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As computer systems become more complex,
the use of embedded controllers for initializing
and maintaining system operation is becoming
increasingly prevalent. In the IBM eServer
2900, a new control approach was introduced.
This paper discusses why its introduction was
necessary and outlines its associated, key
technological and economic innovations. In
particular, the following topics are addressed:
service subsystem topology, hardware
elements for performing system control,
hardware abstraction, object-oriented
framework for control, and inter-networking
of system control microprocessors.

1. Introduction

Traditionally, during the power-on phase of computer
systems, CPUs start to execute instructions and initialize
the systems into a state from which the operating system
can be loaded. In addition to executing user applications,
the operating system also runs applications that are
needed to keep the system functioning. These applications,
also referred to as system-control tasks, are responsible
for monitoring system integrity and process any errors
that might occur during operation. Usually, there is

only one operating-system image controlling all aspects
of system management. This type of system control is

typically referred to as in-band control or in-band system
management.

The exponential growth of computing requirements has
resulted in the creation of larger, more complex, systems.
Power-on and initialization of these large systems up to
the point at which the operating system is fully available
can no longer rely only on the system CPU. Instead,
systems incorporate “helpers” (e.g., embedded controllers)
that facilitate the initialization of the system at power-on.
However, during power-on of these complex systems,
critical errors can occur, which would prevent loading
the host operating system. In the initial case in which no
operating system is available, a mechanism is required for
reporting errors and performing system management
functions. Furthermore, given the diversity of user
applications, it is no longer true that one operating-system
image controls the entire system. At the high end, today’s
computer systems are required to run multiple different
operating systems on the same hardware. A single instance
of an operating system is no longer in full control of the
underlying hardware. As a result, a system-control task
running on an operating system which is not under
exclusive control of the underlying hardware can no longer
adequately perform its duties. For example, what would
happen if a control task, in the course of recovering from
an I/O error, were to decide to reset the disk subsystem?
Data integrity might no longer be guaranteed for
applications running on another operating system on the
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same hardware. As a solution, system-control operations
of a large system are moved away from the operating
systems and are now integrated into the computing
platform at places where full control over the system
remains possible. System control is therefore increasingly
delegated to a set of other “little helpers” in the system
outside the scope of the operating systems. This method
of host OS-independent system management is often
referred to as out-of-band control, or out-of-band system
management.

Figure 1 shows the software and hardware structure of
such a system. The virtualization layer is the part of the
system that has full control of its underlying hardware.
This layer presents an abstract view of the underlying
hardware to the operating systems. The embodiments
of this abstract view are determined by out-of-band
configuration tasks. All out-of-band operations are
visualized in the box labeled System control subsystem.

Figure 2 shows a high-level view of an IBM eServer
2900, together with its associated control structure.

The system depicted to the left is composed of

“cages.” A cage can be a central electronic complex
(CEC) cage or an I/O cage. The cage at the top is a CEC
cage; it contains a set of CPUs forming an SMP system
together with its cache structure, memory and cache
control, and the memory subsystem. In addition, the CEC
cage contains an I/O hub infrastructure. A system may
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contain one or more such cages. The cage in the center
is an I/O cage, which facilitates I/O fan-out by linking the
I/O cage to the CEC cage on one side and by providing
bus bridges for the I/O adapters on the other side.

In addition to the functional structure, the figure also
shows a system-control infrastructure that is orthogonal to
the functional structure. The system-control structure is
divided into management domains or management levels:

e Management Level 1 domain (MLI): Actuators and
sensors used to perform node-control operations.

e Management Level 2 domain (ML2): Set of functions
that is required to control a node:

e Limited to strict intra-node scope.

* Not aware of anything about the existence of a
neighbor node.

* Required to maintain steady-state operation of
the node.

* Does not maintain persistent state information.

o Management Level 3 domain (ML3): Set of functions
that is required to manage a system (local to the
system):

* Controls a system.
e Is the service focal point for the system being
controlled.
* Aggregates multiple nodes to form a system.
* Exports manageability to management consoles.
* Implements the firewall between corporate
intranet and private service network.
 Facilitates persistency for
— Firmware code loads.
— Configuration data.
— Capturing of error data.

e Management Level 4 domain (ML4): Set of functions
that can manage multiple systems; can be located
apart from the system to be controlled.

Each CEC or I/O cage contains two embedded controllers
called cage controllers (CCs), which interface with all of
the logic in the corresponding cage. Two controllers are
used for each cage to avoid any single point of failure.
The controllers operate in master/slave configuration. At
any given time, one controller performs the master role
while the other controller operates in standby mode, ready
to take over the master’s responsibilities if the master
fails. As a master, the CC performs the following
functions out of the ML2 domain:

1. At power-on, determine configuration by reading the
vital product data (VPD) from the inter-integrated
circuit (I’C)-attached serial electrically erasable
programmable read-only memory (SEEPROM),
including
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* Cage type (CEC cage, I/O cage, etc.).

