
by I. Adlung
G. Banzhaf
W. Eckert
G. Kuch
S. Mueller
C. Raisch

FCP for the
IBM eServer
zSeries
systems:
Access to
distributed
storage

The IBM eServer zSeriesTM FCP (Fibre Channel
Protocol for SCSI) channel provides “LinuxTM

for zSeries” the capability to access storage
devices using SCSI and FCP protocols, thus
enabling it to make use of distributed storage.
Leveraging the zSeries-unique virtualization
approach for industry-standard storage
devices as well, the zSeries FCP channel
provides unique value in UNIX® and Linux
environments. This paper describes the
major differences between traditional and
distributed storage attachments of zSeries
systems. Furthermore, it describes the
implementation of the zSeries FCP channel, its
unique capabilities and characteristics, and
how it is implemented by Linux for zSeries.

1. Introduction
While storage devices such as disks, streaming tapes, and
CD-ROMs are often physically integrated into low-end

and mid-range servers, high-end systems normally use
externally attached and independently managed storage
controllers. The z/Architecture* of the IBM eServer z800
and z900 systems defines I/O and storage attachment
schemes that are vastly different from those typically used
for servers based on Microsoft Windows**, UNIX**, or
Linux** operating systems. zSeries*-specific storage
controllers support channel programs based on channel
command words (CCWs) defined by z/Architecture.
Distributed storage controllers, on the other hand, must
support the SCSI (Small Computer System Interface [1])
protocol, which is the dominant protocol for storage
access in Windows, UNIX, and Linux environments.
These two different I/O schemes are explained in more
detail in Section 2.

Classical zSeries operating systems such as z/OS* and
z/VM* were designed for use only with storage controllers
that support the I/O protocols defined by z/Architecture.
This changed with the advent of Linux for zSeries, since
its storage I/O component is oriented toward SCSI
protocols. Lacking the capability to access SCSI-based

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

487

storage devices on a zSeries server system, it was
necessary to add specific support to Linux for zSeries
to enable it to function in a CCW-based zSeries I/O
environment. However, this additional layer in Linux
for zSeries is unique to zSeries and does not allow it
to exploit storage subsystems and applications that are
dependent on a SCSI attachment. For this reason, an FCP
attachment capability has been added to the z800 and
z900 systems, allowing the attachment of SCSI-based
storage controllers and enabling Linux for zSeries to
access these controllers in the Linux-standard manner.

This paper describes the zSeries FCP channel from both
hardware and software interface perspectives. Attention is
given to capabilities which, until recently, have been specific
to zSeries systems—for example, their capabilities with
regard to virtualization and the sharing of I/O attachments
and devices. Section 2 describes the storage attachment
schemes typical of the zSeries and distributed storage
environments, and explores the challenges faced when trying
to combine them. An overview of the FCP and storage area
networks is given in Section 3. Section 4 describes the key
characteristics of the zSeries FCP channel. The unique
internal protocol used for communication between host
software and the zSeries FCP channel is described in Section
5. In Section 6, some scenarios are provided showing how
the most common operations initiated by a host program
are executed. Section 7 describes the hardware and
firmware concepts used by the FCP channel. An overview
of the unique reliability, availability, and serviceability
characteristics of the zSeries FCP channel is given in
Section 8. Finally, Section 9 describes the support that
was added to the I/O stack of the Linux for zSeries
operating system in order to exploit the FCP channel.

2. Storage attachment concepts

zSeries-specific storage attachments
The I/O component of z/Architecture, inherited from its
predecessors such as the ESA/390 architecture, is based on

channels, control units, and devices (see Figure 1) [2].
Channels provide a well-defined interface between
a server and the attached control units. Originally
implemented on parallel copper media, today’s channels
such as ESCON* and FICON*1 use optical serial cables.
Also, the parallel channel was a multi-drop interface,
while both ESCON and FICON are switched point-to-
point connections, extended to complex connection
infrastructures via ESCON or FICON switches or
directors.

ESCON channels use a unique physical interface and
transmission protocol. FICON, on the other hand, is based
on industry-standard Fibre Channel lower-level protocols.
In both cases, however, the higher-level I/O protocol used
by software, based on channel programs consisting of
channel command words (CCWs), is unique to mainframes
adhering to z/Architecture or its predecessors.

For access to disk storage, a specific set of CCWs is
used, defined by the extended count key data (ECKD*)
protocol. This protocol describes not only the commands
and responses exchanged across the channel, but also the
format of the data as it is recorded on the disk storage
medium. For tape, similar CCW-based command protocols
exist, but there are no associated access protocols for
media such as DVDs or scanners, because the necessary
software device drivers and control units have never been
provided.

With z/Architecture, software addresses a storage device
using a 16-bit device number, which uniquely identifies
the device. Such a device number is mapped to one or
more physical paths to the device. This path is typically
described by an address quadruple consisting of a channel
path identifier (CHPID), a physical link address, a control
unit address, and a unit address (UA). The CHPID
identifies the channel that provides a path to the device.
The link address identifies a route through a switch or
director. The control unit address specifies the control
unit. Finally, the unit address identifies the device. In the
case of a disk, this is often a logical device partitioned out
of the disk space provided by an array of physical disks.

In order to provide redundancy and/or increased I/O
bandwidth, or to allow load balancing, there is typically
more than one physical path to a device. While these
paths are specified via different address quadruples,
software still uses a single device number to address the
device, independent of the path that is chosen for any
particular I/O request.

Another characteristic of the z/Architecture I/O scheme
and the ECKD architecture for disk is the sophisticated
support for sharing channels, control units, and devices

1 Official standards based on ESCON and FICON, known as SBCON and
FC-SB-2, respectively, have been adopted by the InterNational Committee for
Information Technology Standards (INCITS).

Figure 1

Storage attachment concept for zSeries servers.

zSeries

server
Channel

adapter

Switch

(director)

Storage

controller

Storage devices

ESCON/

FICON

ESCON/

FICON

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

488

among multiple operating systems, which may run on the
same or different IBM zSeries systems.

Distributed storage attachments
The attachment of storage controllers in the distributed
storage environment is predominantly based on the SCSI
standard, using a control-block-based command-and-status
protocol. Today, there is a clear distinction between the
physical level and the command/status level of the SCSI
protocol. On the basis of this higher-level SCSI
command/status protocol, a new standard has been
defined, designated as Fibre Channel Protocol for SCSI
(FCP). The standard employs the SCSI command/status
protocol above an underlying Fibre Channel transmission
protocol. Because of the superiority of the optical Fibre
Channel connection regarding speed, distance, and
reliability, storage attachments via FCP have the highest
growth rate in today’s distributed storage market.

Traditionally, distributed storage controllers have been
attached via parallel SCSI cabling, which allows only very
limited distances between the server and the controller.
And although the SCSI architecture has provisions for
physical controller and device sharing, the length
constraints of parallel SCSI cables impose natural limits
on this sharing capability. Also, there has been little need
for a capability to share controllers and devices among
multiple operating systems running concurrently on the
same server, because such server virtualization techniques
are just starting to develop in the distributed storage
environment.

Storage area networks (SANs)
This situation is changing with the advent of Fibre-
Channel-based storage area networks (SANs). The Fibre
Channel technology on which current storage area
networks are typically based allows customers to
considerably increase the distance between server and
storage controller and to share controllers among multiple
servers—features that have up to now been more commonly
associated with mainframe-type systems such as the zSeries,
which use ESCON or FICON and ECKD protocols,
for example.

