruption is conditionally based on a
timing algorithm. The adapter interruption facility tracks
the time interval from the time at which the adapter GS
indicator was changed from the not-active state to the
active state and has not yet been reset to the not-active
state. If this time interval exceeds a program-specified
time delay value and a DSC indicator is set for some
device, an adapter interruption is generated. Otherwise,
the adapter interruption is suppressed.

The collection of controls associated with adapter
interruptions is depicted in Figure 3. A collection of
input queues are shown, along with their associated DSC
indicators. These are arranged in two groups, with each
group having an LS indicator. The single GS indicator is
shown in the hardware system area, together with the
current time stamp and time delay value.

In Figure 3, the adapter has written in step 0 to the
rightmost input queue and changed its queue state to
input buffer primed. The adapter stores a nonzero value
in the associated DSC indicator in step 1 and sets the LS
indicator in step 2. In step 3 the GS indicator is set, and
then the time values are interrogated in step 4. If the
difference between the current time and the time stamp is
less than the time delay value, no interrupt is generated. It
is assumed that the operating system is being responsive
in its testing of the GS byte. However, if the difference is
greater than the time delay value, an adapter interruption
is raised in step 5.

The adapter interruption facility is enabled by an
explicit action of the operating system and remains active
until an I/O system reset or image reset occurs. Once the
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facility is enabled, the time delay value is set by means of
the set channel subsystem characteristics fast command.

A significant aspect of the design of adapter
interruptions is the balance between system overhead
and system responsiveness. An actively running program
can detect state changes in a responsive manner through
polling alone, thereby avoiding the system disruption
caused by an interruption. However, periods of intense
workload activity may create long suspension intervals
where polling is less effective and interruptions are
required to achieve the desired system responsiveness to
state changes. Adapter interruptions, designed with this
careful balance in mind, give maximum flexibility to the
QDIO device driver to determine the optimal balance and
to adjust the mechanism according to current workload
needs. This self-adjusting quality of the completion
process is among the more innovative aspects of the
HiperSockets design.

3. IP stack changes and OSA-Express
OSA-Express exploits the QDIO data queues to provide
a highly optimized interface for transporting data to
and from S/390 storage. The optimizations are tightly
integrated into the TCP/IP protocol stack and provide
the following:

1. Improved dispatching of network tasks. Pre-allocation of
system request blocks (SRBs) coupled with use of the
perform lock operation (PLO) instruction minimizes the
scheduling and dispatch of network I/O tasks. This
design allows QDIO to reduce the number of task
switches necessary to accept new work and to

intelligently dispatch the correct number of requests
based on the number of processors and the workload.

2. More efficient storage management. Extensions to the
communications storage manager (CSM) in support
of QDIO and HiperSockets enable the elimination of
extraneous data moves and the optimization of I/O
storage pools. One key extension is a buffer expansion
feature that allows faster reaction to increased traffic.

3. Optimized I/O supervisor interfaces. A dynamic interface
has been introduced to vary the number of PCI
interruptions on the basis of current traffic flow, resulting
in a reduction of I/O interruptions without sacrificing
latency. By communicating with the adapter more
directly through the dynamic interface, the SAP is
avoided for channel command word (CCW) translation,
direct memory access (DMA) is exploited, and, in most
cases, interrupts are avoided. This further improves
system performance by reducing demands on the SAP
and thereby freeing up additional SAP cycles for other
forms of I/O processing.

IP assist architecture
The IP assist (IPA) architecture was developed to enable
the dynamic sharing of a single local area network (LAN)
adapter among multiple host operating systems in the
S/390 LPAR environment. It provides for a programmatic
way of configuring an integrated networking adapter to
the owning stacks, reducing external configuration, and
providing for a single point of configuration in a multiply
partitioned environment. It also provides a way of
configuring offloaded functions from the stack to the
adapter on a function-by-function base across a family
of adapters.