* Number and type of components present in the cage.

 Interconnect topology.

2. Initialize the functional hardware to a predetermined
state by scanning start-up patterns into the chained-up
latches using JTAG (Joint Test Association Group,
IEEE 1149.1 boundary scan standard) or other shift
interfaces.

3. Initiate and control self-tests of the logic circuitry.

4. At run-time, monitor and control operating
environmental conditions such as voltage levels,
temperature, and fan speed, and report any error
conditions to system-management entities. In case of
critical conditions, directly initiate preventive measures
(e.g., emergency power-off) in order to prevent safety
hazards.

Hardware
System | management console

CPU CPU CPU CPU &

NN /S

e~ 2__ &

Lo

p= ﬁ Private

L c service
8¢ | network

control |

1

/o ... /0 CEC
hub hub  cage

/ | \ / / ||| Support
element

/A

Bridge- - - Bridge E
— 7

Cage ||| Support

" control —|element

I/O adapters- - -

1/0 devices cage

Bridge- - - Bridge g

System

(=
(]

System

ML4
domain

Drive Node control System control ~ Management
actuators Intra-node Single-system consoles
and sensors scope scope Multisystem
(passive) Active, Local, part scope
embedded of system Can be located

control remotely

System control structure.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

CEC cage 1/0 cage
Shift I/F, Shift I/F
800 KB/s
PU /O
/0 1/0
1/0 /0
~ 500 1/0
g =
-4
Parallel Eﬂ)
port 3 X
I — <
500 KB/s
Support | 3
element Controller Controller “L.':
X
<t
Network 2 MB/s

Control structure of previous systems.

In order to perform these functions, the embedded
controller typically uses the following interfaces for intra-
cage control:

o I’C bus.

e GPIO (general-purpose I/O, sometimes referred to as
digital I/O).

e UART (universal asynchronous receiver/transmitter,
usually referred to as serial port).

¢ JTAG (Joint Test Association Group, IEEE 1149.1
boundary scan standard).

In addition to its intra-cage control scope, the cage
controller interfaces with a higher-level system-control
entity shown in Figure 3 as the support element (SE).
The SE operates in the ML3 domain of the system and

is the point of system aggregation for the multiple cages.
Traditionally the SE function is implemented on standard
PC hardware (e.g., IBM ThinkPads* in recent systems).
Communication between the SE and the CCs is facilitated
via a private service network (PSN), which is based on
standard Ethernet LAN technology running TCP/IP
protocols. The entire structure (CCs, PSN, SE) is built
with redundancy in order to avoid single points of failure.
The SE is also the point of persistence for the system. The
system configuration is stored on the SE disk. The SE
executes the following tasks:

e Maintenance of configuration data [1] and system
topology information.
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e Storing of code loads for host CPU firmware, I/O
firmware, and cage controller firmware.

e Collecting and storing of error log information.

e Problem determination and reporting.

e Providing a graphical user interface (GUI) to conduct
configuration and service tasks.

A 7900 system is equipped with two redundant SEs. One

of them operates as the primary SE, providing all system-
control functions, while the other serves as the alternate

SE [2].
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2. Motivation and rationales

The overall concept of the control structure described
here was also implemented in previous ES/9000* systems;
however, a fundamental change was required for the z900
for the following reasons:

1. The controller technology used in the predecessor
systems has reached the end-of-life state.

2. The significantly increased packaging density of the
2900 could no longer be supported by driving the vast
number of control interfaces directly from one point
of control (see Figure 3 and Figure 4).

3. The connection from the CC to the SE was based on
a PC parallel-printer interface which is length- and
speed-limited."

4. In the previous implementation, the single controller
per cage was a single point of failure.

The required update also facilitated the replacement of
proprietary implementations with a new structure based
on open standards, such as POSIX** at the operating
system interface, Ethernet for networking, and TCP/IP for
communications. At the same time, single points of failure
could be removed, and capability was provided to replace
a cage controller while still maintaining the operational
state of the entities it controls.

The primary reason for focusing on standards-based
technologies, in contrast to what was done previously, was
to be able to significantly reuse existing implementations
of those standards.

3. Service subsystem topology
Cages in the IBM eServer z900 systems can currently
contain as many as 38 field-replaceable units (FRUs).
Each FRU is controlled by multiple interfaces, as shown
in Figure 5. These interfaces are designed to support
features such as upgrading of the configuration of a cage,
or “hot-plugging” of FRUs in concurrent repairs.

For z900 system control, the CC is placed in the
distributed converter assembly (DCA) of the power
supply. This solution provides the following advantages:

e Each cage requires DCAs; if the CC is placed there, no
extra slot space is required within the cage for the CC.

e The DCA is redundant.

e The CC is redundant.

e The DCA itself is a FRU. A failing CC can be repaired
by replacing the DCA.