With storage area networks, the servers are logically
organized around the SAN, which provides access to a
large storage pool used to satisfy the storage needs of
the connected servers. Such a SAN, often depicted as a
storage “cloud” (see Figure 2), can be independently
managed and serviced, freeing the servers from these
chores.

zSeries-specific vs. distributed storage controllers
Two types of storage controllers with Fibre Channel
interfaces are currently available: 1) those supporting the
z/Architecture-specific FICON interface based on the

CCW architecture, with the ECKD command set for disk
storage and similar sets of commands for tapes; and 2)
those supporting the SCSI-based FCP protocol, with SCSI
command sets specific to the device type, such as disk
or tape.

Both types of controllers use various internal interfaces
to their devices, which may reside in the same enclosures
or racks as the controller itself or in different ones. In
most cases, these controller-to-device interfaces are
standard interfaces, for instance parallel SCSI, electrical
Fibre Channel–Arbitrated Loop (FC-AL), a Fibre Channel
physical layer variant, or Serial Storage Architecture
(SSA) [3], a serial, electrical version of SCSI. This type
of internal attachment is independent of the controller
“personality,” i.e., whether it is a CCW-based or a
distributed controller.

Both types of controllers are normally based on
the same hardware building blocks. Their individual
characteristics are achieved by different firmware handling
the host interface. There are even some controllers that
support both types of protocols (CCW and FCP) and can
be configured to indicate which of their devices and
connections are CCW-based and which use FCP.

3. Fibre Channel protocol
Fibre Channel networks consist of servers, storage units
(controllers and devices), and interconnects (directors or
switches) that enable any-to-any connectivity between the
servers and the storage units. The interconnect as well
as the communication between the servers and storage
units is defined by the suite of Fibre Channel standards
approved by the ANSI/INCITS T11 committee and currently
being elevated to the ISO/IEC JTC1 committee as a set
of international standards [4 – 8].

Figure 2

Storage area networks.

(Switches, directors,

hubs, bridges...)

Server

Storage

controller

Storage

controller

Server

Server

Storage area

network (SAN)

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

489

Fibre Channel architecture
The Fibre Channel architecture is a multilayer
architecture consisting of five layers, FC-0 through FC-4.
FC-0 describes the physical characteristics of a Fibre
Channel network, such as the cables and connectors.
Different optical and physical interfaces are defined. The
zSeries FICON and FICON Express features support
the optical Fibre Channel versions. FC-1 defines the
transmission protocol, and FC-2 the signaling protocol.
The FC-3 layer defines common services. Above these four
layers, there are various FC-4 protocols, including HIPPI,
IPI3, SB-2, and SCSI. SB-2 is the protocol on which the
zSeries FICON channel is based [9]. This section focuses
on FCP, the Fibre Channel protocol for SCSI.

Fibre Channel topologies and devices
In a Fibre Channel fabric, nodes are connected by physical
point-to-point links, starting and ending at a port. Only in
a point-to-point topology are both of these ports tied to
end nodes. More often, one port is associated with an
end node while the other one belongs to a Fibre Channel
switch. Also, in the case of cascaded switches, both ports
may be switch ports.

The Fibre Channel architecture defines three distinct
topologies as interconnects between Fibre Channel end
nodes.

The simplest topology is a direct “point-to-point”
connection, typically between a host and an endpoint
device such as a disk controller. After a connection has
been established between these two nodes, the full
bandwidth is available between the host and the
device.

The term “arbitrated loop” defines a ring topology in which
up to 127 nodes, both hosts and endpoint devices, share the

Fibre Channel bandwidth. Arbitrated loops are often
implemented using hub devices, where the loop is basically
implemented within the hub while the end devices are
connected to the hub. Hubs can also be cascaded to build
more complex configurations.

“Switched fabrics” are implemented as switched
connections between hosts and devices. One or more
switches or directors are used to interconnect the end
nodes in such a Fibre Channel network. Directors
represent very reliable high-end switches without single
points of failure. For simplicity, the term “switch” is used to
refer to both Fibre Channel switches and directors in this
paper. All connections in a switched fabric provide the
full Fibre Channel bandwidth to each port.

In addition to these three Fibre Channel topologies,
Fibre-Channel-to-SCSI bridges can be used to attach
parallel SCSI devices.

Switches, hubs, and Fibre-Channel-to-SCSI bridges can
all coexist in the same Fibre Channel network, and they
are the building blocks for constructing large storage area
networks.

The zSeries FCP channel attaches to Fibre Channel
switches or directors. Fibre Channel loops are supported
only as public loops attached to a switch, in which case
the switch handles all loop-specific details of the protocol.

Generally, any kind of end device adhering to the FCP
protocol can be attached via the zSeries FCP channel.
However, inconsistent Fibre Channel implementations by
device manufacturers can make it necessary to verify that
no interoperability problems exist.

In the following sections, the emphasis is on switched
Fibre Channel fabrics, since they represent the most
important building blocks of a SAN.

Addressing
This subsection gives an overview of the different types
of addresses used in a Fibre Channel network.

Worldwide names
Nodes and ports are referenced by a worldwide unique
node name (WWNN) and a worldwide unique port name
(WWPN), respectively. These WWNNs and WWPNs, both
8 bytes in length, are assigned by the manufacturer of a
device or Fibre Channel adapter card (Figure 3).

Fibre Channel IDs
During the initialization of a link between an end node
and a switch, WWNNs and WWPNs are exchanged, and
the switch defines a 3-byte identifier (ID) for the port in
the end node that is unique within the particular fabric.
In all further communication, this ID is the only address
qualifier used by the Fibre Channel transport mechanism
(FC-2 layer) to route frames from their source to their

Figure 3

Fibre Channel addresses.

End node

WWNN

Port,

WWPN, ID

Port,

WWPN, ID

Switch

WWNN

End node

WWNN

Port,

WWPN, ID

Port,

WWPN, ID

Port, WWPN

Port, WWPN

Port, WWPN

Port, WWPN

FCP LUN

FCP LUN

FCP LUN

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

490

destination. The Fibre Channel frame headers carry a
source ID (S_ID) identifying the sender of the message
and a destination ID (D_ID) addressing the port that
is to receive this message. All other address qualifiers
are defined by higher-level protocols, such as FICON
or FCP.

Normally, these 3-byte Fibre Channel IDs are created
using the following scheme:

● The high-order byte specifies the switch to which a
source or destination end port is attached.

● The mid-order byte specifies the port on this switch to
which the source or destination end port is attached.

● The low-order byte is used to address up to 126 devices
if a public loop is attached to this switch port.

The concept of assigning and using 3-byte IDs instead of
8-byte WWPNs after a connection has been established
enables the use of simple hardware-based routing
algorithms.

If two switches are connected in different SANs,
effectively combining the two SANs into one, all switches
in this combined new SAN check for duplicate IDs and
begin an ID reassignment procedure if required.

A switch or port cannot be individually addressed as a
physical Fibre Channel entity. However, switches provide
access to certain services such as name (or address)
resolution services. These services can be accessed by
using so-called well-known IDs, which are in the 0xFFxxxx
ID range.

