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The vertical scaling requirements for gate
stacks and for shallow extension junctions
are reviewed. For gate stacks, considerable
progress has been made in optimizing
oxide/nitride and oxynitride dielectrics to
reduce boron penetration and dielectric
leakage compared to pure SiO, in order to
allow sub-2-nm dielectrics. Several promising
alternative material candidates exist for 1-nm
equivalent oxide thickness (EOT)—for example,
HfO,, ZrO,, and their silicates. Nevertheless,
considerable challenges lie ahead if we are to
achieve an EOT of less than 0.5 nm. If only a
single molecular interface layer of oxide is
needed to preserve high channel mobility, it
seems likely that an EOT of 0.4-0.5 nm would
represent the physical limit of dielectric
scaling, but even then with a very high
leakage (~10° A/cm?). For junctions, the main
challenge lies in providing low parasitic series
resistance as depths are scaled in order

to reduce short-channel effects. Because
contacts are ultimately expected to dominate
the parasitic resistance, low-barrier-height
contacts and/or very heavily doped junctions
will be required. While ion implantation and

annealing processes can certainly be extended
to meet the junction-depth and series-
resistance requirements for additional
generations, alternative low-temperature
deposition processes that produce either
metastably or extraordinarily activated,
abruptly doped regions seem better suited

to solve the contact resistance problem.

Introduction

Advances in silicon ULSI technology have historically
been made by scaling of the device dimensions [1, 2].
According to scaling theory, both lateral dimensions (i.e.,
lithographic feature sizes) and vertical dimensions (e.g.,
junction depths) should be reduced to increase the
packing density of devices while avoiding deleterious
short-channel effects. The International Technology
Roadmap for Semiconductors (ITRS) [3] provides a
consensus scenario of how device parameters will scale
for technology generations ranging from today’s 130-nm
technology to devices as small as 22 nm in the year 2016.
The technology node parameter, also called the technology
generation, represented the minimum lithographic image size
in earlier generations of the Roadmap; now it refers to the
DRAM half-pitch. This projected progress is even more
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remarkable when one notes that, for leading-edge
microprocessor chips, the physical gate length is only 60% of
the node parameter, and the effective channel length could
be as little as half of the physical gate length. Thus, the
Roadmap envisions devices having effective channel lengths
well under 10 nm within the next 15 years. Furthermore, the
recent historical rate of progress has been even faster than
that predicted by the roadmaps or Moore’s law. Each
successive version of the ITRS Roadmap, from 1994 to
2001, has been more aggressive than the previous one:
New technology nodes have been introduced more rapidly
than expected, and, for each subsequent node, gate oxides
have been thinner and junctions shallower than envisioned
only a few years ago.

One explanation for the acceleration in progress is that
it is a natural consequence of competition. Companies
that wanted to attain a leadership status to stay
competitive were forced to try to do better than the
Roadmap. Because so many companies were successful,
the industry as a whole moved faster than expected. One
consequence of this rapid progress is that Roadmap
projections became outdated almost immediately, forcing a
need to update it every year. Figure 1 shows an example
of the actual historical trend in gate-oxide thickness
compared to Roadmap projections. Over the past ten
years, gate dielectrics have scaled much faster than any
of the Roadmap projections would have indicated. To
compensate for the woefully conservative earlier estimates
of technology parameters, later Roadmap committees have
become more aggressive in projecting future scaling
trends—to the point of straining current sensibilities.
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Many individuals have noted the “sea of red” alongside
the long-term technology requirements in the Roadmap,
designating that there are no known solutions for almost
any of the technology parameters. For example, the
extrapolation of the historical trend in gate dielectric
thickness extends below a molecular layer of SiO, in the
year 2006! Thus, it is appropriate to seriously question
both the basis of the requirements and whether or not
we are trying to exceed the fundamental properties of
materials and are doomed to failure.

This paper considers two of the key vertical scaling
challenges, namely the gate stack (dielectric and
electrode) and the extension junction. It first reviews and
justifies some of the device requirements embedded in the
Roadmap numbers for these elements. Then it presents a
status report on work aimed at achieving materials and
processes for end-of-the-Roadmap devices; finally, it
provides a (speculative) prognosis on the likelihood of
ultimately achieving Roadmap goals in a timely manner.