An identical CC is located in the bulk power interface
(BPI) unit of the base power assembly (BPA), which is

I The SE is capable of a 2-3MB/s data rate via the parallel-printer interface, but
the implementation of the parallel-printer port attachment in the previous CC was
limited to 500 KB/s.
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also implemented twice. The Ethernet hub is integrated in

the BPA, since this position is central to the whole system.

Two physically independent networks are provided in
this way (see Figure 6). All CCs are connected to both
networks, while each SE is connected to only one of the
networks.

The CC microprocessor and several I/O components are
realized as a system-on-a-chip approach. The processing
unit is based on the IBM embedded Power401 core [3].
As shown in Figure 7, this processor core is equipped with
two Ethernet media access controllers (EMACs) that are
supported by a direct-memory access (DMA) engine. A
programmable external bus interface unit (EBIU) allows
the attachment of DRAM and flash-ROM-based memory
as well as I/O devices to the controller. Timer functions
and a universal interrupt controller (UIC) are facilities
required by the operating system to support embedded
control. A JTAG interface supports analyzing and
debugging of the CC microprocessor remotely during
code development and also later at the user’s premises.

The large number of control interfaces in a cage
requires innovative connectivity solutions. A new serial
system support interface (SSI) is used for this purpose.
The CC is connected to the respective FRUs by the SSI
rather than by providing the multitude of interfaces
mentioned above directly out of the CC microprocessor
itself (see Figure 5). The number of interfaces and
amount of wiring between the CC and each FRU are
significantly reduced by using the SSI. To support the SSI
on the CC and to provide the required types of interfaces
on the FRU itself, a converter is required. This converter
is realized in a second ASIC called an FRU gate array
(FGA), which is configurable in two different modes of
operation. In the role of an SSI slave function, it is
located on each FRU and provides interfaces such as
UARTS, I°Cs, and DIOs on the respective FRU to serve
the specific interfaces there. A set of registers is provided
in the FGA for control of each interface. These registers
are accessed by the CC like local I/O functions, but since
they reside remotely on the FRU, the SSI link provides a
remote-access method to these registers. An additional
FGA device, configured as an SSI master, is attached
to the CC memory bus. By the serial link it handles all
register read and write operations to any SSI slave. For
the purpose of problem isolation, there exists a point-to-
point SSI link from the SSI master to the SSI slave on
each FRU within the cage. This SSI link is also used for
serviceability to detect whether a FRU is plugged in.

For redundancy reasons, two CCs are always
implemented per cage. This implies that all FRUs must
provide two SSI links—one to each of the CCs (see
Figure 6). An arbitration mechanism within the SSI slave
allows for concurrent access to the I/O interfaces from
both CCs. A RAM array in the device provides a unique
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storage area for vital state information in case the ownership
for FRU processing is swapped between the CCs.

The same approach for FRU control by SSI is used for
interconnection to the service interface of the CPU on the
multichip module (MCM) via the clock chip located on
the MCM. The dual SSI slave function, implemented on
the clock chip, executes service operations on the CPU.
Both SSI interfaces on the clock chip connect to the CCs
of the CPU cage.

The full hardware redundancy of the service subsystem
guarantees recovery from a failure of any single component
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without affecting system operation and maintenance.
Even multiple failures of different components (e.g.,
one network and a CC unit with all of its SSI interfaces)
can be turned into a deferred-maintenance activity,
avoiding unscheduled outages.

4. Hardware abstraction for intra-cage
control applications

As outlined earlier, the intra-cage device access is the
component in the z900 CC which controls the devices
within a cage. For the applications, this component
facilitates access to the devices. Most of these devices are
located on remote FRUs and must be accessed through
the SSI hardware (see Section 3).

The control applications have a functional interface to
the device; i.e., they expect the devices to provide distinct
services (such as reading a SEEPROM) without having
knowledge about the implementation details. It is
transparent to them whether a device is attached via SSI
or natively, or whether a function such as “read scan-ring”
is performed by a legacy I/O interface or directly through
the shift engine of the CPU clock chip.

Software view of the intra-cage device hardware
The SSI architecture defines the control mechanisms
between a microcontroller (e.g., based on the PowerPC
Architecture*) and a multitude of different devices such
as SEEPROMs, digital I/O lines, S/390* clocks, and other
microprocessors. It comprises three major components:
The SSI master is the interface to the processor and
provides the communication paths to a set of slaves. The
SS1 slave contains multiple device engines; it is responsible
for one FRU and drives all of its devices. The SSI device
engine controls a device. From a software point of view,
only the device engines are relevant, because they are
used to control the device. They support a variety of
devices, as listed in Section 1. As described there, the
device engines are located on different cards and boards.
The bridge between the processor and these devices is the
serial communication link between the SSI master and its
SSI slaves. One master can communicate with a large
number of slaves. It even supports the hot-plugging of
FRUs, which means that the card carrying an SSI slave
can be inserted into or removed from a running system,
and the SSI master will detect the event and inform the
software by presenting an interrupt. The software can
react to the interrupt by establishing an access path to the
inserted device or by closing an open path.