FCP addressing
If a Fibre-Channel-to-SCSI bridge attaches parallel SCSI
devices that support SCSI logical unit numbers (LUNs),
these LUNs are mapped by the bridge to FCP LUNs. The
full address of an FCP device consists of a destination ID
(D_ID), assigned by the switch at fabric log-in, and the
FCP LUN. The D_ID is used to select the target device
port, comparable to a parallel SCSI ID, and the LUN
selects the logical unit within the target device, for
example a specific logical disk volume.

4. FCP attachment in a zSeries environment
This section describes the specific requirements for FCP
attachments on a zSeries server system and how the
zSeries FCP channel meets these requirements.

Server consolidation
A key asset of the zSeries is its ability to concurrently
execute multiple operating systems in up to 15 logical
partitions (LPARs). Also, the z/VM operating system, with
its integrated hypervisor function, supports multiple guest
operating systems. The combination of the two allows a
large number of operating systems to execute at the same

time on this very reliable platform, limited only by the
available system resources. This makes the zSeries a
perfect choice for consolidating a large number of Linux
servers on a single zSeries system.

This consolidation on a single system has many
advantages for a user. It considerably reduces floor space
and cabling requirements. The number of outages and
repair actions is reduced. And, perhaps most important,
the cost for administration, management, and maintenance
decreases, considerably reducing the total cost of ownership
(TCO) as compared to a server farm, in which the Linux
systems run on a large number of separate servers.

Also, in a server farm environment each instance
of Linux requires its own Fibre Channel adapter or,
commonly, two of them for reliability reasons. The
zSeries, on the other hand, allows FCP channels to be
shared among multiple operating systems, reducing the
overall Fibre Channel attachment cost.

There may be cases in which the sharing of FCP
channels should not be allowed. Figure 4 depicts an
example of a zSeries system partitioned into several
LPARs. Each LPAR or set of LPARs, together with one
or more associated FCP channels, can be assigned, for
example, to an application service provider (ASP), who
may use it, for example, for Web services, application
services, or PC hosting. In such an environment, different
service providers must have restricted access to the same
zSeries FCP channel. This can be ensured by using
standard zSeries system configuration mechanisms, which
are generally available for all zSeries channel types. On

Figure 4

Virtualization of zSeries I/O channel.

FCP channel

LPAR 1

FCP

adapter

LPAR 2

ASP 1 ASP 2

FCP channel

Operating

system

Operating

system

Operating

system

Virtual

channel

Virtual

channel

Virtual

channel

z/VM

FCP channel

Operating

system

LPAR 3

Virtual

channel

 zSeries system

Storage

network

Storage

network

FCP

adapter

FCP

adapter

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

491

the other hand, each service provider can decide to share
one or more of its FCP channels and assign virtual FCP
interfaces to LPAR or z/VM guest operating systems as
appropriate.

FCP channel sharing
To the operating system, an FCP channel is defined as a
new channel type, known as an FCP channel. One adapter
(with a single Fibre Channel port) is configured as one
such FCP channel.

Up to 240 z/Architecture-defined subchannels are
available on each physical FCP channel as queued direct
I/O (QDIO) devices, as described in Section 5. These
devices are internal software constructs and have no
relation to physical devices outside the adapter. The host
operating systems use these subchannels as vehicles
to establish conduits to the FCP environment. Each
subchannel represents a virtual FCP adapter that can be
assigned to an operating system running either natively in
a logical partition or as a guest operating system under
VM.

Different host operating systems sharing access to a
single FCP channel may access the same Fibre Channel
port via this channel. However, only a single host
operating system is allowed to establish access to a
particular Fibre Channel device (identified by its LUN)
at any given time. This restriction has been introduced

to eliminate possible conflicts that may occur due to the
fact that this FCP channel appears to the Fibre Channel
network as a single N_Port, with a single WWPN and port
ID, although it is shared by multiple host operating
systems.2

Since up to 240 virtual adapters can be defined per FCP
channel, a connection into a Fibre Channel network can
be provided to a fairly large number of operating systems,
even with a single FCP channel. And the fact that up to
96 such Fibre Channel interfaces can be installed on a
single zSeries 900 (up to 32 on zSeries 800) offers rich
configuration capabilities.

Virtualizing a Fibre Channel host bus adapter (HBA) is
a unique feature of the zSeries. The zSeries FCP solution
requires no changes in endpoint devices such as disk or
tape controllers, and it offers the protection and security
characteristics required to support server consolidation
scenarios as described above.

5. The link between channel and software

The zSeries FCP channel concept
The zSeries FCP channel is based on the common I/O
platform, as described in [10]. This I/O platform provides
two zSeries FCP channels, each employing a Fibre
Channel chip set, a PowerPC processor and memory, and
associated firmware. The STI interface (as described in
[11]) provides the physical connection between such a
channel and the zSeries central electronic complex
(CEC), i.e., the complex consisting of zSeries processors,
main memory, and I/O subsystem. For more details about
the FCP channel implementation, refer to Section 7.

On top of this physical connection between the CEC
and the FCP channel, a communications protocol is
required to exchange requests, responses, and data
between software running on the zSeries processor and
the firmware in the FCP channel; this communications
protocol has two layers. The lower layer is the QDIO/FCP
protocol, which provides a communication path between
the two communicating entities. The upper layer is the
FCP interface protocol. This is a command/response
protocol used for activities such as establishing
communication paths to Fibre Channel ports and devices,
sending Fibre Channel commands to these entities, and
similar functions. Figure 5 shows both the host operating
system and the FCP channel firmware containing specific
layers for handling these protocols. It also depicts the
layer on the channel that provides support to deal with
multiple counterparts in different host operating system
images, in order to support the virtualization concept

2 Proposals for Fibre Channel architecture enhancements exist which would allow
a single physical N_Port to behave as a set of logical N_Ports, each with its own
unique WWPN and Fibre Channel ID. This may permit this restriction to be
dropped in the future.

Figure 5

FCP software and firmware overview.

Fibre Channel interface

FCP channel

firmware

Two channels

per I/O book

Fibre Channel

VM

Linux

1

Linux/

VM n
Linux

2

Linux/

VM 3

FCP channel

sharing (up to

240 Linux

operating

systems)

STI

QDIO/FCP protocol

FCP interface protocol

QDIO/FCP protocol

FCP interface

protocol

Fibre Channel network

Linux upper layers

including SCSI

stack
...

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

492

described in Section 4. These two protocols are described
in more detail in the following subsections.

QDIO/FCP protocol
The queued direct I/O (QDIO) protocol was initially
introduced as an extension of z/Architecture for high-
speed zSeries communications adapters, such as the OSA-
Express Gigabit Ethernet adapter. It largely bypasses
the zSeries channel subsystem and lower I/O layers of
operating systems that typically deal with classical zSeries
I/O constructs such as channel programs for the initiation
or completion of requests. This scheme provides considerable
performance improvement compared with using I/O
constructs based on classical zSeries I/O architecture.

With QDIO/FCP, traditional z/Architecture CCWs are
used only to initialize these data paths. Sense-ID CCWs
are issued to verify that the accessed “devices” are in fact
QDIO devices. These are followed by other CCWs to
create and activate the QDIO queues. Once these queues
are successfully established, the subchannel remains in the
architectural state “subchannel and device active.” All
subsequent control and data traffic flows through the
QDIO queue structures.