Scaled gate stacks

Requirements

Scaling the thickness of the gate dielectric has long been
recognized as one of the keys to scaling devices. Device
current drive (and transconductance) is proportional to
the oxide capacitance per unit area; thus, the best way

to increase the drive current and thereby achieve high
performance is to reduce the equivalent oxide thickness
(EOT). Scaling of the operating voltage is essential for
integrating increased numbers of devices at power levels
commensurate with the ability to cool the chip. Scaling the
oxide thickness is essential to being able to scale operating
voltages; for a given substrate doping, the electric field in
the substrate required to form an inversion channel is
fixed and is roughly proportional to the applied voltage
divided by the gate dielectric thickness. To achieve the
same Si field (and inversion layer charge), it is necessary
to scale the gate oxide at the same rate as the voltage.
Thus, one would nominally expect that the gate dielectric
should be reduced at the same rate as device dimensions,
i.e., by a factor of the square root of 2 (0.707) between
major technology nodes, which occur about every three
years.

The fact that some device parameters do not scale
ideally modifies the requirements on gate-oxide thickness.
When oxide thickness is reduced and substrate doping
increased, a large electric field is applied to the
oxide/silicon interface that can cause a significant
quantization of the carriers perpendicular to the interface
[4-9]. There are two major effects of this quantization:
a) Surface charges are confined in localized energy levels
above the edge of the conduction band, requiring more
band bending (higher voltage) to obtain the same channel
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charge; and b) the charge distribution is peaked farther
from the surface than classical theory would predict [9].
The latter effect, along with polysilicon depletion [10],
decreases the total gate capacitance in inversion and can
be interpreted as an increase in EOT [11]. In the limit,
even if the physical gate dielectric thickness went to
zero, these quantum effects would result in an effective
dielectric thickness of a few angstroms. Thus, scaling the
total gate capacitance requires that the oxide thickness be
reduced faster than simple scaling would prescribe. As the
substrate doping increases in order to scale down junction
depletion widths, the peak channel mobility is reduced.
One way to compensate for the mobility reduction is
to scale the oxide even faster than the normal scaling
rules would suggest. On the other hand, to keep from
exacerbating the gate leakage and degrading the device
reliability, scaling of the gate dielectric thickness must
mirror scaling of the power-supply voltage. Since the
operating temperature is not scaled, the threshold voltage
cannot be further scaled without exceeding the off-state
leakage requirement; hence, toward the end of the
Roadmap, neither the power-supply voltage nor the gate
dielectric thickness can be scaled as rapidly as device
dimensions. Finally, boron dopant penetration is enhanced
when thinner gate oxides are used [12], leading many
users to employ thicker oxides than scaling would suggest.
Even if the gate dielectric is not scaled as rapidly as
feature sizes, the ITRS requirements, as summarized in
Table 1, show that equivalent oxide thicknesses down to
only a few angstroms will be required in the next fifteen
years if we are to continue the current rate of progress.
There are many important requirements on this ultrathin
dielectric. Most obvious is the need for the EOT to be
small. Even if sophisticated vertical and lateral channel
engineering is employed to minimize short-channel effects,
thin dielectrics are needed in order to obtain high device
drive current. High drive current, of course, is needed in
order to obtain high circuit performance while allowing
the power-supply voltage to be reduced, which is a
necessity if the power per device is to be reduced in order
to allow higher levels of integration. Equally important
is the need to reduce the gate leakage current, since it
contributes to the off-state leakage and power and could
even be of the same order as the drain-source current, .
The low-leakage requirement is difficult for applications
that require low operating power, but it is even more
stringent for those that require low standby power (see
Table 1). Meeting the leakage requirement means
that the dielectric must be physically thick and it must
have reasonably large band offsets to Si, so that direct
tunneling is minimized. Furthermore, the conduction in
the dielectric must be purely electronic, not ionic, and
preferably by electrons only. The dielectric cannot contain
traps that would promote trap-assisted tunneling or locally
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uncompensated charges that would degrade channel
mobility. Unfortunately, materials having a high dielectric
constant have a high ionic bonding component. Thus,
these materials are likely to exhibit both ionic conduction
and high charge levels. For example, a deviation of only
10 ppm in charge (stoichiometry) in a 1-nm-thick material
having the same atom density as SiO, would lead to about
3 X 10" charges/cm’; a material with the same EOT but
having a high k of 39 would have 3 X 10" charges/cm’!
Any alternative dielectric is required to preserve high
device channel mobility; it cannot degrade the interfacial
roughness nor add interfacial charge scattering centers. In
particular, both plasmon and phonon scattering will likely
need to be considered with high-k materials; since the
phonon frequencies and therefore energies are generally
much lower for high-k materials than for SiO,, the
scattering between electrons in the channel and phonons
could be significant [13, 14]. The simplest way to meet
this mobility requirement in the near term is to use an
interfacial layer of oxide (or nitrogen-doped oxide).
However, a single molecular layer of SiO, contributes
about 0.3 nm to the overall EOT and must be eliminated
if we are to meet the ITRS goals ten years from now.
Finally, during process integration the dielectric must be
thermally and chemically stable with respect to the Si
substrate (or interfacial oxide layer) and with respect to
the gate electrode (or its interfacial layer). The dielectric
should not be reduced to form a silicide, nor should
additional oxidation occur to increase EOT (from oxygen
or water vapor in either the annealing atmosphere or
adsorbed to wafer surfaces). While partial reaction of a
high-k oxide with SiO, to form a silicate might be an
acceptable way to minimize the thickness of an interfacial
oxide, recrystallization and phase separation of high-k
systems are generally not perceived as being acceptable.
To eliminate the effects due to dopant depletion in the
gate (or to at least minimize them), the use of metal gate
electrodes has been suggested [15]. Metal electrodes
also provide a way to circumvent the boron penetration
problem associated with the use of p* polysilicon gates.
From a device point of view, control of the gate work
function is the most important requirement of the gate
metal, where analysis has shown that the optimal work
functions are those corresponding to the conduction and
valence bands for n-MOS and p-MOS devices, respectively
[16]. Thus, the use of metal gates requires that two metals
be used in CMOS. A single midgap-work-function material
would require low substrate doping to obtain the desired
threshold voltage; however, severe short-channel effects
occur with such lightly doped substrates. As the work
function changes from the band edge to midgap, less
substrate doping is needed to preserve the same device
threshold voltage (and thereby the off-state current).
Figure 2 shows the simulated resultant drive current that
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Table 1 Vertical scaling parameters for 2001 ITRS.