Layers encapsulating device behavior

Each SSI engine has a corresponding engine handler in a
controller software layer. The engine handler keeps track
of the state of the engine and performs the state transition
commands. A handler is also aware of the timing
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requirements of the associated engine and handles the
asynchronous events triggered by interrupts from the
engine. All handlers run in the context of the same device
driver, which handles access to the SSI device and
implements the serial communication protocol between
the SSI master and the SSI slaves.

The interface to the engine handlers is facilitated
by a device abstraction layer, which interfaces with the
different devices. Engines with the same functionality can
be accessed through the same function calls, even when
their handlers are implemented differently. Because a
scan-ring read can be performed by three different engines
(CPU clock engine, I/O clock engine, or JTAG controller),
three different engine handlers exist. All handlers use the
same interface, called readScanring(nrOfScanring, length),
and only the address selection of the device determines
which handler is used to fetch the data.

Application requirements

The device abstraction layer supports the accessing of

a device without knowing the device internals. Each
application uses a device interface that is independent

of the different types of device attachment. It provides

a functional representation of the attached device to

the application, and a scan-ring access to the clock chip

is done using a readScanring(nrOfScanring, length) function
call. The interface call creates the necessary device control
blocks and performs the device driver calls.

The application is not affected by changes to the
hardware; devices can be attached differently, which
requires different device driver calls. For example, an
application calling readScanring() does not see whether the
clock chip is attached directly to the SSI interface or
whether an FGA chip is required to translate the SSI
commands into legacy signals serving older clock chips.
The association between the interface call and the device
driver is done by a device “handle”; i.e., at open time, the
device is identified by a name, and the open call returns
a device handle. This device handle is used in all device
operations and identifies the correct handler and device
driver. This occurs at run-time, so that some configuration
procedure or object can determine the current system
setup and create the device handles, which are later used
by the applications to perform the requested services
without having any knowledge about the actual
implementation of the device.

This scheme is flexible enough to include non-SSI-based
devices, so that the whole device space can be covered by
the abstraction layer. In addition, an atomic access path to
the device is provided. There is no need to deal with the
various concurrency problems that typically occur in
multithreaded application structures.
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Addressing scheme to select and access a remote
device

The topology of the cards containing the FGA devices can
vary from system to system depending on the configuration
of the machine. In addition, this configuration can change
at any time during execution, because most of the FRUs
can be hot-plugged. This implies that the application
working with the devices has to be aware of the current
device configuration, must be able to create an active
access path to the device, and must be aware of changes
to the configuration.

The low-level communication protocol for
communicating with a device is implemented in the SSI
device driver. The appropriate register values to identify
the FRU and the engine are derived from a control block,
which is created when the access path to the device is
established. In order to be able to create the access path,
the application must perform the following steps:

1. Select and open the SSI master: Open the device driver
and initialize the selected SSI master. This step returns
the number of plugged ports, which indicates the
available FRUs.

2. Select and open an SSI slave: Initialize the slave chip on
the selected FRU and create a control block for that
slave. This step returns a handle for the slave which
identifies its control block.

3. Select and open an SSI device engine: Initialize the
selected engine on a given slave and create a control
block for it. This step returns a handle to identify the
associated control block.

Subsequently, the application can use the handle to work
with the device. The internal control block associated
with this handle has all the information needed to find
the device and to set up the low-level communication
protocol, and it is passed to the SSI device driver. The
control block also includes serialization mechanisms such
as semaphores and mutexes to ensure atomic operation
for one engine.

5. Object-oriented framework for FRU control
The applications on the CC provide information to the SE
on the presence of processing units and other FRUSs, their
identification, and their state, such as powered on/off,
activated/deactivated, and any of the different error states.
In addition, they provide support to identify (via a light
strip) the locations where the FRUs are plugged into

the cage, and support to scan cage interconnections, for
instance, via cable sensing. Furthermore, for each FRU
the interfaces for initialization and service are provided to
the SE. Other applications periodically ensure the correct
functionality of the hardware, including a power-on
self-test of the logic circuitry. For this purpose, the
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applications use the hardware abstraction layer to access
the hardware, as described in Section 3. Errors detected
during this hardware access are reported, and, if possible,
a redundant path is chosen to maintain control over all
installed hardware without any interruption. The main task
of the control applications is to exploit the full benefit
redundancy to achieve maximum availability of the
hardware.

e Redundancy in the ML1, ML2, and ML3 domain:
As described in Section 3, the z900 control structure not
only has redundant CCs, but it also supports redundant
paths to all FRUs. This means that even the path to
the sensors and actors on the FRUs (IZC, GPIO,
UART, JTAG) is redundant. Figure 5 shows how this
redundancy is achieved by connecting two FRU master
chips to the same FGA slave chip. In other words,
including the redundant SEs, the z900 is the first S/390
CMOS server with a fully redundant structure that spans
the ML1, ML2, and ML3 domains, as defined in Section 1.
o Object-oriented design on second-level controllers:
Another attribute of the new z900 control structure
is that, by using a high-end Power-PC-embedded
controller, state-of-the-art software engineering
techniques such as object-oriented design and
implementation could be introduced.