An overview of the QDIO protocol is given in [12].
However, since QDIO was initially defined for networking
traffic, it did not fully meet all of the needs of storage
attachments and had to be extended accordingly. The
specific requirements originating from these types of
protocols are described in the next subsection.

Characteristics of storage access protocols
The industry-standard protocols SCSI and FCP basically
consist of requests, associated responses, and unsolicited
status presentations. Requests consist of command blocks,
describing the action to be executed on the device,
optionally with output data, pointers to buffers for
storing input data, or both. Responses consist of request-
completion status indications specifying the results of
command execution and optionally input data and/or sense
data. The latter can provide additional information in case
an error occurs while the command is being executed.
Unsolicited status indications provide information which
may be associated with a command, but in which the
status is detected by the device after it has signaled
command completion. More often, unsolicited status is
not associated with a command at all, for example in
the case of incoming Extended Link Services initiated
by another Fibre Channel node.

QDIO protocol with extensions for FCP
QDIO is based on queues and associated control blocks
in main memory. Host software accesses these queues and
control blocks to issue I/O requests or to determine that an
I/O operation has completed. The actual data transfer is done

by the FCP channel, which can access these queues to
determine the work that is to be done, perform the required
data transfers, and store the pertinent completion status.

Subchannels as defined in the z/Architecture are used
to address queues. For communications, both control
subchannels and data subchannels are defined. Only the
latter are used with the zSeries FCP channel. For the FCP
channel, each subchannel is associated with a single pair
of queues, a request queue and a response queue.

An operating system requires just one subchannel with
the associated queue pair to communicate with an FCP
channel and to access all of the Fibre Channel devices
that can be reached via that FCP channel. As described
above, up to 240 such QDIO subchannels per FCP
channel are currently supported, and these may be
assigned to different operating system instances so
that they all can share the FCP channel.

The device address (as defined by the z/Architecture)
used to address this single subchannel is associated only
with this particular communication path between the host
operating system image and the FCP adapter. It is not
related in any way to the addresses of the devices and
controllers in the Fibre Channel network. Rather, the
addresses associated with these Fibre Channel target
devices, like their WWPNs and LUNs, are conveyed
by software to the FCP channel as part of the data
it provides to the adapters via the QDIO queues.

Host software puts the data to be transferred to the
FCP channel into data buffers in main memory, or
allocates buffers for data to be retrieved from the FCP
channel. Each QDIO queue has up to 128 entries, and
therefore can specify up to 128 buffers. The buffers do
not have to be contiguous but can consist of a sequence
of 4KB entities. The addresses of these entities are
maintained in storage buffer access lists (SBALs), where
each entry in a list, called a storage buffer address list
entry (SBALE), references a single 4KB buffer.

For a more detailed description of the QDIO protocol,
refer to [12].

FCP interface protocol
The QDIO queues in the context of the FCP channel are
used for three different purposes: to send requests from
the host program to the FCP channel, to send responses
to these requests from the FCP channel back to the host
software, and to present unsolicited status information
from the FCP channel to the host program.

Request handling
The host operating system uses a special control block
known as a queue transfer control block (QTCB) to
specify a request that should be handled by the FCP
channel. A QTCB is used for FCP commands to be sent
to the Fibre Channel network, as well as for requests to

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

493

be handled internally by the FCP adapter. These requests
may further specify that data be written, read, or both.

The QTCB contains command code specifying the
operation to be performed by the FCP channel. One
specific command code, the most important one, is the
request for the FCP channel to send an FCP command to
a remote device on the Fibre Channel network. For this
type of operation, the host program places the entire FCP
command descriptor block, as defined by the FCP standard,
into the QTCB. This FCP command descriptor block
specifies both the addresses of the target FCP device (such
as its D_ID and LUN) and the command to be executed.

Furthermore, the QTCB contains space for response
data and status information to be filled in by the FCP
channel when it processes the associated request.

Since each request issued in the context of the storage
access protocol has a corresponding response, requests
and responses must be correlated. This is done via a
request identifier generated by the host program. The
host program must ensure the uniqueness of this
request identifier within its scope, i.e., for the particular
subchannel it uses to communicate with the FCP channel.
When this identifier is forwarded to the FCP channel as
part of a request, the FCP channel qualifies the identifier
with the number of the QDIO subchannel on which the
request was received, and the logical partition (LPAR)
identifier. To have a request processed by the FCP

channel, the host program places both the request
identifier and a pointer to the QTCB into the first two
SBALEs of an SBAL (see Figure 6). If the request is
associated with a data transfer, additional SBALEs are
filled with pointers to the data in the case of write
requests, or pointers to data buffers to be filled in
the case of read requests.

With the QDIO/FCP protocol, up to 15 SBALEs per
SBAL are used. Since the first two SBALEs are used for
the request identifier and the pointer to the QTCB, 13
entries are left for data pointers. If this is not sufficient,
up to three additional SBALs can be linked to the first
one. In these linked SBALs, all 15 SBALEs can be filled
with data buffer pointers. The maximum amount of data
that can be transferred in this way between main memory and
the FCP channel with a single request is more than 2 MB.

The FCP channel firmware processes the QTCB,
“unwraps” the included FCP request, and processes the
command (see Figure 7). In many cases, this requires the
FCP channel to send an I/O request to an external device,
such as a disk controller, or a device that is part of the
Fibre Channel infrastructure (for instance, a Fibre
Channel switch). Other commands may be executed
completely within the FCP channel, without requiring an
external I/O operation. Also, some commands require the
FCP channel to transfer data to an external I/O device or
receive data from such a device.

Response handling
If the FCP channel has processed a request, which may
include retrieving data from zSeries main memory and
sending it to the Fibre Channel network, or receiving data
from the network and uploading it into zSeries main
memory, it also updates the QTCB with the corresponding
completion indication and potentially additional status
information. It then transfers the QTCB back to the same
main-memory location from which it was originally fetched
(see Figure 7). Finally, the FCP channel places the
corresponding request identifier into an SBAL of
the response queue and uses basic QDIO signaling
mechanisms to alert the host program to an update to this
queue. The host program uses this request identifier to
correlate the response to the original request and retrieve
the completion status from the associated QTCB again.

It is important to note that if the FCP channel has to
perform an asynchronous I/O or data transfer operation
in order to execute the request, the execution of such a
request will always appear to be asynchronous from the
point of view of the host program.

Handling of unsolicited status information
It is the responsibility of the host program to supply
status-read request buffers via status-read requests. These
are similar to read requests, except that they do not

Figure 6

QDIO control structure.

Request ID

Pointer to buffer 1

SBALE 0

SBALE 1

SBALE 2

SBALE 3

SBALE 14

4KB buffer

SBAL 1

Pointer to buffer 2

Pointer to buffer 13

Pointer to buffer 14

4KB buffer

4KB buffer

4KB buffer

Pointer to QTCB

Queue transfer

control block

SBAL 2

SBALE 0

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

494

trigger a read operation. Instead, they are left pending
until unsolicited status arrives. When the FCP channel
receives unsolicited status information, this status is put
into one of the pending buffers, and the associated
request identifier is posted in the response queue.

6. A command flow scenario
This section presents a sample scenario for the cooperation
of a host program and the FCP channel in the execution of
I/O commands.