Year of first product shipment 2001 2004 2007 2010 2013 2016
Technology node 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm
DRAM half-pitch (nm) 130 90 65 45 32 22
Physical gate length MPU/ASIC (nm) 65 37 25 18 13 9
Physical gate length low-power logic (nm) 90 53 32 22 16 11
Power supply for high performance (V) 1.2 1.0 0.8 0.6 0.5 0.4
Power supply for low operating power (V) 1.2 1.1 0.9 0.8 0.7 0.6
Power supply for low standby power (V) 1.2 1.2 1.1 1.0 0.9 0.9
Equivalent physical oxide thickness for 1.3-1.6 0.9-1.4 0.6-1.1 0.5-0.8 0.4-0.6 0.4-0.5
high-performance 7 (nm)
Equivalent physical oxide thickness for 2.0-2.4 1.4-1.8 1.0-1.4 0.8-1.2 0.7-1.1 0.6-1.0
low-operating-power T, (nm)
Equivalent physical oxide thickness for 24-28 1.8-2.2 1.2-1.6 0.9-1.3 0.8-1.2 0.7-1.1
low-standby-power T (nm)
Thickness control EOT (% 30) <*4 <=*4 <=*4 <*4 <=*4 <=*4
Gate dielectric leakage at 100°C (nA/pwm) 0.01 0.10 1.0 3 7 10
high performance
Gate dielectric leakage at 100°C (pA/um) 100 300 700 1000 3000 10000
low operating power
Gate dielectric leakage at 100°C (pA/um) 1 1 1 3 7 10
low standby power
Gate dielectric leakage at 100°C (A/cm?) 1.5 x 10 27X 10> 4.0x 10’ 1.7 X 10* 5.4 x 10* 1.1 x 10°
high performance
Gate dielectric leakage at 100°C (A/cm?®) 0.11 0.57 2.19 4.55 18.75 90.9
low operating power
Gate dielectric leakage at 100°C (A/ecm?) 0.0011 0.0019 0.0031 0.014 0.044 0.091
low standby power
Gate electrode thickness (nm) 65-130 37-74 25-50 18-36 13-26 9-18
Average gate electrode sheet R (2/00) 5 5 5 5 6 7
Drain extension X; (nm) 27-45 15-25 10-17 7-12 5-9 4-6
Drain extension sheet resistance (/0J) 400 660 760 830 940 1210
Extension lateral abruptness (nm/decade) 7.2 4.1 2.8 2.0 1.4 1.0
Sidewall spacer thickness (nm) extension 48-95 27-45 18-37 13-26 10-19 7-13
structure
Contact X; (nm) 48-95 27-45 18-37 13-26 10-19 7-13
Silicide thickness (nm) 35.8 20.4 13.8 9.9 7.2 5.0
Maximum silicon consumption (nm) 23-46 13-26 9-18 6-13 5-9 3-6
Contact silicide sheet R ((/0J) 4.2 7.4 10.9 15.2 21.0 30.3
Contact maximum resistivity (Q-cm?) 31x107 21x1077  1.1x107  66x10° 3.6x107° 22x107°

is achieved at the worst-case (long) channel length for
devices having L . = 50 nm + 20% and EOT = 0.9 nm.
302 Increased short-channel effects at lower substrate doping

result in degraded drive (on-state) current. On the other
hand, if the substrate doping is made overly high, the
degradation in channel mobility is responsible for a loss
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in drive current. Thus, there is a gate electrode work
function which maximizes the current drive. From an
integration perspective, the gate materials must be
thermally and chemically compatible with the high-k
dielectric. They must have good adhesion, and they must
be able to be controllably patterned. Other integration
issues associated with the use of dual metal gates are
discussed later.