IP assist functions provided include the following:

● Address resolution protocol (ARP) offload. ARP is a
TCP/IP protocol used to convert an IP address into a
physical address, such as an Ethernet address. Previously
resolved addresses are maintained in a cache known
as the ARP cache. New ARP requests test the cache
before performing the full translation. ARP offload
reduces the host cycles involved in managing the ARP
cache. OSA-Express responds to ARP requests received
from the network, as well as issuing ARP requests on
behalf of the TCP/IP stack. The OSA-Express adapter
maintains the entire ARP cache in the adapter memory.
Functions such as query ARP cache and purge ARP
cache are available to the host TCP/IP stack for
manipulating the OSA-Express ARP cache.

● Media access control (MAC) handling. A MAC is a
hardware address that uniquely identifies each node
of a local area network. Previous S/390 LAN gateway
interfaces required the channel subsystem (CS) stack to
build the entire LAN header prior to transmission to the

Figure 3
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gateway. OSA-Express constructs the appropriate MAC
header on behalf of the TCP/IP stack. This does not
require the host to identify the LAN interface (i.e.,
Ethernet, Token Ring, ATM, etc.) and it can just
send IP datagrams to the OSA-Express adapter.

● IP filtering. Prior to inclusion of this support, all network
traffic would always be passed to the stack regardless
of the network protocol that generated the packet
(IPX, DecNet, etc.). OSA-Express now filters out all
unsupported protocols. Broadcast and multicast packets
are also filtered unless the stack disables these filters.

● IP addressing. Dynamic assignment (e.g., addition/deletion
of IP addresses) provides base support for the virtual
IP address (VIPA) takeover during recovery of failed
applications. The stack in which the failure occurred
deletes the address, and the recovery stack adds the
address, all without human intervention. This enables
the VIPA address of a failed application to “follow”
the application to the recovery stack. This function is
exploited by the virtual IP address takeover function
in z/OS TCP/IP for high availability/recovery support.

● Query/set IP assists. This function provides an interface
to the TCP/IP stack so that it can query the OSA-
Express adapter to determine which TCP/IP offload
assists are supported. Once the specific offload assists
have been determined, the TCP/IP stack can then “set”
the offload assists which are required for the specific
stack. This interface allows the stack to enable new
hardware features when stack support is available. It
also enables the stacks to use different levels of OSA-
Express hardware in the field.

Performance considerations
One of the main advantages of the QDIO architecture
with respect to the existing S/390 I/O architecture is its
simplification of the data transfer operation process, during
both initiation and completion. Rather than constructing
channel programs in which CCWs point to data buffers
that consist of both TCP/IP headers and data, QDIO uses
data buffers that are directly addressable by the adapter
with access to the shared state machine. Use of the signal
adapter operation replaces the start subchannel operation,
which bypasses the system assist processor (SAP) for
initiating the operation. When the operation is complete,
rather than a normal I/O operation, a program-controlled
interruption is provided. However, through some
additional algorithms, the number of SIGA instructions
and program-controlled interruptions can be reduced
dramatically. This results in almost no additional overhead
at high data transfer rates, with minimal SAP utilization
compared with today’s traditional channel-attached
devices.

OSA-Express provides some advantage when the source
and destination IP addresses reside in separate logical

partitions on the same z900 processor. In this case, the
adapter recognizes that the target IP address is local to
the processor and moves the data between the two logical
partitions via its local storage buffers. This avoids sending
the data on the network itself, but still requires that the
data move from main storage to adapter storage and back
again. The data path is not as optimal as it would be if
the memory subsystem were used for performing the data
transfer. HiperSockets directly addresses this weakness
in OSA-Express.

4. HiperSockets
HiperSockets (also referred to as internal queued direct
I/O, or iQDIO) provides an intra-LPAR communication
fabric for the zSeries that allows efficient and low-latency
message passing among logically distributed server images.
This has been realized by designing a virtual iQDIO
transport layer underlying the software TCP/IP stack
which enables memory-to-memory message delivery across
logical partitions in the zSeries server. Key to this design
point is that it does not introduce any application changes
in order to gain benefit, and therefore is transparent to
applications at the Sockets interface. Further, in order
to be exploited by Linux for zSeries without requiring
modifications to the TCP/IP stack within the Linux kernel,
exploitation of the virtual iQDIO transport by Linux is
being insulated to the device driver layer underneath
the TCP/IP stack.