The first action that must occur before any other
communication with the Fibre Channel network can occur
is a fabric log-in (FLOGI), which is done by sending a
FLOGI command to the Fibre Channel switch to which
the FCP channel is directly connected. This fabric log-in is
done by the FCP channel when it initializes, as soon as it
is able to activate the Fibre Channel link to this switch.
No host program interaction is required for this purpose.

When the FCP channel initialization is complete, a host
program intending to use this channel must establish a

QDIO connection to the channel, as described in
Section 5, before it can begin communicating with the
Fibre Channel network. The host program must have
been configured with the addresses of the Fibre Channel
devices it wishes to access. The configuration of WWPNs
and LUNs for these devices and the mapping to standard
Linux device addressing constructs are described in
more detail in Section 9. To communicate with a device,
the host program must determine the Fibre Channel
destination identifiers (D_IDs) corresponding to the
configured WWPNs. This is done by accessing the name
server of the Fibre Channel fabric, as shown in Figure 8.
The host program must first send an Open_Port request
to the FCP channel, specifying the well-known destination
ID 0xFFFFFC of the name server. The FCP channel then
establishes a connection to the name server by performing

Figure 7

High-level control and dataflow.

Host program

FCP channel

QTCB

Data

Data

Request queue

2

1
7

3 6

5
4

QTCB

(copy)

Data

Data

Response queue

Host program

puts request ID

and pointers to

QTCB and data

buffers into

request queue

and triggers

execution.

QDIO transfers

QTCB and

(optionally) data

into FCP channel

memory and

triggers FCP

channel firmware.

FCP channel

firmware executes

command. This

may require an

I/O operation

(performed

asynchronously).

Host program

puts command

and parameters

into QTCB and

(optionally) data

into data buffers.

Host program

is invoked and

processes

results.

QDIO transfers QTCB

back into zSeries main

memory at original

location, optionally

transfers data into data

buffers in zSeries main

memory, and puts request

ID into response queue.

FCP channel

firmware puts

status and response

data into QTCB

and triggers QDIO

layer.

Figure 8

Name server accesses to determine D_IDs of target ports.

Host program FCP channel Fibre Channel network

(name server)

Open port

0xFFFFFC

(name server)

(If port has not been

opened already:)

 Send PLOGI to

 0xFFFFFC

Accept

Accept

Send generic command

(port handle x) to name

server to get D_ID for

target WWPN
Issue CT_IU request

to name server

Assign

D_ID and

return

in command

response
CT_IU response

from name server

contains D_ID of target

(Repeat this sequence for all target WWPNs configured to this

host program)

Close port

(port handle x)

(If no other host

program has this

port open:)

 Send LOGO to

 0xFFFFFC

Invalidate port handle x

and send completion message

Assign port handle x

and report in completion message

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

495

a port log-in (PLOGI) to that D_ID. If this completes
successfully, it assigns a port handle x to the logical
connection to this port and returns this handle in the

completion message to the host program. The host
program must specify this port handle in all subsequent
requests to this target port.

Next, the host program issues the command
Send_Generic to the FCP channel in order to send so-
called Fibre Channel generic requests (of type CT_IU) to
the name server to interrogate the D_IDs of all of the target
ports (identified by their WWPNs) it wishes to access.
When it has finished, it finally sends a Close_Port request
for this name server port (identified by its port handle) to
the FCP channel. This causes the FCP channel to send a
port log-out (LOGO) request to the name server port
0xFFFFFC. When this request has completed, the FCP
channel invalidates the port handle x again and returns
a completion indication to the host program.

The host program now recognizes all of the D_IDs of
the target ports it wishes to access and is ready to set up
connections to those ports and the attached devices. A
connection to a target port is established by sending an
Open_Port request to the FCP channel, specifying the
D_ID of that port (see Figure 9). In the same manner as
for an Open_Port to the name server, the FCP channel
again sends a PLOGI request to that port. However,
upon successful completion of this request, it also sends a
process log-in (PRLI) and, finally, a link incident report
registration (LIRR) to this port. These two latter requests
are suppressed for log-ins to ports with well-known Fibre
Channel addresses starting with 0xFF . . . (for instance, the
address of the name server). When all of these sequences
have completed successfully, the FCP channel assigns a
port handle x to this connection and returns it with the
completion message to the host program.

If a second host program now issues an Open_Port
request to this same port, the PLOGI, PRLI, and LIRR
requests are not sent. Instead, the FCP channel just opens
the port logically and assigns a different port handle x1 to
this connection. Both host programs now have access to
the same physical Fibre Channel port, each of them using
its own unique port handle.

After the host program has created a connection to a
Fibre Channel port, it can establish connections to all of the
LUNs accessible via this port that have been configured to
this host program. This is done by sending an Open_LUN
request for a particular LUN, specifying the port handle
of the associated Fibre Channel port and the 8-byte Fibre
Channel LUN of the device. Opening a LUN does not
cause any requests to be sent to the Fibre Channel
network; rather, it is handled internally by the FCP
channel. It assigns a LUN handle y to this connection
to the device and returns it to the host program.

The host program is now able to send read and write
requests to such a device, as shown in Figure 10 for the
case of a write. The host program builds the FCP request

Figure 9

Open target port and LUN.

Host program FCP channel Fibre Channel

network

Open port

D_ID xx
(If port has not been

opened already:)

 Send PLOGI to D_ID

 Send PRLI to D_ID

 Send LIRR to D_ID

Accept

Accept

Accept

Assign port handle x and

report in completion message

Assign LUN handle y and

report in completion message

Open LUN yy

(port handle x)

(Mark LUN as logically open)

Figure 10

Issue write (and read) requests.

Host program FCP channel Fibre Channel

network

Build FCP

command structure

for write request

Send_FCP command (port handle x,

LUN handle y)

Send

completion

message

(Repeat this sequence for arbitrary number of data write

requests, or equivalent sequence for read requests)

Transfer request

and write data into

channel memory.

 Issue FCP data write request

 as specified by host program

Forward completion

message to host

Receive data

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

496

to write data to its own host memory and issues a
Send_FCP command to the FCP channel to trigger the
execution of this command. Port handle x and LUN
handle y are used to identify the target device for this
operation. The FCP channel now transfers both the
request and the data to be written from host memory into
FCP-channel internal memory, and sends the request to
the Fibre Channel network. When the operation is
complete, a completion indication is returned to the host
program, together with any sense data that might have
been received for this request.

It must be noted that the host program may have any
number of concurrent requests to the same or different
devices outstanding at any given time, limited only by the
amount of resources available in the FCP channel.

When the host program is finished with a certain device,
it can issue the Close_LUN command for that device,
which causes the FCP channel to invalidate the LUN
handle y that had been assigned to this LUN (see
Figure 11). No requests are sent to the Fibre Channel
network in this situation.

Finally, when the host program has closed all LUNs
that are accessed via a particular target port and wishes
to close that target port, it issues a Close_Port command,
specifying the pertinent port handle x. The FCP channel
now determines whether any other host program still has
an open connection to this port. If this is the case, it just
invalidates port handle x and sends a completion indication
back to the host program. Otherwise, if this was the last or
only host program to talk to this port, it first sends a port
log-out (LOGO) request to the Fibre Channel port before
returning the completion indication to the host program.