Results

The use of 1.5 nm of SiO, as a gate dielectric was
demonstrated several years ago [17-20]. Although the gate
leakage was high as expected, good device characteristics
were recently reported for oxides (or oxynitrides)
measuring 1.0 nm and thinner [21-23]. In this work,
simulations were performed using the UTQUANT
program [24], which considered electron (m* = 0.5)
tunneling from the inversion channel to the gate of an
n-MOS device. This configuration then considered channel-
to-substrate tunneling for V, =V, and V =V, = 0,
where the channel is strongly inverted. The simulations
were verified by their very favorable comparison to

the published data and simulations of Lo et al. [6].
Simulations were performed using the supply voltage

and EOT for each of the ITRS nodes and applications.
Additional analyses would consider tunneling from the n*
junctions under these same bias conditions, since junctions
are present under about half of the physical gate length,
plus possible tunneling from the gate, for V/, = 0 and
V.=V, =V, bias conditions. Figure 3 compares the
simulated tunneling leakage with the ITRS gate leakage
requirement (which is based on the device off-state leakage
specification) for the future technology nodes for high-
performance, low-operating-power, and low-standby-power
applications. Interestingly, the simulations indicate that
the gate leakage in pure oxide is nearly acceptable for all
of the technology nodes, for high-performance devices,
e.g., microprocessors (MPUs); a slight reduction of
operating voltage or relaxation of the leakage specification
would make pure oxides viable from the point of view

of leakage. In fact, most leading-edge devices employ
oxynitride or oxide/nitride combinations that allow the use
of a slightly thicker dielectric for the same EOT. Success
has been achieved using moderate-k dielectrics such as
silicon nitride, silicon oxynitride, and aluminum oxide
down to about 1 nm [25-28]. Since studies have shown
that optimized oxynitride can reduce the leakage current
by about two orders of magnitude [25-26], one would
expect these dielectrics to meet the leakage specification
for all high-performance nodes. It is doubtful, however,
that oxides (or oxynitrides) down to 0.4 nm in

thickness (one molecular layer) would be reproducibly
manufacturable or sufficiently reliable to withstand the
passage of 10° A/cm”, which would amount to about
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10" CJem” of charge over a ten-year lifetime. Figure 3 also
shows that the simulated leakage currents for low-power
devices exceed the specifications as early as the 100-nm
node (2003). The use of oxynitride, which can lower the
leakage by two orders of magnitude, extends the viability
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effective electron mass of 0.5.

of this dielectric system by only two years, to about the
80-nm node. Thus, low-power applications present the
earliest driving need for low-leakage, high-k dielectrics.
Much investigation has focused on the identification of
candidates for high-k dielectric materials [29-31], and
considerable work has been done to evaluate a number
of these candidates. Because of the experience base with
these materials, Ta,O, [32-38] and TiO, [39-41] were
initially evaluated, but so far they have not demonstrated
the required thermal stability. For gate stacks having an
EOT = 1 nm, the current focus is on dielectrics such as
HfO, [41-45], ZrO, [41, 46-53], their silicates [54-57],
La,O, or Y,0; [58-61], and Al-doped oxides [62]. Figure 4
compares the channel mobility of HfO, dielectrics to thin-
oxide controls, which agree with universal mobility models
[7, 63-65]. Figure 5 shows the room-temperature stability
of the threshold voltage during constant-voltage stressing.
Even without optimization of the post-metal annealing
cycle to minimize dielectric charges, the projected shift
after ten years is only about 50 mV. However, the statistical
variation of that shift has not yet been quantified.

Prognosis

Since leakage current is the primary factor limiting the
further scaling of gate dielectrics, we have performed
additional simulations of leakage current to better define
the relationship between the dielectric constant and the
band offsets that will be required for future generations of
technology. This is portrayed in Figure 6, which shows the
allowed leakage contour for the most challenging case in
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Table 2 Band offsets and dielectric constants for different dielectric materials. Values are from [52, 62, 66-67].