Implementation considerations
The virtual iQDIO transport layer has been realized by
integrating the QDIO channel and the main control unit
functions into the system microcode without requiring a
network adapter. The channel and the main control unit
functions are emulated by the system assist processor
(SAP). In order to keep the development effort for
the entire project as small as possible, HiperSockets uses
the same multipath channel (MPC) and IP assist (IPA)
communication architecture for the TCP/IP stack
configuration as is used by OSA-Express. (See the
previous section for a description of the IP assist
architecture.) To the operating system, the emulated
control unit appears just like another model of a
regular QDIO networking control unit because the
CCW interface was kept very similar. Thus, the operating
system changes to support HiperSockets are kept to
a minimum.

The new input queued direct (IQD) channel has been
defined to integrate this virtual adapter into the system.
The CCW interface for the network configuration and
management (MPC and IPA) and the IP multicast
function are executed by the main control unit code
on the system assist processor. Hardware system area
(HSA) space has been reserved for holding the IP
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lookup tables that are maintained by this control
unit code.

For optimization of latency, the performance-critical
data transfer between operating system images for the
message-passing functionality has been implemented in
millicode. That code executes synchronously on the
processor that initiates the network traffic using the
SIGA instruction. Since the data transfer is executed
synchronously on the issuing processor, the number
of executed instructions must be kept small for this
implementation. Therefore, the data transfer is limited to
a maximum of 64 KB per SIGA instruction, and all data
associated with a single SIGA instruction must be directed
toward the same target operating system image. That way
only IP unicast operations are executed synchronously on
the CP, while IP multicast operations are asynchronously
executed on the SAP. The SIGA millicode uses the next-
hop IP address in the header of the first data segment to
look up the target operating system using the IP lookup
tables mentioned above.

For latency optimization, the interruption of the target
operating system image at the end of the message-
passing data transfer was changed from subchannel-
based program-controlled interrupts (PCIs) to adapter
interruptions. As described in an earlier section, the
design of the adapter interruptions permits the operating
system to suppress the interruptions if it is successfully
servicing its inbound queues.

The MPC architecture requires two subchannels
(control paths) that can be used to flow the MPC and IPA
protocol between operating system and control unit. One
subchannel is used for streaming control data from the
operating system to the control unit (write path), while

the other subchannel is used for the opposite direction
(read path). On the read path, a long-running channel
program is set up by the operating system. This way, the
control unit can send the response over the read path in
reply to a prior request sent by the program over the write
path. Also, the control unit can send requests to the
program on its own initiative, such as termination of
connections. The MPC and IPA protocols are used to
define lower-level data link control (DLC) interfaces
which may be used by multiple TCP/IP connections. Along
with the two control paths, one to eight subchannels can
be defined by the MPC protocol for data connections
(data paths or data devices). The data paths are used
to flow the TCP/IP protocol over the QDIO transport
mechanism. Thus, the data devices represent QDIO queues
defined by the operating system and residing in the program
storage. Each data device is dynamically assigned and
represents a TCP/IP stack.

The group of two control subchannels and one to eight
data subchannels is called an MPC group; thus, a single
MPC group can support one to eight TCP/IP stacks.

Depending on the configuration, a maximum number
of 1024 . . . 2457 TCP/IP stacks can be supported
system-wide, as the maximum number of HiperSockets
subchannels is limited to 3072. This was done to limit
the needed HSA resources to the necessary maximum.

Four HiperSockets channel path identifiers, or CHPIDs
(type “IQD”), can be defined to permit the configuration
of four independent subnets. Logical partitions not sharing
the same IQD CHPID cannot communicate with each
other using the HiperSockets interface. This was done to
fulfill a customer requirement to allow one set of logical
partitions (LPARs) to communicate with one another
but disallow communication with another set of LPARs
resident on a different IQD CHPID. This is similar to the
concept of virtual LANs. In this case, two CHPIDs must
be defined, one per HiperSockets LAN, with each logical
partition set defined in the associated CHPID candidate
lists.