7. The zSeries FCP channel
This section presents a brief overview of the FCP channel
hardware and firmware concept.

The I/O attachments supported on the zSeries can be
divided into two categories.

The first category contains direct attachments based
on IBM-created hardware and attachment protocols,
developed to meet the stringent reliability and data
integrity requirements of zSeries-class systems. Examples
are parallel channels, ESCON channels, and coupling
links used to build zSeries Parallel Sysplexes*.

The second category comprises those attachments which
provide a vehicle for including industry-standard I/O
adapters, in particular Peripheral Component Interface
(PCI) adapters, either in the form of PCI daughter cards
or through inclusion of their chip sets on the zSeries
channel card. Examples are the zSeries Crypto, Gigabit
Ethernet, and FICON cards.

In other system configurations, PCI adapters have direct
memory access to the system memory. Since the PCI bus
and PCI adapters generally do not meet the high security

and data integrity requirements of the zSeries, such a
direct access approach from the PCI adapter and bus
into zSeries memory has not been implemented. Rather,
zSeries channels always use a store-and-forward data
transfer scheme to or from the PCI adapters.

The zSeries FCP channel is of the second category.

Hardware overview
The zSeries FCP channel hardware is based on a zSeries
I/O book package (see Figure 12). This package contains
two completely independent channels, each providing a
single Fibre Channel port, and a dedicated interface to

Figure 11

Close LUN and target port.

Host program FCP channel Fibre Channel

network

Close LUN

(port handle x,

LUN handle y)

Invalidate LUN handle y

and send completion message

Close port

(port handle x)

(If no other host program

has this port open:)

Send PLOGO to

corresponding D_ID

Accept

(Mark LUN as logically closed)

Invalidate port handle x

and send completion message

Figure 12

Hosting of two FCP channels by the zSeries I/O book.

FCP

channel 1

FCP

channel 2

CEC interface

(through backplane of zSeries I/O cage)

STI

Fibre Channel

port 1

Fibre Channel

port 2

zSeries FCP

channel

(I/O book)

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

497

the central electronic complex (CEC). The card has the
same form factor as other regular zSeries I/O cards and
also uses the same CEC interface, referred to as the self-
timed interface (STI).

The hardware of the zSeries FCP channel is identical
to that of the FICON or FICON Express feature. It is
the unique firmware that causes this hardware to execute
in FICON or FCP mode. It supports both short-wave
and long-wave optical Fibre Channel interfaces, and
transmission speeds of 1 Gb/s and 2 Gb/s. A simplified
block diagram of the zSeries FCP channel hardware
feature is shown in Figure 13.

The STI provides all signals required for data transfer
and control of the channel. Its narrow yet high-speed
design reduces the I/O pin count required, thus permitting
a large number of adapters to be attached to the system.
The STI attaches directly to the system interface bridge
on one of the channels and is then fed through to the
other channel in the same I/O book package.

The system interface bridge chip is fully checked
internally and performs a number of roles. It hosts
the DMA engines of the channel. All customer data
transferred to and from the channel must pass through
the 64MB SDRAM local data storage (LDS), which is a
staging area for customer data and hosts several buffer
pools of differing sizes. This permits the greatest
throughput by matching the sizes of the buffers used
to the sizes of the transfer requests. Quite often it is

necessary for the channel to communicate with other
system elements through small control structures. For this
reason, the system interface bridge contains facilities for
the processor to fetch and store small memory blocks
(in multiples of 128 bytes) directly from/to host memory,
bypassing the DMA facility and the associated interrupt
handling.

The system interface bridge chip also contains the
PCI bus arbitration logic and memory access control.
Numerous addressing boundary checkers are built in
to increase the data integrity of the channel.

The system interface bridge DMA engine is managed
through the use of a Data Mover Queue (DMQ). This
construct is the key to efficient pipelining of data through
the adapter. A circular queue specific to the system
interface bridge is constructed by code in local processor
storage (LPS). The queue elements are composed of
control structures establishing ownership (system interface
bridge vs. firmware), memory access key information,
operation completion status, and, most significantly,
scatter/gather lists for adapter memory and main memory.
The DMA operations are bidirectional and single-
threaded, offering FIFO scheduling for execution. For
more details on the system interface bridge chip and the
STI interface, see [11] and [10].

The processor complex of the adapter consists of a
pair of PowerPC* 740 “Lonestar” processors and their
associated memory controller chips. The pair run in
parallel to exploit the cross-checking capability of the
memory controller chips. This configuration enhances the
data integrity of the channel. The memory controller also
provides memory access protection and processor cache
control.

LPS is a 64MB SDRAM divided into several functional
areas including control program memory, program heap,
and stack space. Access to these areas is granted only to
the processor. Other memory areas, which are accessible
to both the processor and the Fibre Channel link adapter,
contain control structures for queueing work to the Fibre
Channel link.

The channel also contains a 2MB flash memory, which
contains the basic boot code deemed necessary for
preservation across power and reset cycles, to allow
initialization of all channel hardware facilities. This flash
memory also contains code critical to recovery from
hardware- and software-detected errors.

The channel interface to the Fibre Channel fabric is via
an Emulex chip set on the FICON Express feature, which
provides the functionality of an Emulex LP9002 adapter.3

The chip set includes an ASIC, an ARM processor, buffer

3 “LightPulse LP9002 Data Sheet,” Emulex Corporation, Costa Mesa, CA; see
www.emulex.com.

Figure 13

Block diagram of FCP channel hardware.

High-speed

system attachment

(STI)

Internal PCI bus

Fiber optic link to

Fibre Channel fabric

Embedded

microcontroller

(master)

Embedded

microcontroller

(checked)

Memory

controller

Memory

controller

64MB SDRAM

2MB flash

Emulex FCP

control element

System

interface bridge

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

498

and program memory space, and flash memory from which
the firmware is loaded at initialization. The Emulex chip
set shares LPS memory for control structures and has
access to LDS memory for customer data.

All mainline Fibre Channel data transfer is sequenced
on the link by the Emulex chip set. Basic recovery
sequences can be performed by this chip set without
intervention from the channel firmware. In addition, a
large subset of SAN maintenance extended link services
(ELSs) are also handled by the Emulex chip set. All ELSs
that must be processed by a higher-level protocol layer
are passed up to the channel firmware.

The channel firmware is capable of updating the flash
memory of the Emulex chip set at adapter initialization
time, which significantly enhances the serviceability of the
product.

8. RAS
The zSeries FICON and FICON Express features
operating in FCP mode adhere to the same reliability,
availability, and serviceability (RAS) concept defined
for other zSeries channels. This allows, for instance,
the diagnosis of channel problems and repair (i.e.,
replacement) of a channel when necessary without
affecting other parts of the zSeries system which are
not currently using this channel. In the same way, when
the FCP I/O capacity or connectivity of a zSeries system is
increased, additional FICON or FICON Express feature
cards can be installed and activated in FCP mode while
zSeries operations are in progress on other parts of
the system, including other zSeries FCP I/O paths. In
addition, the firmware of the FCP channel can be replaced
at the same time, should that be required to resolve any
problem found in this code, or in some cases even to add
new functions to the FCP channel.

For error handling, the sophisticated error reporting,
logging, recovery, and diagnostic support functions as
defined for the zSeries FICON channels are also available
for the zSeries FCP channel.