Material Bandgap Relative dielectric Conduction band offset
(eV) constant (eV)

SiO, 9 3.9 3.15

Si,N, 5.3 7.9 2.4

AL O, 8.8 9.5-12 2.8

ZrSiO, ~6 10-12 1.5

ZrSiO, 4.5 ~0.7 (interfacial layer)

HIfSiO, ~6 ~10 1.5

ZrO, 5.7-5.8 12-16 1.4-1.5

HfO, 4.5-6 16-30 1.5

La,O, ~6 20.8 23

Ta,Oq 4.4 25 0.36

TiO 3.05 80-170 ~0

the 2001 ITRS, namely the 22-nm node for low standby
power. Indicated in Table 2 are representative values

of band offset and dielectric constant for some of the
dielectrics that have been reported [52, 62, 66, 67], where
it is seen that the conduction-band offset generally
decreases with increasing dielectric constant. It should be
noted, however, that the energy levels of transition-metal
d-states, which define the offset, depend on the band
occupancy; hence, the values obtained depend on the
measurement technique used. Thus, it is not obvious
which is the most appropriate value to use for direct-
tunneling calculations, or even whether trap-assisted
conduction may predominate. Furthermore, the
assumption that the relative electron effective mass is 0.5
is not justifiable. Nevertheless, despite those caveats, three
regions of the curve in Figure 6 can be discerned. In the
highest-dielectric-constant region (k > 30), it is seen that
a limiting offset barrier height of about 0.5 eV is needed;
in this region, large increases in dielectric constant
provide very little relief in the barrier height needed.
Thus, titanium- and tantalum-based dielectrics can be
eliminated from consideration because of their low barrier
heights. In the lower-dielectric-constant region (k < 10),
a very large barrier height, i.e., >2.5 eV, is still required.
Aluminum oxide is probably the only material that might
meet this criterion. Thus, the tradeoff between dielectric
constant and offset barrier height is most apparent at
intermediate dielectric constants, where increasing k from
12 to 20 decreases the barrier height needed from 2 to
about 1 eV. Materials such as HfO, and ZrO,, having
dielectric constants of about 15 and offsets of about 1.5 eV,
have the potential of meeting the long-term leakage
requirements. Their silicates have almost the same barrier
height, nearly as high a dielectric constant, potentially
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lower charge levels, and much better thermal stability;
thus, they may be even better candidates. The group III
materials such as L,O, or Y,O, have higher dielectric
constants and higher barrier heights. If charge levels can
be controlled with these materials, they might be even
more extendable. One scenario to meet the leakage
requirements for low standby power would be a
0.3-0.4-nm oxynitride interfacial layer, to help ensure high
channel mobility, plus a 3-nm layer of intermediate-k
dielectric. For high-performance applications, as discussed
earlier, achieving the gate leakage specification is
relatively less difficult, since only a modest reduction in
leakage (by a factor of 1/2 to 1/5) compared to pure oxide
is needed. Here the difficult challenge seems more likely
to be the preservation of high channel mobility, reliability
of the gate stack, and manufacturing control of EOT.
Even if the ultimate leakage requirement can be met
with oxide that is only 0.3—0.4 nm in thickness, it seems
unlikely that adequate manufacturing control (4%, 30)
could be maintained over a process that forms only two
molecular layers.

Scaled junctions

Requirements

Figure 7 shows the drain extension structure for shallow
junctions along with the components of series resistance.
The basic structure comprises two junctions—an extension
junction and a contacting junction separated by a
dielectric spacer. It provides a shallow (extension) junction
at the channel to minimize device short-channel effects
while at the same time providing a deeper junction that
can be partially consumed by the contacting silicide. One
requirement for this structure is that extension junctions
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must be shallow enough to suppress short-channel effects.
As the figure shows, the metallurgical channel length,
i.e., the distance between the two extension junctions, is
given by the physical gate length, L ., minus the lateral
diffusion of the extension junction from both ends. If the
gate edge is used to define the extension junction, the
metallurgical channel length might be as little as one third
of Lgm. The effective channel length, L, describes the
electrical characteristics of the channel; and while it is
approximately the same as L, its precise value depends
on L_, the lateral abruptness of the extension junction,
and on the method used to analyze the electrical data.
Another requirement for the junctions is that the series
resistance must be low enough so as not to degrade the
transistor drive current [68, 69]; the spreading resistance
component of the parasitic series resistance is related to
the junction abruptness at the lateral edge of the junction
[70-72]. The resistance of the extension junction depends
on its sheet resistance and the length of the spacer (minus
lateral diffusion from the contact junction). And the
contact resistance depends on the interfacial contact
resistivity and the contact area. In earlier generations
of technology, a primary requirement was that the drain
electric field had to be reduced in order to minimize hot-
carrier instabilities; however, with the rapid scaling of
operating voltages, that requirement is generally not the
limiting case today. Instead, junction doping is generally
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chosen to reduce resistance. Ultimately the contact
resistance is expected to dominate the parasitic series
resistance. With dimensional scaling, contact areas are
reduced much more rapidly than linear dimensions; hence,
the contact resistance, which depends reciprocally on
contact area, increases more rapidly than resistance
components, which depend linearly on length (or junction
depth). To maintain parity between the contact and the
channel resistance, the interfacial contact resistivity must
ultimately be reduced—as low as 10~* Q-cm, as seen in
the ITRS values given in Table 1. Such a low interfacial
resistivity cannot be achieved between a metal contact
whose Fermi level is at mid-bandgap and Si doped
to 2 X 10”/cm’, i.e., the maximum active dopant
concentration after typical thermal processing (~1000°C).
Either higher dopant activation must be achieved, or a
lower-barrier-height contact material must be used.
Finally, the total junction capacitance must be low in
order to enable high-speed switching. Silicon-on-insulator
technology has a significant advantage in this regard, since
the junctions are surrounded by oxide on all but the edge
facing the device channel. In bulk CMOS, the requirement
is often met by using a contacting junction that is
relatively deep where the substrate doping is low; this
also reduces the band-to-band tunneling leakage of the
junction. Often there are tradeoffs between these
requirements. For instance, the heavy “halo” implants that
reduce short-channel effects lead to increased junction
capacitance and increased tunneling leakage [70, 73].