Object-oriented design

While examining the physical structure of the controlled
hardware, the use of an object-oriented design for system
control applications became apparent. The hardware
exhibits physical aggregation, or containment, of parts in
various places. These aggregations are expressed as so-
called “has-a” relationships in terms of object models [4].
For example, a cage has several FRUSs, a light strip, and
cables. A FRU has chips, and a light strip has LEDs.
The hardware domain also exhibits so-called “is-a”
relationships that express different functional views of a
physical part. For instance, a serial-channel card is a
channel card which in turn is an I/O card. These “is-a”
relationships are translated into the inheritance of
attributes along a hierarchy of modeled objects.

Using object-oriented design encapsulates the attributes
and functionality of the objects. It also simplifies the task
of providing FRU state information. For example, in case
of repair, all FRU information is available in the FRU
itself, instead of being distributed in tables, lists, or global
variables. In addition, it supports the introduction of new
FRUs (cards). This is especially valid for new FRUs that
share common properties with FRUs that already exist.
Such FRUs can be supported more easily because they
inherit a significant part of the requested functionality
from FRUs that already exist.
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Creation of the object model by FRU detection

The CCs of each cage both proceed into slave state after
their initial booting. Then the topology service (see the
section on boot and topology services) selects one CC per
cage to become a master. Only the master controls the
cage; hence, the configuration object model is instantiated
on the master only. The main object, which contains all
other objects, is called the cage object. The cage object

is instantiated during the process of one of the two CCs
taking over the master responsibility. For all possible plug
positions, a place-holder object (the so-called unplugged
FRU) is instantiated. Another object, representing the
FGA master (SSI-M FGA in Figure 5), is instantiated.
This object opens all SSI ports of the FGA master. When
the SSI device driver is opened, it reports the presence of
each FGA by evaluating the plug-detect feature of the SSI
interface. The existence of a FRU is then known, but its
identification is still missing. The related object for this
state is called the unconfigured FRU. This FRU object
does not have information about the exact configuration,
in particular the wiring of the FGA or FRU, but it is
aware of the default configuration, which allows accessing
the SEEPROM on this FRU. When the unconfigured
FRU has read the SEEPROM data, the identification of
the FRU is known, and the unconfigured FRU is replaced
by an object of the appropriate type. In some cases this
object might be called a “mother FRU” object. Such an
object represents a FRU that is a carrier for further,
smaller FRUs, called “daughter FRUs.” The daughter
FRUs do not have their own FGA, but are controlled

by the FGA of the mother FRU. If a mother FRU is
detected, the code scans the GPIO plug-detect pins

for the presence of daughter FRUs. If such FRUs

are detected, their object is created immediately.

After all occupied SSI ports are scanned as described
above, the entire SSI-controlled configuration is
developed. This includes the DCAs or BPIs of the cage.
Each cage has a minimum of two power FRUs. The
power-control code must also have access to the FGA
devices of the DCA or BPI. Therefore, the device handles
of all of these FRUs are passed to the power control
code. The power subsystem uses a UART protocol to
communicate with all of its components. Having access to
the UART devices, the power subsystem begins its initial
scan. When this is done, the cage control code asks the
power subsystem for its configuration. An object is then
created for each of these FRUs, completing the initial
buildup of the object model.

Experience with C++ as an implementation language
shows that using C++ exception handling becomes
a performance issue. This is the reason for using a
lightweight method as the constructor of all objects. No
resource allocation is performed in the constructors, since
this may fail, and return-code handling is not possible in
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constructors. Therefore, each class has a build method
which allocates the resources. This method does have
return-code handling, so that error handling and recovery
are possible during the initialization, even when C++
exceptions are not used.

Support for hot-plugging and exchange of FRUs
One of the challenges in the implementation of the class
hierarchy was to support the hot-plugging of FRUs.

This means that the design not only had to support the
provision that a FRU could be plugged into the cage at
any time, it also had to permit a FRU to be replaced by a
new card, even of a different type. In a single-threaded
environment, this would be done by simply adding two
methods such as add() and remove() to the class of the
cage object. In a multithreaded environment, care must
be taken to make sure that an object is never deleted by
one thread while other methods of the same object are
still being executed by other threads. This is ensured

by introducing a FRU manager. The FRU manager
substitutes for the actual FRU object in the FRU list

of the cage. The FRU-manager object is built for every
possible plug position in the cage, and therefore the
requirement for a lightweight object has to be met. Its
only task is to control the lifetime of the FRU plugged
into the plug position for which it is responsible and

to provide access to this FRU object. Since the FRU
manager is the only friend-class to the FRU classes, the
methods of the FRU objects can be called only via the
related access methods of the FRU manager. If a FRU
object is currently being constructed or destroyed, any
method call of the related FRU object is prevented; on
the other hand, the destructor does not start until the
method counter indicates that the object is no longer being
used. For this, the FRU manager provides an exchange
method. In the case of an unplug event, this method
replaces a FRU object with an unplugged FRU. In the
case of a plug event, the unplugged FRU is replaced with
a functional FRU object according to its identification.
During this exchange the old FRU object is destroyed,
and the new FRU instance is created. While the exchange
method is executed, the FRU manager prevents access to
the methods of the FRU object by a simple mutex lock.