Additionally, the maximum frame size (MFS) can be
defined along with an IQD CHPID. The MFS can be set
to one of four values: 16 KB, 24 KB, 40 KB, or 64 KB.
These values are reflected back to the operating system by
the control unit code during the MPC initialization. The
outbound data buffer associated with a SIGA instruction
must not exceed that MFS. Inbound data buffers for all
QDIO queues on the same CHPID can be optimized for
that MFS, thereby saving storage capacity. This means
that outbound data buffers cannot be larger than
available inbound buffers if the programs obey these
rules; otherwise, an error is returned to the sending
program.

The IQD channel can be configured on and off by
the service element. Since there is no physical adapter

Figure 4
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associated with the virtual adapter, the IQD channel
cannot be set in service mode for maintenance. Licensed
Internal Code (millicode/microcode) is maintained using
the already existing system features for LIC maintenance
(LIC concurrent/disruptive patch).

Performance considerations
The whitepaper cited in Footnote 2 describes the
performance capabilities of HiperSockets. It is evident
that the design goal of exploiting the capabilities of the
memory subsystem of the zSeries to gain bandwidth and
reduce latency for IP data transfers between system
images on a single processor has been achieved.
HiperSockets provides a significant improvement
over previous communication paths, as well as over
OSA-Express. However, HiperSockets is limited to
communications within the processor itself and can
achieve the higher performance levels only when both the
source and target images are executing as first-level guests.
The same performance cannot be achieved for images
running as VM guests.

The next section shows how the strengths of OSA-
Express and HiperSockets complement each other.

5. Configuration example: Two-tiered servers
Figure 4 depicts a very common server configuration that
is referred to as a two-tiered server. In this configuration,
a number of application servers are running on separate
UNIX** servers. In a typical example, the application
servers are connected to client machines by a network
using TCP/IP protocols. (However, other types of local
connection protocols are also used.) The application
servers are connected to a back-end database server (in
this case, a G5 processor). The application servers are
connected to the G5 via a LAN connection, and the G5
is connected to the LAN with a previous-generation OSA-
Express adapter.

Figure 5 shows the same logical configuration as it
might be deployed on a zSeries processor running LPAR.
In this case, HiperSockets and the newer OSA-Express
adapter are both used to achieve what is now a physical
one-tiered server configuration. The application servers,
running on Linux for zSeries, are running inside logical
partitions. Each represents what had previously run in
a standalone UNIX server. The database server is also
running in a logical partition.

The application servers communicate with the database
server using HiperSockets connections. This communication
path is a significant improvement over that previously
available with the LAN connection.

The application servers are connected to the Ethernet

via the OSA-Express adapter, which now carries the
combined data load that was previously supported by the
collection of Ethernet adapters on the UNIX servers.

This ability to collapse a physical two-tiered structure
into a single one-tiered structure while maintaining the
same logical two-tiered application structure provides
better performance at less cost than the physical
two-tiered server offered. It also shows the inherent
strengths of HiperSockets and OSA-Express and their
complementary nature. Additionally, they are both
achieved through the exploitation of a single common
architecture, QDIO.

6. Summary
This paper has described two new features for network
attachments in the zSeries: HiperSockets and OSA-
Express. Based on the highly unique QDIO architecture,
these features continue the evolution of the mainframe
capabilities for network communications. Moreover,
these two features work in concert to provide significant
performance improvements and cost savings for the
customer. The example illustrated in the previous section
shows how these new capabilities can be applied to actual
customer situations. The ability to collapse a physical two-
tiered server into a single processor provides tremendous
savings in cost and complexity in the hardware
infrastructure while preserving the customer application
suite unchanged. At the same time, the ability to leverage
the close proximity of the logical partitions running in the
zSeries through HiperSockets significantly improves the
performance of the critical message path between the
application servers and the database server. Because of
these capabilities, the zSeries is unique in the industry.

2 Chris Panetta and Donna Von Dehsen, HiperSockets Performance (web
whitepaper), 2002.

Figure 5
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