Results

Given the process for manufacturing CMOS devices, in
which the polysilicon gate acts as a mask for the extension
junction implant, the primary effect of varying the depth of
the extension junction is on the channel length. On the
basis of limited two-dimensional dopant profile data and
2D simulations, one can approximate the lateral excursion
of many junctions as being about 60% of the vertical
depth. The ratio may change somewhat if halo or
compensating implants are used; nevertheless, for a fixed
gate length, deeper junctions result in devices having
shorter metallurgical channel lengths. To eliminate this
variable, we consider devices having fixed metallurgical
channel length. Using simulation, this is easy to do by
adjusting the physical gate length in concert with the
junction depth. Figure 8 compares the simulated drive
currents of the conventional drain extension structure
device with hypothetical devices having a single junction
contact at the very edge of the gate electrode [72]. In
these simulations, the substrate doping was adjusted for
each junction depth so that the off-state leakage of the
L, = 56-nm device met a specification of 3 nA/um. By
assuming that a contact can be made without consuming
the extension junction and without shorting the gate to the
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junction at the gate edge, this hypothetical single-junction
structure minimizes series resistance and provides an
upper bound for drive current. For this case, the figure
shows that the drain current actually decreases as the
junction depth increases. This result is the opposite of the
case in which the physical gate length is held constant
(and the metallurgical channel length decreases as X;
increases). For deeper junctions, the higher substrate
doping required to reduce short-channel effects, and
thereby to meet the I, specification, results in slightly
lowered channel mobility. Another contributor to the
decreased current drive for deeper junctions is the
increased spreading resistance of such junctions. In
contrast, the drive current in the drain extension structure
first increases, achieves a maximum, and then decreases as
the extension junction becomes deeper. The drive current
is maximized when the extension junction depth is about
20 nm for this particular case. When junctions are much
less than 20 nm deep, the series resistance of the junction
becomes important and can degrade the drive current. For
deeper junctions, the drain extension structure results in
currents that approach those of the single-drain structure,
which decrease for increasing junction depth. It is
significant to note, however, that the falloff in drive
current is only modest for much deeper junctions. On
the basis of these results, it would appear that allowing
extension junctions to exceed the values that maximize the
drive current will result in only a modest performance
degradation, when the metallurgical channel length is
fixed. However, in practice, when the physical gate length
is fixed, deeper junctions are often likely to result in
higher-performance devices, albeit ones that have more
severe short-channel effects and require higher substrate
doping or more aggressive halo designs for compensation.
Several studies [68, 72] have shown that spreading
resistance dominates the parasitic resistance of most
recent conventional junction designs. The simulations
shown in Figure 9 quantify the increase in drive current as
junctions become more abrupt for 100- and 50-nm-node
(1999 ITRS) devices. (Note: Steeper, more abrupt
junctions have lower values on the x-axis scale.) The
figure also illustrates a complicating factor in trying to
experimentally analyze the effect of abruptness on series
resistance. Using the widely accepted shift and ratio
method [74] of analyzing effective channel length and
series resistance, one sees that the primary effect of
making junctions more abrupt is to decrease L, while
R, remains largely constant. There is not a good
correlation between the electrically extracted series
resistance and the resistance values calculated from
junction doping profiles (or from quasi-Fermi-level
calculations along the channel [75]). An important
advantage of making junctions more abrupt is that
the gate-to-drain overlap requirements are relaxed.
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series

Simulations of the device drive current as a function of
this overlap have been performed [72]. Figure 10 plots
the critical values of the overlap or underlap at which
the drive currents degrade by 1% compared to the fully
overlapped case. The simulations, summarized in Figure 10,
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show that a slight underlap (~3 nm) may be tolerated
before the device current drive is appreciably degraded.
By reducing the overlap, it should be possible to reduce
the source-to-drain (Miller) capacitance. The figure also
plots the Miller capacitance at the minimum overlap as a
function of junction abruptness.