Error reporting is done in several ways. General
problems with the FCP channel, especially channel
hardware problems, are logged to the zSeries support
element (SE), as is done for FICON channels. For other
types of errors, the associated error information may be
logged on the SE, by the Linux operating system, or
both, depending on the type of error. For instance, all
Fibre Channel layer 2 problems detected by the FCP
channel are reported to the SE for logging. Additionally,
special traces can be set up by the operating system to
trace the execution of any FCP command, if required,
for debugging and error diagnosis.

Another capability required of the zSeries FCP channel
is the handling of unsolicited indications from the Fibre

Channel network. A node in a Fibre Channel network may
send unsolicited information, using the ELS mechanism,
to report and assist in isolating and diagnosing potential
problems in the Fibre Channel network. An example of
this type of notification is the registered link incident
report (RLIR), which provides error information related
to Fibre Channel link problems. As the name suggests,
participants in the Fibre Channel network can register
for these types of notifications. The zSeries FCP channel
performs such a registration and reports this information
to both the SE and the operating system.

Another type of unsolicited information that may arrive
as incoming ELSs is registered state change notifications
(RSCNs). They notify a registrant, for example, about
any log-in state change of a device, which may be an
indication that a device has been added to or removed
from the network or has failed. The FCP channel also
does a registration for these types of ELSs. When such
a notification arrives, the FCP channel generates the
corresponding ELS response and also forwards the
incoming ELSs as an unsolicited status notification to
the host program. The host program will log this event
and potentially initiate an appropriate recovery action.

9. FCP support in Linux for zSeries

Background
Since the development of Linux by Linus Torvalds in
1991, it has been significantly extended and improved by
a huge number of developers from all over the world,
making it an industrial-strength operating system for
running anything from appliances to mainframe
computers. Initially developed for x86 Intel PCs only,
Linux has since been ported to a large number of
hardware platforms with very different attributes, ranging
from embedded controllers to IBM ESA/390- and
z/Architecture-based servers.

The Linux porting project
When Linux was ported to the ESA/390 architecture in
1999, it was necessary to adapt to a completely different
I/O scheme which employed the ESA/390 channel
architecture. Because of the I/O abstraction scheme
the Linux kernel has implemented in its platform-
independent code layers, it was possible to preserve the
concepts of devices and interrupt request lines (IRQs)
on which Linux is based and easily map them to the
ESA/390 I/O addressing schemes, with an ESA/390 I/O
subchannel mapping to the logical construct of an IRQ.

SCSI and FCP support
In addition to SCSI, servers today take advantage of the
bandwidth and connectivity of Fibre Channel attachments

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

499

to implement FCP protocols in FC-AL or switched Fibre
Channel fabrics.

Linux has provided SCSI support for years. However,
FCP-based I/O addressing semantics have not yet been
pervasively embraced. The Linux SCSI stack continues
to address SCSI devices exclusively by the address
quadruple host, bus, target, and LUN, and does not
support the WWPN/LUN addressing scheme on which
FCP is based. Instead, a Linux Fibre Channel HBA
device driver is expected to provide an addressing
translation scheme to the upper-level SCSI kernel layers
and implement the required lower-level Fibre Channel

layers as required, as well as any SCSI/FCP addressing
translation itself.

The FCP support for Linux on zSeries is based on Linux
SCSI support. This includes four high-level, platform-
independent device drivers for SCSI disk, tape, and
removable media, and a generic SCSI device.

zSeries specifics
The FCP support in Linux for zSeries utilizes the same
QDIO infrastructure that is also exploited by Linux
networking device drivers. Linux for zSeries has
implemented a common I/O support layer for traditional
CCW-based I/O semantics. Further, it provides support for
QDIO semantics, which are employed in the zSeries by
OSA-Express network adapters, HiperSockets internal
LANs, and the FCP channels. This provides a very
efficient way of exchanging I/O requests and moving data
between an operating system and an I/O adapter (see
Section 5 for details). The Linux SCSI/FCP control
flow is shown in Figure 14.

Since Linux has not yet embraced Fibre Channel
support in its kernel infrastructure, the FCP semantics
must be translated into the SCSI addressing scheme
used by the Linux SCSI stack. It is also necessary to
implement new functionality in the device driver according
to Fibre Channel standards, for instance to perform a port
log-in (PLOGI). All of this is accomplished in the zfcp
HBA device driver shown in Figure 15. However, only
part of the work in the FC-2-related area is left to the
Linux drivers, because some of it is already done by
zSeries FCP channel firmware that provides virtualization
and sharing, as described in previous chapters.

Figure 15 depicts the addressing translation as it
appears within the zfcp HBA driver itself, applying to
mid-level SCSI stack addressing semantics on the left side
and attaching to FCP QDIO semantics on the right side.

Figure 16

SCSI address mapping example.

I/O fabric

WWPN

0x12345B38c890e842

SCSI ID 3

FCP LUN

5142000000000000

SCSI LUN 1

FCP LUN

5168000000000000

SCSI LUN 2

FCP LUN

5101000000000000

SCSI LUN 0

zSeries OS:

Device No. 0xADEF

Figure 14

Linux SCSI/FCP control flow.

SCSI high-level device driver (disk, tape ...)

Linux application

Files system (UDF, ISO 9660, EXT2 ...)

zfcp HBA device driver

Linux SCB

Read, write ...

S/390 I/O

SSCH I/O interrupts

zSeries hardware

do_IO(CCW chain)

QDIO support

do_QDIO

SIGA

Figure 15

SCSI address mapping in Linux for zSeries.

zSeries

FCP HBA

addressing

scheme

Linux SCSI

stack device

addressing

scheme

zSeries FCP HBA

driver (zfcp)

addressing

scheme

HBA driver

internal

mapping

HBA driver

mapping to

Linux SCSI

stack

Bus

Target

LUN

FC S_ID

LUN_HandleFCP_LUN

FC adapter

source

port

WWPN

FC D_ID / FC WWPN

FC WWNNHost

Port_Handle

Subchannel

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

500

In order to enforce SCSI-to-FCP address mapping, the
zfcp HBA device driver further provides a configuration
interface to accomplish this task.4 The HBA device
driver provides two different methods of defining such a
mapping. One is a kernel or module parameter interface
that activates the mapping when the driver is loaded. The
other is a /proc file system interface that redefines address
mappings at run time. A simple mapping is shown in
Figure 16. Such a mapping is entered by the Linux
operator using a configuration tool specific to the Linux
distribution and stored in a distribution-specific way.
A Linux script provided by such a Linux distribution
may, for instance, convey these parameters to the /proc
file system at startup time.

This mapping translates to the following zfcp HBA
device driver mapping:

map�� �

0xADEF 0x03:0x012345B38c890e842 0x00:0x5101000000000000;�

0xADEF 0x03:0x012345B38c890e842 0x01:0x5142000000000000;�

0xADEF 0x03:0x012345B38c890e842 0x02:0x5168000000000000�

The first column identifies the zSeries device number,
designating the logical FCP adapter instance. The second
column maps the SCSI ID (3) to the WWPN of the target
port. Linux uses this information to obtain the target
D_ID from the name server if connected to a switch.
Finally, the third column maps the different SCSI LUNs
(0 to 2) to 8-byte FCP LUNs. All numbers have been
specified in hexadecimal notation. Mappings not resolvable
during system startup can be retriggered.