Automatic application restart

Applications in a high-reliability environment must
minimize their downtime. Downtime can be the result

of a hang condition, an out-of-resource condition, or a
hardware failure. The current implementation is to
perform a fail-stop whenever an unrecoverable failure

is detected. Whenever a hardware error or an out-
of-resource error is detected, the application on the
controller is terminated by calling an abort function. This
function gathers error information and copies it to a

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002



special memory location before it stops the processor.
Hang conditions are detected by a hardware watchdog
timer or a communication time-out on the next level of
control, and result in a stop condition. Whenever the CC
runs into any of these stop conditions, the fatal-error
recovery procedure is invoked; i.e., the CC reboots, and
the code is restarted on the redundant CC and continues
the work at the point of interruption. The same reboot-
and-restart methodology is also used to apply a new code
version to the CCs. In the predecessor generation to the
7900, the controller was able to restart, but since it was not
redundant, the code had to restart on the same controller.
This means that controller hardware failure could not be
recovered by employing a redundant controller.

A requirement known from previous systems is that
the hardware has to keep its steady state; i.e., all of
the output devices must retain their state, even if the
code is no longer running. Furthermore, any interrupts
must be latched during this time, such that they can be
serviced after restarting the failing controller. A second
requirement is that after a reboot, the CC must be able to
retrieve the target state to continue the work at the point
of interruption. This was realized by storing the target
state of the cage in some memory space which is not reset
by a reboot and is initialized only after returning from the
standby power-off state. In this case, the target state and
the real state scanned after a reboot can be compared,
and the appropriate actions can be taken in case of a
mismatch. In addition, due to the redundant design of the
CC, this piece of memory must be accessible from both
controllers. Therefore, using local RAM or flash ROM is
not appropriate, since those components are dual-ported.
But since any FRU must be accessible by both controllers,
a special store register, the scratch-pad, in any FGA can
be used for this purpose. A special bit called a “cold-start
indicator” is used to ensure the validity of the data in the
scratch-pad, and to indicate a power drop, which would
invalidate the scratch-pad data.

This new structure not only allows the design to
overcome hardware errors on the controller itself by
exploiting the redundant controller via takeover, but also
provides a second redundant interface to each FRU from
the second controller. Thus, the complete path through
the entire control structure into each FRU has no single
point of failure, except for the controlled FRU itself.

6. Redundant private service network (PSN)
with TCP/IP

The PSN inside the IBM z900 servers interconnects SEs
and CCs, as shown in Figure 6. The SE acts as the
central-service focal point for all hardware control
applications [1] that communicate with the CCs inside
the cages. Both SE and CC require a service network
that provides peer-to-peer communication, as enabled
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by Ethernet [5] and TCP/IP [6] technologies. The following
requirements are derived from the structure of this service
network in order to support distributed control
applications:

1. Availability of the infrastructure in the presence of failures:

The dual-redundant and symmetric structure of the
service network (Figure 6) is designed to facilitate the
relocation of the function of failed parts to redundant
parts with minimal interruption of service. All
redundant parts are operated in “hot-standby” mode.
In this mode, the redundant parts are started up to
functional level, but only one of them is assigned to
perform service tasks. Hot-standby mode offers the
potential of fast fail-over because the state of
redundant parts is known at fail-over time. This method
enables instant recovery in the network domain, e.g.,
switching to alternate paths between controllers.

2. Privacy of communication: A service network must
enable secure communication among the attached
control processors. The CCs which directly control the
system hardware interfaces must never be the target of
malicious attacks. The system structure of the hardware
management for z900 systems [2] establishes the SE
platform as a firewall between the service network and
any outside network. The TCP/IP configuration on the
SE effectively disables forwarding of Internet protocol
(TIP) packets between LAN interfaces. This structure
provides privacy without using cryptographic methods
for authentication or encryption.

3. Abstraction from the redundant capabilities: Service
applications executing across controllers require
programming interfaces that hide the discovery and
selection of network paths within the redundant
structure.

As a result, the service network requires firmware in
the following areas:

e Network configuration (see the next two subsections).

e Network management and monitoring (see the third
subsection following).

e Network recovery (see the third subsection following).