Prognosis

Elevating junctions above the substrate surface has long
been recognized as one technique to simultaneously
provide a shallow junction in the substrate (as measured
from the plane of the channel) and a thick sacrificial layer
for silicidation. Recent developments in M. Oztiirk’s
group have demonstrated that through the use of strain
compensation between Ge and B, very high electrical
activation (~10"'/cm’) in p* junctions can be achieved by
the use of in situ doping of selectively deposited Si-Ge
layers [76-78]. The results are not as dramatic for n”
junctions; nevertheless, very high activation (4 X 10%/cm’)
for in situ p-doped films can be achieved. These films have
the potential to “solve” the major problems associated
with junction formation. First, because of the low
deposition temperature, the junction is very nearly abrupt.
Second, the contact resistance is dramatically reduced
because of very high dopant activation and the reduced
bandgap of Si-Ge.

Higher lateral gate-to-drain capacitance along the
vertical sidewall between the gate and an elevated junction
is one drawback to this technology. However, it is possible
to reduce the parasitic capacitance, at the cost of increased
process complexity, by depositing a thin initial junction
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layer, followed by a spacer and then a thicker epi
layer. Instead of two implants and a spacer, as with
current technology, two selective epi depositions and
a spacer would be required with this process.

Another factor to consider when junctions are deposited
on top of the substrate rather than diffused into the
substrate is that the metallurgical channel length will very
closely approximate the physical gate length. With today’s
typical device geometries, lateral diffusion results in
metallurgical channel lengths which are only about half of
the physical gate length. Thus, achieving the same channel
length requires the use of much shorter physical gate
lengths when using deposited junctions. In turn, this
requires improved lithographic capabilities for each
generation of devices. On the other hand, the vertical
component of the overlap capacitance is dramatically
reduced using deposited junctions.

Although there are several serious integration issues, to
be described later, associated with the implementation of
in situ doped, elevated junction technology, there is no
reason to think that they cannot be solved. Thus, one can
envision that junctions whose depths are vanishingly small
will ultimately be producible.

Integration

Requirements

An important issue associated with the use of alternative
high-k dielectrics and alternative gate-electrode materials
is their limited chemical and thermal stability. The
compelling advantage of polysilicon as a gate material

is that it can withstand source/drain junction annealing
thermal cycles. Despite the strong desire to preserve the
conventional process flow [79], it is still questionable
whether future advanced gate stacks employing high-k
dielectrics and new gate materials will enjoy this
advantage. Thus, alternative integration schemes and
device structures may be required to form the source/drain
junctions and perform all high-temperature thermal
process steps before the formation of the gate

stack. The replacement-gate process, which employs
chemical-mechanical polishing (CMP) and etching

of a sacrificial poly-Si/SiO, gate stack, has been widely
proposed and reported to meet this objective [46, 80-86].
The complete implementation of this process employs a
damascene process [87] for the gate electrode to reduce
the overlap capacitance and layout area. There are
additional claims that the replacement-gate process

can reduce variations of the threshold voltage [83].
Furthermore, the process allows implants to be introduced
into the channel region only, thereby potentially reducing
the substrate doping immediately beneath the junctions
in order to reduce junction capacitance. Since the
replacement-gate dielectric covers both the substrate and
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the sidewalls of the dummy gate, the gate-to-drain overlap
is reduced with this process. However, if the dielectric
constant of the high-k material is too high, the critical
gate-to-drain overlap may not be achieved, and the drive
current will suffer. However, as Figure 10 shows, a slight
underlap should be permissible, provided the extension
junction is sufficiently abrupt.

Even for simple n-MOS or p-MOS devices, there are
many challenges associated with the replacement-gate
scheme. These challenges include identification of suitable
material systems for the sacrificial gate stack and spacers;
development of suitable CMP processes (including
slurries, pads, and selective polishing conditions for
metal patterning) which will selectively polish back to the
sacrificial gate stack with minimal over-etch tolerance
and pattern dependency; removal of the sacrificial gate
stack without vertically damaging the silicon surface or
laterally encroaching on the sidewall spacer; maintaining
adequately low gate-to-diffusion overlap when the high-k
dielectric forms part of the side of the spacers; and
development of good gap-filling processes for both
dielectric and gate materials. Fabrication of CMOS
devices adds several more issues, particularly those
associated with the need to integrate two gate metals
having different work functions. It would be most
desirable to pattern both gate materials simultaneously
using the damascene process. The use of two gate metals
seems likely to require the independent formation of two
gate stacks—one for n-MOS and one for p-MOS devices.
The potential for degradation of the initial high-k
dielectric during removal of the first gate metal seems
sufficiently high that it appears likely that both the first
gate electrode and the first gate dielectric will have to
be removed in practice. While this is straightforward
and might ultimately allow the use of two different
dielectrics whose properties are more optimally matched
to the electrode material, it certainly does increase the
complexity of the process. This increased complexity may
in turn dramatically alter the manufacturing economics.