Using this simple approach, the zfcp HBA device driver
takes advantage of the existing Linux SCSI subsystem
and limits new Fibre-Channel-specific configuration duties
to apply to the device driver only. Any adaptation to Fibre
Channel semantics is encapsulated within the device driver
itself. Therefore, from the SCSI subsystem perspective, the
zfcp HBA device driver appears to be just another HBA
device driver. Only the SCSI ID and LUN name space
appear to be larger than usually found with parallel SCSI
attachments.

10. Summary
The zSeries FCP channel support opens new possibilities for
zSeries and Linux for zSeries with respect to industry-
standard Fibre Channel and SCSI controllers and devices,
augmenting the traditional zSeries peripheral I/O
attachments. It extends the virtualization approach to
industry-standard devices and gives it unique value in the
UNIX market environment, where HBAs are typically
dedicated, and also in UNIX server environments that
support partitioning. Therefore, zSeries and Linux, along

with industry-standard FCP and SCSI device attachments,
turn out to be an excellent and synergistic match.

Acknowledgments
The authors wish to thank Allan Meritt and Juergen
Maergner (both at IBM) and Michael O’Donnell (McData
Corporation) for their many valuable comments regarding
this paper. The number of contributors to the zSeries FCP
has grown too large to list here, but we would like to
express our appreciation to a few of the key developers:
Otto Ruoss, Ralph Friedrich, Juergen Leopold, Markus
Schmidt, Christian Rund, Khadija Souissi, Marco
Kraemer, Karl-Friedrich Morlock, Eckehard Schulz, John
Flanagan, Mark Bendyk, Rich LaFalce, Doug Lin, Martin
Peschke, Aron Zeh, and Dr. Raimund Schroeder. Finally,
our thanks go to Simone Schulz, who gave us the initial
impetus to write this paper, and to John Marshall for the
care he devoted to editing it.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, The Open Group, or Linus Torvalds.

References
1. ANSI/INCITS, Technical Committee T10, “Information

Technology—SCSI Architecture Model (SAM),” American
National Standards Institute and InterNational Committee
for Information Technology Standards, Washington, DC, 1995.

2. IBM Corporation, z/Architecture Principles of Operation,
Order No. SA22-7832, 2001; available through IBM branch
offices.

3. ANSI/INCITS, Technical Committee T10, “Information
Technology—Serial Storage Architecture—SCSI-3 Protocol
(SSA-S3P),” American National Standards Institute and
InterNational Committee for Information Technology
Standards, Washington, DC, 1997.

4. ANSI/X3.269:1996, “Information Systems—Fibre Channel
Protocol for SCSI (FCP),” American National Standards
Institute, Washington, DC, 1996.

5. ANSI/INCITS, Technical Committee T10, “Information
Technology—Fibre Channel Protocol for SCSI, Second
Version (FCP-2),” American National Standards Institute
and InterNational Committee for Information Technology
Standards, Washington, DC, 2001.

6. ANSI/INCITS, Technical Committee T11, “Fibre Channel
Framing and Signaling (FC-FS),” American National
Standards Institute and InterNational Committee for
Information Technology Standards, Washington, DC,
2002.

7. ANSI/INCITS, Technical Committee T11, “Fibre Channel
Generic Services-3 (FC-GS-3),” American National
Standards Institute and InterNational Committee for
Information Technology Standards, Washington, DC,
2000.

8. ANSI/INCITS, Technical Committee T10, “Information
Technology—SCSI Architecture Model-2 (SAM-2),”
American National Standards Institute and InterNational
Committee for Information Technology Standards,
Washington, DC, 2002.

9. ANSI/INCITS, Technical Committee T11, “Fibre Channel
Single-Byte Command Code Sets-2 Mapping Protocol (FC-

4 There is currently no dynamic discovery in place, since it may not be feasible to
provide a persistent SCSI configuration appearance to user space without Linux
providing a common Fibre Channel infrastructure itself, which would eliminate the
need for a SCSI mapping.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 I. ADLUNG ET AL.

501

SB-2), Rev. 2.0,” American National Standards Institute
and InterNational Committee for Information Technology
Standards, Washington, DC, 2000.

10. D. J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin,
S. G. Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick,
and C. H. Whitehead, “IBM eServer z900 I/O Subsystem,”
IBM J. Res. & Dev. 46, No. 4/5, 421– 445 (2002, this issue).

11. J. M. Hoke, P. W. Bond, R. R. Livolsi, T. C. Lo, F. S.
Pidala, and G. Steinbrueck, “Self-Timed Interface of the
Input/Output Subsystem of the IBM eServer z900,” IBM
J. Res. & Dev. 46, No. 4/5, 447– 460 (2002, this issue).

12. M. E. Baskey, M. Eder, D. A. Elko, B. H. Ratcliff, and
D. W. Schmidt, “zSeries Features for Optimized Sockets-
Based Messaging: HiperSockets and OSA-Express,” IBM
J. Res. & Dev. 46, No. 4/5, 475– 485 (2002, this issue).

Received November 27, 2001; accepted for publication
April 8, 2002

Ingo Adlung IBM Server Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (adlung@de.ibm.com). Mr.
Adlung graduated from the University of Applied Sciences in
Esslingen, Germany, with a degree in information technology.
He joined IBM VSE/ESA development in 1990 and was
involved in the development of Linux for zSeries from its very
beginning, with responsibility for the I/O subsystem. Since
2000, he has been the Linux strategy and design leader for
the IBM eServer zSeries platform.

Gerhard Banzhaf IBM Server Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (banzhaf@de.ibm.com). Dr.
Banzhaf received a Diploma (M.S.) in computer science from
the University of Karlsruhe (TH) and a Ph.D. in electrical
engineering from the University of Siegen (GHS). He joined
IBM at the Boeblingen Development Laboratory, where he is
concerned primarily with the development of I/O subsystems
and microcode.

Wolfgang Eckert IBM Server Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (weckert@de.ibm.com). Mr.
Eckert received a Diploma (M.S.) in physics from the
University of Hamburg. He is an IBM Distinguished Engineer
and is now working on IBM eServer system design and
hardware/software interfaces/architecture. He joined IBM
in 1968.

George Kuch IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (gkuch@us.ibm.com). Mr. Kuch
holds an M.S. degree in computer engineering from Syracuse
University. He joined the IBM channel development effort
for mainframe systems in 1980 and has been involved in all
aspects of channel engineering including design, simulation,
microcode development, tool development, test, and project
management. Mr. Kuch is now part of the zSeries FCP
channel microcode development team.

Stefan Mueller IBM Server Group, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (stefan@de.ibm.com). Mr. Mueller
studied computer science at the Berufsakademie Stuttgart,
graduating in 1993. His studies were accompanied by practical
training at IBM in Sindelfingen, Germany. In 1993 he joined
the IBM Boeblingen Development Laboratory as an R&D
engineer, participating in the development of zSeries internal
disk subsystems. He now leads a development team for the
zSeries FCP channel.

Christoph Raisch IBM Server Group, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (raisch@de.ibm.com). Mr.
Raisch received a Diploma (M.S.) in electrical engineering
from the University of Stuttgart. In 1998 he joined IBM at the
Boeblingen Development Laboratory, where he now works on
microcode and development of I/O subsystems for Linux.

I. ADLUNG ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

502