TCP/IP configuration of the private service network
The redundant service network can be configured to either
one of the following modes:

1. Two independent IP subnetworks.
2. A primary IP network and a backup network that is

used only if the primary network fails.

An implementation of the hot-standby mode (see above)
for all redundant parts implies that all networked
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devices have to be periodically monitored. Hence, an IP
configuration using two independent subnets is chosen.

It enables the use of TCP/IP standard protocols such as
ICMP [6] for network monitoring across the entire service
network. If only one physical network were configured,
monitoring of the unconfigured network could not be
performed with protocols from the IP suite.

To minimize the risk of conflicts in the IP address
spaces between the private service network and the
customer network on the SEs, IP addresses from privately
owned IBM address spaces are reserved. IP requires
that all of the LAN interfaces of a computer must be
configured using disjoint address ranges. The use of IP
addresses from the nonroutable address ranges 10.0.0.0,
172.16.0.0, and 192.168.0.0 (see RFC 1918 [7]) would not
have solved the problem, because the customer network
could be purposely configured with the same range. Thus,
the equivalent of two class C (up to 254 IP addresses [6])
reserved subnets was assigned to z900 development by
IBM authorities.

An Ethernet network does not include the notion of
orientation or spatial location. For instance, the mutual
exchange of network cables from two stations at a
repeater hub [5] does not influence the frame transport to
these stations. However, the association of IP addresses
with spatial locations of the configured device is

considered a valuable feature for the z900 service network.

The fact that specific CCs, for instance those CCs from
the CEC cage, are always addressable with the same well-
known IP addresses in all z900 systems enhances
debugging of network traces.
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In the z900 servers, unique identifications for the spatial
locations of controllers are obtained from a data file. This
service network topology file (SNTF) contains a table of
the installed cages at manufacturing time. The stored data
items are the board serial number of the cage and a
unique cage ID that defines the spatial location of the
cage according to the general floorplan of the z900 system.
When CCs execute their startup code, they retrieve their
board serial number from the board SEEPROM and put it
into the boot request messages. The topology server (see
the next subsection) on the SE matches the board serial
number against the SNTF content to yield the cage ID
assigned to the cage. For each cage ID, four IP addresses
are pre-allocated for the network interfaces of the two
CCs in a z900 cage.

Shown on the left in Figure 8 is the floorplan of a z900
server with locations of cages and assigned cage IDs. The
A-frame is expanded in the center of the figure, showing
the access path from CCs to their common board
SEEPROM. The bulk power interface (BPI) cage does
not have a board SEEPROM. Instead, an auxiliary board
serial number is constructed from the card serial number
of the primary power interface.

In the z900 server, applications request connections to
the master controller of a cage. By hiding IP addresses
from applications, the selection of a path to a master
controller can be delegated to an address-resolution
mechanism. A new addressing mode is introduced that
uses so-called “cage handles.” A cage handle is an atomic
and opaque entity for applications. It contains the cage ID
and cage type in binary encoding. This scheme supports
extensions when cages and packaging units for controllers
are designed from the viewpoint of a one-to-many
relationship. The firmware provides an API service (see
the section on network resolution and communication
API) to convert cage handles into IP addresses.

Boot and topology services
In this section, the requirements for configuration services
are introduced. Boot and topology services are designed as
SE-based network and configuration services. When CCs
receive standby power, they execute the initial boot code
from persistent local memory. This boot code requests an
executable code load containing the operating system and
applications from either SE. Both SEs execute a boot
server that accepts the standard BOOTP messages (RFC
2131, RFC 1541 [7]) issued by the boot code. The vendor
area of BOOTP messages is extended to accommodate
special z900 data transport. The BOOTP message is also
used by a failing controller to request the transfer of its
memory dump to the primary SE.

The companion of the boot server is the topology
server, which constructs a view of the cage configuration
based on data obtained from BOOTP messages sent by
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controllers. When a CC has successfully completed its
initial startup, the topology server assigns IP addresses to
the network interfaces of controllers according to the cage
ID obtained for the cage from the SNTF.

The topology server exports a cage-oriented view to the
functional SE code. A cage is reported as a functional unit
to the SE when the topology server has been notified of
the successful completion of the master role assignment
of a controller in this cage. Figure 9 shows the basic
cooperation between boot and topology server.

The boot and topology servers execute on both the
primary and the alternate SE [2]. This establishes a higher
degree of fault tolerance and provides load balancing for
the cold start of the entire system. For some special
system scenarios (for instance, when applying firmware
updates), the boot function on the alternate SE can be
disabled. There are important tasks that can only be
performed by the primary SE—for instance, the initial
assignment of the master role” for one of the controllers
in each cage. Figure 9 shows the election of a master
controller by sending a “become master” message to
one of the controllers in the cage with cage ID = 1.