A key requirement impeding the easy integration of
selectively deposited junctions is that the gate electrode
must be insulated from the deposited junction, both on its
sidewall and on its bottom. Thus, the electrode sidewall
must be protected with a thin spacer during selective
deposition. However, given that practically no junction
diffusion takes place, the spacer precludes having a gate-
to-diffusion overlap. Simulations of the type shown in
Figure 10 indicate that a small gap of 1-2 nm may be
acceptable, but this is certainly thinner than leading-edge
spacers can be made today. A complicating issue when
trying to form such ultrathin spacers is the uniformity of
gate edges. Edge roughness of this same order would be
expected to greatly complicate the manufacturing process.
The use of the replacement-gate process may relax the
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integration requirements for selectively deposited
junctions. If a dielectric stack (e.g., oxide pad plus silicon
nitride) is used as the sacrificial gate stack, a sidewall
spacer is not required to protect polysilicon during
selective epitaxial growth. With such a process, the gate-to-
drain underlap would be no more than the EOT of the gate
dielectric, which should be acceptable. Also, the reduced
vertical component of the gate-to-drain capacitance should
offset the increased lateral capacitance along the gate
sidewall.

Prognosis

Finding dielectric and gate materials with enough thermal
stability to withstand the conventional junction-last
process flow remains a high priority. Both HfO, and ZrO,
crystallize at relatively low temperatures; however, dilute
silicate alloys extend the range of their stability to the
point at which phase separation rather than crystallization
becomes the predominant instability mechanism. However,
it remains to be seen whether adequate stability will
ultimately be achieved.

An extensive amount of work has already been
performed on the replacement-gate technology. While
many process issues remain to be addressed, it appears
that the major impediment to its use is economic.

The process is considerably more complex, and the
manufacturing cost and yield implications have not yet
been fully assessed. Nevertheless, the integration of
vertically scaled gate stacks and junctions does not
appear to present fundamental technical limits.

Summary and conclusions

This paper considers two of the key vertical scaling
challenges—the gate stack (dielectric and electrode) and
the extension junction. It reviews and justifies some of the
device requirements embedded in the numbers given by
the International Technology Roadmap for Semiconductors
for these elements, provides a status report on work aimed
at achieving materials and processes for end-of-the
Roadmap devices, and provides a (speculative) prognosis
of the likelihood of ultimately achieving Roadmap goals
on a timely basis.

The vertical scaling requirements for gate stacks and
for shallow extension junctions were reviewed against
projected Roadmap numbers. Gate stacks having an
equivalent oxide thickness of less than 1 nm and
acceptably low gate leakage are needed almost
immediately. For high-performance applications, the high
leakage associated with oxynitride dielectrics may be
acceptable for several more years. Low-power applications,
however, require considerably lower gate-dielectric
leakage levels. Several promising alternative material
candidates exist for that application—for example, HfO,,
Zr0O,, and their silicates. Nevertheless, considerable
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challenges lie ahead if we are to achieve an EOT of less
than 0.5 nm. If only a single molecular interface layer
of oxide is needed to preserve high channel mobility, it
seems likely that an EOT of 0.4-0.5 nm represents the
physical limit of dielectric scaling.

For junctions, the primary challenge lies in providing
low parasitic series resistance as depths are scaled in
order to reduce short-channel effects. Ultimately, contact
resistance is expected to dominate. The effect of junction
abruptness on drive current was quantified for two
generations of technology, and it was shown that a slight
underlap of the gate to the drain junction is acceptable
provided the junction is sufficiently abrupt. The selective
deposition of in situ doped junctions is seen as a very
promising potential solution for both reducing contact
resistance and increasing junction abruptness. Activation
of 10*" boron atoms/cm’ has already been demonstrated.

The integration of high-k gate stacks, new gate
electrodes, and alternative junction technologies will
present several concerns. It is not apparent that the high-k
dielectrics and gate metals will have the requisite thermal
stability for conventional CMOS process architectures.
Although its manufacturability has yet to be demonstrated
and costs defined, the replacement-gate process, with
either horizontal or vertical devices, appears to be a
solution for these concerns. Thus, integration does not
appear to be a fundamental limitation to the future
vertical scaling of devices over the next decade. Instead,
the identification and qualification of new materials for
dielectrics, gates, and junctions remains the highest-
priority need.
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