When a SE is accidentally rebooted, the topology
server loses its configuration because it is not persistently
stored. However, the topology server on the restarted SE
reconstructs its configuration by accepting InfoBoot [8]
messages. These are periodically sent by each CC into all
networks as “keep-alive status” messages. They have the
same format and content as a standard BOOTP message
but contain additional status information, e.g., whether
the controller is executing in master or slave role. These
InfoBoot messages also solve the problem of maintaining
consistency between the data sets of both topology servers.

Network management and recovery services
Network management is the task of determining the status
of a network configuration and applying explicit changes
to that configuration. The characteristics of a z900 system
demand that the status of a failed hardware part must be
reported as early as possible to trigger a repair action.
This requires periodic retrieval of status data from the
entire service network. The definitive standard in the
field of network management is the Simple Network
Management Protocol (SNMP) [9] for large TCP/IP
networks. For the z900 private service network, however,
an even simpler and smaller set of management functions
for automated control is considered more appropriate.
Thus, SNMP functions are not used inside the z900 service
network.

Instead, network diagnostic servers (NDS) and network
management servers (NMS) are the firmware components

2 The occurrence of two master controllers in the same cage must be prevented to
avoid conflicts with respect to hardware access.
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for network monitoring and management. They are
executed on all CCs and on both the primary and the
alternate SE. For each diagnostic request, a coordinating
NDS instance is selected that executes on a controller with
two configured and enabled network interfaces. All other
NDS instances report the status of their local links to this
coordinating NDS instance upon request.

The NDS uses classical TCP/IP methods on different
protocol levels: It performs local interface checks by
calling special ioctl() functions from the Ethernet
device driver to retrieve the counters of broken Ethernet
frames or excessive collisions. To determine the response
behavior of remote controllers, ICMP ECHO [6] request
packets are sent to these controllers. This ensures that the
network paths to these remote controllers are working
properly.

The NMS services provide functions for configuring
IP routing tables, distribution of cage information, and
activation or deactivation of network parts. All CCs are
configured with IP forwarding [6] enabled. The NMS
services preferably select a slave controller as the intra-
service network router to relay IP packets across the
service network. The asymmetrically attached SEs require
IP forwarding to communicate across the service network.
With the help of IP forwarding, a master controller with a
deactivated or broken network interface retains the ability
to communicate with the primary SE.

The network heartbeat worker (NHW) is the instance
for coordinating recovery of network paths and master
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controllers. It executes as a single instance on one of the
cage controllers, preferably on an I/O slave controller. The
NHW cannot be executed on a SE because its services are
required when SEs are not available. The NHW can be
restarted on any other controller if the previous instance
has crashed. The NHW periodically invokes the NDS to
check the network. If it detects a failed network link, it
invokes the NMS recovery functions. If it detects a failed
master controller in a cage, it triggers the CC reassignment
function® for that cage. As a result, the companion slave
controller is initialized as the new master controller. The
NHW features an alert interface for applications (see the
next subsection). Applications wait synchronously at this
interface until a recovery has completed.

Network resolution and communication API

In order to satisfy the requirement to shield applications
from the details of the redundant network, the network
API is designed and implemented in the C++ [10]
language. Basically, it consists of a TCP socket wrapper
with the typical set of call interfaces [connect(), accept(),
send(), receive(), close()] as defined in [11], but enhanced
with additional functionality.

Address-resolution services map cage handles to the IP
addresses of master or slave controllers. When invoked
with the cage handle of a remote controller, the connect()
call establishes a connection to one of the potential IP
addresses of the master controller in the target cage if not
otherwise indicated. Error codes from socket calls in [11]
are mapped onto classes of simpler return codes—for
instance, no network path to destination. If checking of
a remote endpoint indicates a problem, the NHW alert
interface is invoked. Upon return, the application is
informed that the remote endpoint has changed and that
it must be reset.

The network API is provided for execution on multiple
platforms, OS-Open and OS/2* in the z900 implementation.
It hides platform-specific details of socket calls from the
application. For instance, it applies buffer sizes to send()
calls according to the capabilities of the local operating
system. When the caller passes a long timeout value by a
recv() call, the network API applies an internal timeout
value to periodically check whether the remote site is
still responding.

Concluding remarks

The architecture of the system control structure of the
IBM eServer z900 is the foundation for extensions to
future zSeries systems. Its redundant control structure
provides a foundation for the vision of self-management
mmem function can be triggered only by an instance that is not
executing on any controller in the same cage. This design principle prevents an

erroneous “self-appointment” of a slave controller that could lead to “ping-pong”
situations.
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and self-repair. Efforts are currently underway in the
IBM Server Group to seamlessly extend this structure
into other products, e.g., iSeries and pSeries systems.
During the implementation of the z900 system control
structure, the advantages of developing the foundation
on the basis of standards-based implementations became
evident. In particular, the reuse of an existing POSIX-
compliant control program and an existing implementation
of a full TCP/IP protocol made it unnecessary to develop
this functionality, thus permitting efforts to be more
effectively directed at control and management aspects.
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